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A general theory of neural networks with nonlinear synapses is developed. To this end a mean-

field model of a novel type is introduced and solved exactly. For suitable nonlinearity, synaptic sign

changes may be eliminated altogether without affecting the efficiency of the network. Static noise

is easily included.

PACS numbers: 87,30,Gy, 64.60.Cn, 75.10.Hk, 89.70.+c

The intriguing properties of a neural network, such
as learning and unlearning, fault tolerance with respect
to input data errors, and information storage and re-
trieval, have been related to the existence of attractive
sets (equilibrium states) in the phase space of an Ising
spin-glass. It is generally expected' that the essential
characteristics of the dynamics are captured by a Ham-

iltonian of the form

Hjt = ——,
' Qt.JOS(i)S(j )

The N neurons are described by Ising spin variables

S(i), 1»i » N, which can assume the values +1
(firing) and —1 (quiescent), and the dynamics of the
network is a downhill motion in the energy landscape
associated with Hty.

For suitable couplings Jtt, the network (1) operates
as a fault-tolerant, content-addressable memory. Ad-

ditional patterns may be learned by appropriate modifi-
cation of the J&. To facilitate the modeling, the pat-

terns ((„; 1»i»NI, say with 1»n»q, are as-

sumed to be random. That is, the (t = +1 are in-

dependent, identically distributed random variables.
Following Hebb, s one stores the data in the synaptic
efficacies

I 1

while taking'

The linear model has been criticized. First, the Jtj
may change each time a new pattern is added:
~Jtt= JN '&Tti~(t 4~

= +1. Here we used the
linearity of (3). Second, the J0 may change sign.
Away from saturation, 6 there are quite a few meta-
stable (spurious) states, which deteriorate the
memory function. One therefore should choose a non
linear synaptic function @ such that the number of
synaptic changes is reduced rather drastically without

increasing the number of metastable states as com-
pared to (3). We will see shortly that the function
@(x)=sgn(x) meets this criterion. Another impor-
tant reason for considering this type of function is that
it is far easier to implement in silicon versions of Hop-
field memories than the original, linear synapses (3).

In this paper we address the problem of analyzing
nonlinear neural networks a la (4). We endow the sys-
tem with a Monte Carlo dynamics ( T~ 0) so that the
collective long-time behavior of the neural network is
governed by the equilibrium statistical mechanics of
the underlying Ising spin-glass. We therefore have to
obtain the free energy of the model (1) with the in-
teraction (4) and arbitrary $. This will be done first.
We introduce and exactly solve a mean-field model of
a more general and novel type. Its method of solution
is also of some independent interest. Then we study
the special case of "clipped'* synapses' with @(x)
= sgn(x) and

J~~= JN 'Tti. (3)
Jt&= JN 'sgn(gt g&).

More generally, it would be desirable to study models
with

Jt~= JN '$(T~), (4)

the synaptic function P being arbitrary. If @(x)=x,
then (4) reduces to (3), which may be called a linear
neural network since (3) is linear in the Ttt. The
linearity greatly simplifies the ensuing analysis. Jtt = N '0(gt;(J) (6)

The gt are independent random vectors in R't (q
fixed), whose components need not necessarily be
+ 1. No«, ho~ever, that q is taken to be finite. Since

new phenomena occur, a thorough understanding of
this case is mandatory. At the end of this paper we
generalize (5) and incorporate static noise.

We start by considering the Hamiltonian (1) with
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for some function Q(x;y) = Q(y;x) on Riix R'i. The
have fixed values, randomly chosen according to

their distribution. The model (6) will be solved by us-

ing a large-deviations argument. To understand it,
we must make a small detour.

Imagine one were to derive the free energy

dinate transformation from the S(i), 1»i » N, to

mz as a new "integration" variable with values

between —1 and 1. Suppose we had found the corre-

sponding Jacobian, to be called 9 ( m ). Then, as

tr exp( —,
' NP Jm~~)

13f(—P) = lim N 'lntrexp( PH—~) (7)
dm $(m) exp[N( ,'P Jm—'}]. (9)

of the Curie-Weiss Hamiltonian

N

Hg= ——,
' JN N ' XS(i) =———,

' JNmg (8)
~

&-1

without using the well-known linearization trick. '2 To
evaluate the (normalized) trace in (7) we note that the
whole expression only depends on the magnetization
m~. It therefore seems reasonable to perform a coor-

& ( m ) is easily found. We have

tr exp( —,
'

NP Jmg)

k exp[N{ —,'plm&(k) }],
i

where m~(k) = N '[ —(N k) + k]—= N '[2k —N]
is the magnetization for N —k spins down and k spins
up. Hence k = —,

' N(l+ m) and, by Stirling,

&(m) -2
—,
' N(1+ m)

= exp[ —Nc'(m) ]

where

c'(m) = —,
' [(1+m) In(1+ m)+ (1 —m) ln(l —m)]

if (m (» 1, and + ~ elsewhere. Combining (8)-(11)we get, using a Laplace argument,

—Pf(P) = lim N 'ln f dmexp[N(-, 'PJm —c'(m) }]=sup( —,'PJm —c'(m) }.—OO N

The supremum is realized for those m which satisfy
the fixed-point equation parameter

(10)

PJm=dc (m)/dm=tanh '(m) m„= {1„(-'X S(i) (15)

—m = tanh(P Jm ) .
We now return to our problem.

Let us suppose first that the g's have a discrete
probability distribution. Say, the vector g assumes,
with probability p&, n different positions y, where y
denotes a q vector. Now the index set {1» i » N }

may be divided"'3 into disjoint subsets I» =
( i:g,= y }

whose sizes become deterministic' as n

N-'(I„(=p„.
With each l~ we associate a magnetization or order

If y& y', then these order parameters are not directly
correlated.

Using (6), (14), and (15) we rewrite (1) in the form

—PH~ = —,
' PNxm~[p„Q(y;y') p, ]m, = NQ(m),

where m is a vector with components m„. We have to
evaluate the trace of exp( PH&). As before—, it
seems natural to take the m„as new "integration"
variables. Since they are not directly correlated their
Jacobian is

& (m) = J'] exp{ —
I I„(c (m„) }= exp[ —N {X„p„c (m„) } ]

and thus, by another Laplace argument,

Pf(P) = Iim N 'ln„—i d'imexp[N(Q(m) —Xp„c'(m„) }]=sup(Q(m) —+„c'(m„)},
'y Cl

(16)

where c ( m) is defined by (11). This solves the prob-
lem.

The maximum in (16) is realized among the m that
satisfy the fixed-point equation [cf. Eq. (13)]

A fixed point m is stable, i.e. , gives rise to a (local)
maximum, if the second derivative of (16) is negative
definite —that is, if the matrix with elements

m„= tanh(P XQ(y, y )p, ,m', } =—tanhx„. (17) Pp, Q(y;y') p
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has negative eigenvalues only. For small enough P
(high enough temperature) the only solution to (17) is
m„=0 for all y. Let Q be the matrix with elements
Q(y,.y') and P the diagonal matrix (p„). Moreover,
let Xi be the largest eigenvalue of QPand mi the cor-

responding eigenvector. A nontrivial solution to (17)
branches off into the direction of mi and a phase tran-
sition occurs as Treaches T, =)(.i.

The expression (16) may be simplified. To this end
we define c(t) = In[cosh(t) l. Using (17) one easily
verifies that c (m„) = m~x„—c(x„)and thus

—()f())) = ——,'() X„„~„p„o(y;y')p„~„+X„p„e(x„) (19)

where w«ake that solution m of (17) which maximizes (19). This expression also holds for more general c func-
tions' corresponding to n-component or soft spins.

What are the modifications needed for a continuous probability distribution p, of the g's? Simply reinterpret m~
as a function m(y) or, more explicitly, m(x) on the probability space. Instead of (17) we now get

m(x) =tanh{P dp, (y)g(x;y)m(y) I (20)

while

Pf(P) =— dp( ) (P dp (y) Q(;y) (y)) ——,'/3

replaces (19). A detailed proof will be given else-
where "

The clipped synapses (5) are a special but rather in-

teresting case of the more general interaction (6).
Though the Gaussian probability distribution dp, (y)
=(2n) «2exp( ——,'y2) allows an exact solution of
(20) and (21), it will be discarded here because its ro-
tational invariance gives rise to a continuous degenera-
cy. Instead we will focus our attention on a probability
distribution which corresponds more closely to Hop-
field's original choice. '

The vectors f, are taken to be discrete random vari-
ables whose components assume the values +1 with
equal probability. Then p„=2 ~ for all y and Q is a
2~X 2~ matrix with elements sgn(x y), where x and y
are the corners of the q-dimensional cube [ —1, 1]~.
The matrix can be diagonalized exactly. Let the eigen-
values of 2 ~g be ordered as X» X2 & . . . . The
largest eigenvalue of the matrix QP=2 &Q which
determines the bifurcation is

( (

q —1 q —1
i =2-&" or 2-&+', (22)

—,'(q-2)
(

according to whether q is odd or even. For the sake of
convenience we take q odd. Then )(.i has a q-fold de-
generacy'5 and the q eigenvectors m with the com-
ponents sgn(x e ) correspond precisely to the q
stored patterns. [e is the unit vector in the Cartesian
n direction. ] If P,)(iJ=1, then q different solutions
bifurcate away from zero in the directions of the m .

These solutions are stable at ali temperatures. If one
lowers the temperature, no other solutions to (17) will
branch off from zero until P reaches P2 with )82JX2 = 1.
Then more, at first unstable, solutions appear. We
now study these in greater detail.

The 2ii eigenvectors of g have an additional proper-
ty: The absolute values of their components are all

„' dpi, (x) dp, (y) m(x) Q(x;y) m(y) (21)

equal —say to 1. Let m be an eigenvector belonging to
a positive eigenvalue X of 2 ~g. (There are about 2(i

of them. ) Then xm for suitable x and for P high
enough is a solution to (17). To see this, substitute
xm into (17). Then we are left with only one equation
x=tanh(PJA, x) and xe0 if PJA. & 1. So with each
positive eigenvalue X, we may associate a critical tem-
perature T,~ 1i, If i ~ 2, the bifurcating solutions x,m
are not stable at T& but they will become so soon after-
wards. In the stability criterion (18) the factor
m2 =x2 does not depend on y. As T is lowered, a
nonzero x approaches 1 at an exponential speed and
—(1—x ) ' completely dominates P g for x
This proves the assertion.

Since T2/ T, = )(.2/)(. i, the interesting question now is,
what is the dependence of X2/Xi upon q'? lt turns out
that )(.2/&i =3[(q —2)(q —4)] '. So for q large,
there is a huge temperature range, T, & T & T2,
where the original patterns are stable (x = 1) and no
other metastable states have appeared yet except for
the ones associated with A, i. The eigenvalue )(.i being
proportional to q

'i2 one may rescale J by putting
J Jq J. This fixes T, but not the fraction T2/T, .

It is interesting to compare the present model (5)
with the Hopfield model (3). The latter is character-
ized by a matrix go with elements x y instead of
sgn(x y). Both Qand Qo have the same eigenvectors
but the corresponding eigenvalues may differ. In fact,
2 (igo has a q-fold degenerate eigenvalue 1 with the
same eigenvectors m, 1 ~a ~ q, as Q while all the
other eigenvectors belong to the eigenvalue zero.
Hence the Hopfield model has a critical temperature
T, determined by )8,J= 1 and, indeed, T, does not
depend on q. Below T„however, the bifurcation
phenomena of the two models are determined by the
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very same fixed-point equation (17), with the same
eigenvectors and only a different matrix. We there-
fore can apply the analog of the intricate bifurcation
analysis of Ref. 7. In the present case, additional pat-
terns appear below T2(& T, but they become ir-

relevant as q
The model (5) is easily extended so as to include

static noise and eliminate synaptic sign changes alto-
gether:

Jt~= —JN '+att8(gt g~) +chit. (23)

The constant term —JN ' provides an antiferro-
magnetic background and favors configurations with
zero magnetization. The a& and bti are independent
Gaussian random variables with suitable mean and
variance (say N ') while 8(x) =-,' [sgn(x)+I] is the
Heaviside function. The e determines the strength of
the static noise and is still at our disposal. If e van-
ishes and a&=2JN ', then (23) reduces to (1) with
the interaction (5). Now a "typical" pattern always
has vanishing magnetization, i.e., N $gt =0. This
is consistent with the antiferromagnetic background,
which we therefore hypothesize to be an intrinsic ele-
ment of the system (selection principle). The second
term in (23) represents the synaptic strength. It wiil

never chattge sign —in striking agreement with physio-
logical evidence. 4 Full details about the solution of
(23) will be given elsewhere.

In summary, through a new method we can analyze
the nonlinear neural networks (4), which correspond
more closely to reality, and explicitly solve the model
with @(x)= sgn(x). In the temperature range
T, & T & T2 with T2~ q the original patterns (and
certain convex combinations thereof) are the only
ones that have bifurcated from zero. '7 Our method of
solution also shows that though the Jti hardly ever
change sign, if they do, this is not harmful to the sta-
bility of the patterns. It is the subtle dependence
among the coupling constants Jtt with i fixed, say, and
1~j~ N which is responsible for the retrieval func-
tion.
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