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Abstract. It is well known that one can store up to 2N unconelated p a m s  in a simple 
perceptron with N input neurons. Changing the architecture of the net by adding a hidden layer 
may enhance the storage capacity. Leaming in multilayered nehvorlts, however. is difficult and 
slow compared to perceptron learning. In this work a different approach is taken. A large hidden 
layer with N‘ neurons is used onto which the patterns are m p p d  according to a one-ta-one 
wde which is fixed beforehand. Only the wnnections from the hidden layer to the output unit 
are modified by learning. Here we show how to treat the wnelations which are intraduc+ 
by the coding. We find that the storage capacity of such a net cm be made exponentially 
large. Moreover, our results shed new light on the optimal capacity problem for single-layer 
perceptrons. We 6nd the optimal capacity to be determined by the dimension of the space 
spanned by the input palm” rather than by the size of the input layer. 

1. Introduction 

Input signals to the brain are processed on various, hierarchical levels. Both convergent and 
divergent structures exist. Within the visual cortex, for instance, divergent preprocessing of 
the data is found. Most of the synapses are developed  very early during the growth of an 
organism. Others get changed by learning at a later stage. In this paper we try to integrate 
both of these features into a model network with a simple architecture. It needs to ‘have at 
least one hidden layer in order to simulate preprocessing. We choose this layer to be very 
large, imitating a divergent structure. Random input patterns are mapped onto this layer 
by a transformation which is fixed. This mapping may be achieved through unsupervised 
learning in an early stage of development. We are not dealing with learning on this level 
but rather concentrate on supervised learning on the second level. 

Learning in a multilayered network is known to be difficult [1,2]. O h  choice of 
architecture avoids this problem. The hidden layer and the output unit together form a 
simple perceptron which has been widely studied. Efficient learning algorithms are known 
for this problem. Networks of this type may also he of relevance for technical applications. 
A Gardner-type calculation [3,4] will yield the storage capacity of the whole network. 

The preprocessing of the input patterns will, in general, lead to spatial correlations 
in the hidden layer, even if the patterns of the input layer were free of any c6rrelations. 
The problem of storing spatially correlated patterns in a network of perceptron type was 
recently addressed by Monasson [5] and Lewenstein and Tarkowski [6]. Here we use the 
 general^ ideas of Monasson to treat spatial correlations due to preprocessing. However, it 
turns out that the correlation matrices describing such spatial correlations may be singular, 
rendering the direct approach of Monasson inapplicable in the present case. We propose a 
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Figure 1. The input layer has N neurons, the hidden layer has N' = (Z"/n)N of them The 
connections between input and hidden layer are fixed. An example is given in the next pmgraph. 
The connections between h e  hidden layer and the output unit are the ones which get changed 
by learning. 

reformulation of Monasson's approach which is capable of dealing with singularly correlated 
input patterns. They may also be taken as binary, unlike in 151. For the sake of definiteness 
we consider a specific coding which exhibits these features. Our results will be seen to also 
shed new light on the optimal capacity problem for singlelayer perceptlons. 

The composition of OUT paper is as follows. In section 2 we discuss the architecture 
and our coding scheme, and we demonstrate that it leads to spatial correlations with a 
singular correlation matrix in the hidden layer. In section 3 we present our reformulation 
of Monasson's approach which is able to cope with such correlations. In section 4 we 
calculate the optimal storage. capacity of our network. Some technicalities are relegated to 
an appendix. Section 5 finally contains a brief discussion and an outlook on open problems. 

2. The network 

2.1. The architecture 

We study a net with an architecture of the kind shown in figure 1. 

2.2. The code 

We consider random input patterns each containing N binary digits in {&I]. These are 
mapped onto the N' neurons of the hidden layer in the following way. The input neurons 
are divided into m disjoint modules of n neurons (N = m . n). Each module can represent 
one of d = 2" different states which all have the same probability. In the hidden layer 
these d states are represented by d IO, l]-neurons of which only one is on (= 1). The 
(k + 1)th neuron in a module of the hidden layer is on, when the original module shows 
the binary representation of the number k. The coding of the four possible states of an 
(n = 2)-module is also shown in figure 1. The modules can be regarded as receptive fields 
or filters extracting mutually exclusive features. 

2.3. The correlations 

This coding leads to patterns of low activity, globally and within every module, 
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Here, the E (0,1] denote the pattern bits as represented in the hidden layer, i enumerates 
the neurons of the hidden layer, and f i  the patterns. The angular brackets ( ) designate an 
average over the distribution of these pattems. The patterns are correlated among each 
other, 

One also gets a spatial correlation within each pattern. It can be described by the correlation 
matrix C with elements . 

c, = (gy). (3) 

Given our code, C has the following smcture: 

D A ... ... A 

. ... 
: . . . . . . .  A D 

with 

(4) 

where Id is the d-dimensional unit matrix and l d  the d-dimensional matrix with 1 
everywhere. These are (including 
degeneracies) 

The matrix C has three different eigenvalues. 

12= :(l -d$) = O  ( (N’ ld )  - 1)-fold (6) 
d 
1 

13 = - 
d 

(A” - (N’/d))-fold . 
The vanishing eigenvalue 12 indicates that #e correlation matrix is singular and cannot be 
inverted. 

3. Learning correlated patterns 

The aim is to calculate the maximum number of correlated patterns which can be stored in 
the perceptron. Pattems are counted as stored, if the following inequality holds: 
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where K is the desired stability of the solution and (” E [HI the output value. The 
classification gP + 5’ is random. These choices yield (X,) = 0. Otherwise a threshold 
would have to be introduced. To determine the critical storage capacity, a Gardner-type 
calculation [3,4] will be carried out. In order to give a scale to K ,  one has to give a scale 
to the interactions. Here, only interactions satisfying the spherical constraint (Ej  J,? = N’) 
are considered. Within the space of these interactions one needs to calculate the volume 
spanned by the couplings solving (7) for a given number of patterns, 

nj dJj  nP O(X, - K)S(E~ Jj” - N’) 
V =  Inj dJj S(cj J,’- N’) 

The indices j ( =  1.. . N‘) count the neurons and p(= 1.. . p) the patterns. The 8-diskibu- 
tion fixes the spherical constraint As In V is an extensive variable, one assumes that it is 
self-averaging. Thus it becomes independent of the special choice of patterns in the limit 
N‘ + W. Because of the replica identity (In V) = lim,,o (l /n) ln(V“) one only needs 
to calculate (V”).  That is, one introduces replicated interactions JP and correspondingly 
replicated stabilities X;, where the index U will label the n replica. The averaging is over 
the correlated patterns ( P ,  

(.) = / WP(I~” I ) ( . ) .  (9) 

We can average over the variables X;, instead, because V depends on the pp only through 
the Xi. The fist two moments of ther joint distribution are 

cx;, = 0 

In (10) the h, denote the eigenvalues of C. As C is symmetrical, it can be diagonalized 
by an orthogonal transformation, C = Udiag(h,)U-‘. Orienting the J in the appropriate 
way, Jy = x j  U,,Jj, one gets the above expression. 

Effecting the (@ average through an average over the X; allows us to generalize 
Monasson’s approach to singular correlation matrices. The coding yields a correlation 
function which is short-ranged. Therefore, relying on the central limit theorem, we can 
assume a Gaussian distribution for the X;, entailing 

P 

because the distribution of the Xg factorizes in p. Note that, unlike in [5], the inverse of 
C is not needed in our formulation to perform the average over the 6’. 
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In the appendix we evaluate 

The aim is to write the integral in a form which easily yields the free energy 
1 

G(q) = lim -(In V) . (13) N'+m N' 
The influence of the correlations is given only through the eigenvalues of the correlation 
matrix. For the l i t  N' + CO we will use the notation introduced by . .  Monasson [5 ] :  

Assuming replica symmetry 

the free energy we get is 

where we use the convention H ( x )  = f," Dt with the Gaussian measure Dt. 
This is a generalization of the result for the uncorrelated case. Setting all A, = 1 we 

retreive the free energy for the uncorrelated problem. The correlations which imply A, f 1 
lead to the modified result. 

4. Saddle-point eqnations and solution 

Looking for the extremum of the free energy G(q1,qO. &, 60, r i )  we get the five saddle- 
point equations (A3) shown in the appendix. We can eliminate the three conjugate variables 
algebraically. The two remaining equations can be simplified for 41, qo + qc. This is the 
so-called Derrida-Gardner limit. It is motivated by the idea that the volume of solutions in 
the space of connections will shrink to a point when the number of patterns to be stored 
increases. Then 41 = 40. We call this limiting value qc. Two equations remain which 
determine both the critical storage capacity and 4c: 

where ap(x )  is the storage capacity, of a perceptron storing uncorrelated patterns with 
stability x (J-: Dz (x  + 2)' = l/cup(x)). 

This is Monasson's result [5 ] .  We confirm it also for the case in which some of the 
eigenvalues A, of the correlation matrix C vanish. 
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4.1. Evaluating the result 

Assuming that qc # 0 and ( Y ~ ( K / & )  # ~/H(-K/&), and separating zero from non-zero 
eigenvalues of C in the evaluation of (17), we get 

where the symbol {...]AM denotes an average as in (14). except that only non-zero 
eigenvalues are taken to contribute to the sum. For the other equation 

' Setting both of them equal, we can calculate qc. Using (6), and taking the limit N' -+ 03, 

we obtain 

(20) 
1 
d 

qc =As = - .  

independently of the stability K.  For the storage capacity we find 

This result may be interpreted on at least two levels. 
First, it gives the optimal storage capacity of a simple perceptron for the storage of 

singularly correlated structured pattems. A reduction is observed if compared with the 
optimal capacity O ~ , ( K )  of a simple perceptron storing uncorrelated patterns with the same 
stability. The reduction is twofold. On the one hand, U&) is expressed in terms of %, at 
a stability that is renormalized by a factor of & = l/&. This leads to a decrease of the 
number of storable pattems as cup(x) is a decreasing function of x. On the other hand there 
is the factor (1 - (1 / d ) )  which is equal (as N' --t 03) to the fraction of non-zero eigenvalues 
of C. This may be interpreted in the sense that the rank of C defines the dimension of 
the space spanned by the input pattems, and thus an effective size of the perceptron's input 
layer (here, the hidden layer of a two-layer machine). It is this effective size "(1 - l / d )  
of the input layer which determines the perceptron's optimal capacity. The reduction of the 
storage capacity due to the first factor becomes more pronounced, the one due to the second 
factor less pronounced as d increases. To conclude these considerations, the correlations 
influence the storage capacity not only by implying A y  + 1. There is also an effect due to 
the singularity of the correlation matrix; this effect is quantitative and determined by the 
(reduced) rank of C. 

Second, coming back to the original problem, we observe that (21) also yields the 
number of patterns that can be stored in OUT two-layer network. The number of storable 
pattems normalized with respect to the size of the input layer is 
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Figure 2. Optimal capacity of ow feed-forward architecture as a function of the stability K ,  

measured relative to the size N of the input layer. The full lines correspond to d = 2”. where, 
from top to bottom. n decreases from 5 to 1. For comparison, the broken c w e  shows Gardner’s 
result, a&), for a simple perceptron storing uncmelated paaems. 

This result may well be much larger than U&) as can be seen in figure 2. 
At any K > 0, however, the storage capacity &(K) becomes lower than that for the 

storage of uncorrelated pattems in a simple perceptron if d is sufficiently large, since 
u&)/&(K) - orp(K)[K2d/(d - l)] logz d z 1, when d + CO. 

If we set n = cN with c < 1, the number of storable patterns at stability K = 0 scales 
exponentially with the size N of the input layer, 

2 
pmax = ;(2” - 1). 

5. Disrussion 

We have found an easy way to enhance the storage capacity of a simple perceptron when 
the number of input neurons is fixed. We changed the architecture by introducing a I q e  
hidden layer. It seems possible that the storage ability of the brain may profit from this 
type of enhancement by using divergent preprocessing. 

We have shdwn how to calculate the storage capacity of a network with one hidden 
layer onto which random pattems are mapped according to a fixed code. We have found 
that for small stabilities the storage capacity may be significantly larger than that of the 
network without the hidden layer. The enhancement factor depends on the prepracessing, 
i.e. on our type of coding and within this code on the size of the modules We noticed that 
preprocessing leads to correlated, often singularly correlated pattems in the hidden layer. 
We used a reformulation of Monasson’s approach which enabled us to handle singular 
correlation matrices. We have found that Monasson’s result (17) also remains me for 
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singularly correlated patterns. Furthermore we evaluated the result for our type of coding. 
An analytical expression for the number of storable patterns with finite stability is given 
by (21) or (22). We found that the correlation matrix influences the storage capacity by 
implying that its eigenvalues Ay need not be equal to 1 as in the uncorrelated case. If C is 
singular, another modification is given by the reduced fraction of its non-zero eigenvalues. 
Thus there is a quantitative effect due to the singularity of the preprocessing considered. 

If the size of the modules is proportional to the number of the input neurons, the storage 
capacity scales exponentially with the size of the input layer. 

Ow approach may also be applied to other types of preprocessing, such as generated by 
a feed-forward structure with random interactions, which may be taken from ( + I )  or from 
some lager set. Such kinds of preprocessing may, in fact, be closer to biological data. As 
yet, we have not investigated them in quantitative detail, however. 

It should be noted that our results are stable with respect to replica symmetry breaking. 
This is because the set of couplings satisfying (7) is convex and connected on the surface 
of the hypersphere defined by the spherical constraint. 

Finally, our analysis also naturally applies to simple perceptrons storing spatially 
correlated pattems. We find the optimal capacity (at K = 0) of such systems to be bounded 
by twice the dimension of the space spanned by the input patterns, i.e. by 2 rank(C), which 
may be smaller than twice the size of the input layer. 

Appendix 

To evaluate 

the following steps are taken. We interchange the integrals, see that the X; integrals 
factorize in p and note that the 0 functions introduce nothing but a lower bound K to each 
X; integral. Furthermore, we introduce conjugate variables for the quo! and 6, for 
the Fourier integral of the &distribution. The calculations are carried through as in the 
uncorrelated case. We get 

The only part of the integral which is affected by the correlations is 



Storage capacity of perceptron 1937 

The influence of the correlations is given only through the eigenvalues of the correlation 
matrix. For the limit N' + 00 we will use the convention 

At the saddle point the conjugate variables are imaginary. The eigenvalues equal to 
zero don't cause any trouble, because the i terms don't vanish and thus provide for the 
convergence of the integral. The integrals can be further evaluated when replica symmeny 
is assumed, 

%O' = 41 vu # 5' 
The free energy we get is 

where we use the abbreviation H ( x )  = s," D t  with the Gaussian measure Dt.  This yields 
the following saddle-point equations: 

where 
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