Spectra of Large Random Stochastic Matrices

& Relaxation in Complex Systems

Reimer Kiihn

Disordered Systems Group
Department of Mathematics, King’s College London

Random Graphs and Random Processes, KCL 25 Apr, 2017

ING'S
College
LLONDON

University of London

/33



[Jeong et al (2001)]

2/33



[www.opte.org: Internet 2007]



Outline

Q Introduction
@ Discrete Markov Chains
@ Spectral Properties — Relaxation Time Spectra

e Relaxation in Complex Systems
@ Markov Matrices Defined in Terms of Random Graphs
@ Applications: Random Walks, Relaxation in Complex Energy Landscapes

e Spectral Density
@ Approach
@ Analytically Tractable Limiting Cases

@ Numerical Tests

e Summary



Outline

ﬂ Introduction
@ Discrete Markov Chains
@ Spectral Properties — Relaxation Time Spectra

33



Discrete Markov Chains

@ Discrete homogeneous Markov chain in an N-dimensional state space,

pt+1)=Wp(t) &  plt+1)=) Wn(t).

@ Normalization of probabilities requires that W is a stochastic matrix,

W;>0 foralli,j and Y W;=1 forallj.
i

@ Implies that generally
o(W)C{z|z| <1}.

@ If W satisfies a detailed balance condition, then

o(W)C[-1,1].



Spectral Properties — Relaxation Time Spectra

@ Perron-Frobenius Theorems: exactly one eigenvalue N{ = +1 for every
irreducible component u of state space.

@ Assuming absence of cycles, all other eigenvalues satisfy
Aol <1, a#1.

@ If system is overall irreducible: equilibrium is unique and convergence to
equilibrium is exponential in time, as long as N remains finite:

p(t) = W'P(0) =peg+ Y g Va (Wo,P(0))
o(Z1)

@ Identify relaxation times
1
To = —
* In|Al

<= spectrum of W relates to spectrum of relaxation times.
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Existing Results Concerning Limiting Spectra

Reversible Markov matrices on complete graphs = Wigner Semicircular Law:
Bordenave, Chaputo, Chafai: arXiv:0811.1097 (2008)

General Markov matrices on complete graphs = Circular Law: Bordenave,
Chaputo, Chafai: arXiv:0808.1502 (2008)

Continuous time random walk on oriented (sparse) ER graphs with diverging
connectivity (c(N) ~ log(N)®) = additive deformation of Circular Law:
Bordenave, Chaputo, Chafai: arXiv:1202.0644. (2012)

Bouchaud trap model on complete graph: details depend on distribution of traps
(random site model): Bovier and Faggionato, Ann. Appl. Prob. (2005)

Spectra of graph Laplacians: various recent (approximate) results

@ Grabow, Grosskinsky and Timme: MFT approximation of small worls
spectra PRL (2012),

@ Peixoto: large ¢ modular networks PRL (2013)

@ Zhang Guo and Lin: spectra of self-similar graphs PRE (2014).
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Markov matrices defined in terms of random graphs

@ Interested in behaviour of Markov chains for large N, and transition
matrices describing complex systems.
@ Define in terms of weighted random graphs.

o Start from a rate matrix I = (I';) = (¢jKj)
@ on a random graph specified by

a connectivity matrix C = (¢;j) , and edge weights K; >0 .

@ Set Markov transition matrix elements to

I .
VAL

Wij=4q 1 ,i=j, and I;=0,
0 , otherwise |,

where I'; =Y.
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Symmetrization

@ Markov transition matrix can be symmetrized by a similarity
transformation, if it satisfies a detailed balance condition w.r.t. an
equilibrium distribution p; = p;?

Wip; = Wiipi
@ Symmetrized by W = P~'/2WP'/2 with P = diag(p;)
1

U:\ﬁm]'\/ﬁjz‘wﬁ

@ Symmetric structure is inherited by transformed master-equation operator
M = P~12MPV2, with My = W — §j.
@ Results so far restricted to this case.
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Applications | — Unbiased Random Walk

@ Unbiased random walks on complex networks: Kj = 1; transitions to
neighbouring vertices with equal probability:

i

Wj=—, i#j,
U k/ ) #]
and W; = 1 on isolated sites (k; = 0).
@ Symmetrized version is
Cjj .,
Wy=——, i#j,
if kik #J

and W; = 1 on isolated sites.
@ Symmetrized master-equation operator known as normalized graph
Laplacian

C,'/' . .
W S
Li=4q -1 ,i=j,andk £0

0 , otherwise .
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Applicatons Il - Non-uniform Edge Weights

@ Internet traffic (hopping of data packages between routers)

@ Relaxation in complex energy landscapes; Kramers transition rates for
transitions between long-lived states; e.g.:

M= c,-jexp{ —B(Vij_E/')}

with energies E; and barriers Vj; from some random distribution.
< generalized trap models.

@ Markov transition matrices of generalized trap models satisfy a detailed
balance condition with

PIZE

= can be symmetrized.
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Spectral Density and Resolvent
@ Spectral density from resolvent
1 —1 .
pa(A) = mlm Tr [Ael—A] ,  Ac=A—ie

@ Express inverse matrix elements as Gaussian averages

[S F Edwards & R C Jones (1976)]

Mel—A]" =i(uu)

where (...) is an average over the multi-variate complex Gaussian

P(u) = Z1N exp{ - %(u, [kgl—A]u)}

@ Spectral density expressed in terms of single site-variances

palt) = —Re Y (t8)
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Large Single Instances

@ Single-site marginals

P(u;j) o< exp{ - ékg u,z} /dua; exp{ i) AUU’UI} (u31) ,

jeai

Here P()(ujy,) is the joint marginal on a cavity graph.

@ On a (locally) tree-like graph PU)(up;) ~ [T;co; IDI(i)(uj) so integral factors

P(u,-)cxexp{ Kgu H/dU/ exp 1AUU/U/}P()(U/)

jeai
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Large Single Instances - Contd.

@ Same reasoning for the I’l-(i)(u,-) generates a recursion,
P(i)(u-)cxex —il U2 [T [ ducexpqiAjuu P(j)(u)
j \Y P~ 5%y o 0 €XP 3 1Ajel;Ug ¢ Fyo(ue) -
Ledj\i

@ Cavity recursions self-consistently solved by (complex) Gaussians.
i i 1 () »
Pj( )(Uj) = \/0)/( )/271: exp{ - 50)]( )u/- } ,
@ generate recursion for inverse cavity variances

0 A
1 . /
(D]- = 17\,5 + Z T
0€9j\i Wy

@ Solve iteratively on single instances for N = O(10°)

17/33



Thermodynamic Limit

@ Recursions for inverse cavity variances can be interpreted as stochastic
recursions, generating a self-consistency equation for their pdf ©(®).

@ Structure for (up to symmetry) i.i.d matrix elements A; = ¢;iKj
[RK (2008)]

k k—1

m(0) = ¥ p(k); [ TTdn(ov) (6(0 Q1) ix)
k>1 v=1

with

T
gl

;
Qu—1 = U—1({oy, K }) = ike +
1

<
Il

@ Solve using population dynamics algorithm. vezard, Parisi (2001)]
& get spectral density:

p(%) = 2 Fe Yptk) [ [T an(on) <Qk({o:v,f<v})>{,<}

@ Can identify continuous and pure point contributions to DOS.
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Unbiased Random Walk

@ Self-consistency equations for pdf of inverse cavity variances;
— first: transformation u; < u,-/\/F,- on non-isolated sites

o) = ¥t [ [ an(00) d0—2)

k>1 Y

with
k=1 4

Qk_1 = Qk_1 ({0)[}) = 1X€k+ Z — .
(=1 O

@ Solve using stochastic (population dynamics) algorithm.
@ In terms of these

p(R) = p(0)3(A 1)+  Re kgp(k)/ﬂdn((’”) Qk({kme})
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General Markov Matrices

@ Same structure superficially;
— first: transformation u; < u,-/\m on non-isolated sites
— second: differences due to column constraints
(= dependencies between matrix elements beyond degree)

k—1
() = Zp(k)’;/udn(mv) <5(m—9k,1)>{Kv}

k>1

with
k—1

Q1=

v=1

KS
Oy +ikeKy

iAe Ky +

@ In terms of these

K k
p(%):p(o)a(x_1)+%Re Zp(k)/qdn(c‘”) <QI<(Z{VO)V1}:(VV})>{K}

k>1
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Analytically Tractable Limiting Cases
Unbiased Random Walk on Random Regular & Large-c Erdés-Renyi Graph

@ Recall FPE
k k—1
n(@) = ¥ p(k)= / T] dm(on) 8(0— 4 1)
k>1 v=1
k—1
with . 1
Qo =ikek+ ) —.

@ Regular Random Graphs p(k) = 8 ¢. All sites equivalent.

@ = Expect

@ Gives

@ & Kesten-McKay distribution adapted to Markov matrices

@ Same result for large ¢ Erdés-Renyi graphs = Wigner semi-circle
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Analytically Tractable Limiting Cases
General Markov Matricies for large-c Erdés-Renyi Graph

@ Recall FPE

o) = ¥ et [ TTén(@) (6021w

k>1
with k—1

Q1= Z

v=1

K?
Ay +——— | .
VT 0y + e Ky

@ Large c: contributions only for large k. Approximate €,_1 by sum of averages
(LLN). = Expect

- - . K®
T(w)~d(w-0), & dO~c 17“£<K>+<6)+MSK> .
@ Gives _ 1, | elK)
p(A) = oRe| ===

@ Is remarkably precise already for ¢ ~ 20. For large c, get semicircular law

c (K)2 |4(K?)

PN = 22 k3 \ a(k)2

2
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@ Spectral density:

pPA

Unbiased Random Walk

k; ~ Poisson(2), ‘W unbiased RW

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
-1.5 -1 -0.5 0 0.5 1 15

A

Simulation results, averaged over 5000 1000 x 1000 matrices (green)
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Unbiased Random Walk

@ Spectral density: k; ~ Poisson(2), W unbiased RW
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Simulation results, averaged over 5000 1000 x 1000 matrices (green) ; population-dynamics results (red) added.
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Unbiased Random Walk

@ Spectral density: k; ~ Poisson(2), W unbiased RW
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zoom into the edge of the spectrum: extended states (red), total DOS (green).
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Unbiased Random Walk

@ Relaxation time spectrum: k; ~ Poisson(2), ‘W unbiased RW
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Relaxation time spectrum. Extended states (red), total DOS (green)
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Unbiased Random Walk—Regular Random Graph

@ comparison population dynamics — analytic result
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Population dynamics results (red) compared to analytic result (green) for RW on regular random graph at ¢ = 4.
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Stochastic Matrices

@ Spectral density: k; ~ Poisson(2), p(Kj) o< K,-l-’1;K,-j € [e*ﬁ,1]

& Kj = exp{—BV;} with V;~ U[0,1] < Kramers rates.

10
14
1.2
1 1
a Q
0.6
0.1
0.4
0.2
0 0.01
1 0.5 0.5 1 -1 0.5 0 05 1
A A

Spectral density for stochastic matrices defined on Poisson random graphs with ¢ = 2, and 3 = 2. Left: Simulation results (green)

compared with population dynamics results (red). Right: Population dynamics results, extended states (red), total DOS (green).
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Stochastic Matrices

@ Spectral density: k; ~ Poisson(2), p(Kj) o< K '; Kj € [e P, 1]

& Kj = exp{—BV;} with V;~ U[0,1] < Kramers rates.
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Spectral density for stochastic matrices defined on Poisson random graphs with ¢ = 2, and 3 = 5. Left: Simulation results (green)

compared with population dynamics results (red); Right: Population dynamics results, extended states (red), total DOS (green).
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Stochastic Matrices — Relaxation time spectra

@ Kramers rates: relaxation time spectra
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Relaxation time spectra; scale-free graph py ~ k=3 for k > 2. Kramers rates at B =2 (left) and p = 5 (right). DOS of extended modes

(red full line) and total DOS (green dashed line).
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Summary

Computed DOS of Stochastic matrices defined on random graphs.
Analysis equivalent to alternative replica approach.

Restrictions: detailed balance & finite mean connectivity

Closed form solution for unbiased random walk on regular random graphs

Algebraic approximations for general Markov matrices on large ¢ random
regular and Erdds Renyi graphs.

@ Get semicircular laws asymptotically at large c.

@ Localized states at edges of specrum implies finite maximal relaxation

time for extended states (transport processes) even in thermodynamic
limit.

For p(Kij) o< K,j_1 . K; € [e7P, 1] see localization effects at large 3 and
concetration of DOS at edges of the spectrum (<« relaxation time
spectrum dominated by slow modes = Glassy Dynamics?
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