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Abstract. Optimal capacities of percepfrons With graded input-output &tiom are computed 
Within lhe Gardner approach. T k  inRuence of desired output precision, stability with respect 
to input errors, and output-pattern statistics are analysed and discussed. 

1. Introduction 

The collective properties of networks of formal two-state neuron-like elements  are^ by 
now well understood [1-4]. Both retrieval properties of recurrent networks with specific 
prescriptions for the synaptic efficacies [5] and optimal capacities of perceptrons or recurrent 
networks [6,7] have been analysed successfully by statistical mechanical approaches. More 
recently, questions regarding the behaviour of networks of multi-state [&lo] or graded- 
reponse [ 11-15] neurons have come to the fore--questions pertaining again to both retrieval 
properties ‘of specific architectures [8,11-151 and to optimal capacities of ensembles of 
networks designed to perfoiin a given storage task 19,101. 

The purpose of the present paper is to extend previous analyses of optimal capacities 
of multi-state networks [9, IO] to the case of neurons with graded (continuous) input- 
output relations. This investigation is motivated by the fact that graded-response perceptrons 
constitute the basic building blocks of layered architectures trained by the backpropagation 
algorithm 1161. Such systems are to date the workhorses in practical applications of neural 
networks, and progress in the theoretical understanding of their capabilities and limitations 
should thus be welcome. 

The task to be solved by the graded-response perceptron is to map a collection of input 
patterns it:; 1 < i < N}, 1 < p <.p, onto a corresponding~set of outputs cp, 1 < @ < p ,  
via 

Here g is the input-output relation of the perceptron, which may be largely arbitrary. In 
particular, g need  not^ be monotonic, nondecreasing. or invertible for our general line of 
reasoning to be applicable. When studying specific examples, however, we shall specialize 
to monoionic, non-decreasing input-ouiput relations. In (I), y denotes a gain parameter, 
and the Jj are couplings of an architecture of perceptron type. 

* Dedicated to Professor F Cenrlus on the occasion of his 65th birthday. 
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For the exact storage task (I). an explicit solution is known whenever LY = p / N  -= 1 
141, namely the pseudo-inverse solution 

where h” is chosen such that <” = g(yh”), and where C is the correlation matrix of 
the input pattem set [e,!‘), with elements Cw,v = ( I / N )  xi f,!‘e;. The solution (2) can be 
constructed independently of the pattem statistics as long as C-’ exists, which imposes an 
upper bound a, = 1 on the loading capacity LY. Within the space spanned by the pattems, 
this solution is unique if g is invertible, since h p  = (l/y)g-’(p‘) is uniquely defined. 
If (I < as = 1, equation (2)  is never the only solution, though. One can add any JL 
orthogonal to the space spanned by the input pattems (6;) to J’ = (+’), and still satisfy 
(1). On the other hand, for non-invertible input-output relations there may be a multiplicity 
of choices for hp satisfying <p = g(yh”),  implying that even within the space spanned by 
the pattems the solution based on the correlation matrix is non-unique. This non-uniqueness 
raises the possibility of constructing solutions which are not based on the correlation matrix 
of the full input pattem set thereby achieving storage capacities larger than 1. For example, 
for g ( x )  = sgn(x) one has aC = 2 [6], provided the desired outputs <” take the values 
51, whereas L Y ~  = 0, if ( p  6 [&I). Thus, there is clearly an intimate relation between 
storage capacity, input-output relation, and output-pattem statistics. The aim of the present 
investigation is to elucidate this relation. 

The paper is organized as follows. In section 2, we formulate the task set to graded- 
response perceptrons in a manner that allows us to use a Gardner-type analysis [6] in a 
relatively straightfonvard manner. In section 3, we present and discuss OUT main results for 
a variety of examples. Section 4, finally, contains a brief summary and an outlook on open 
questions. 

2. Formal analysis of the problem 

In order to set up the formal framework of OUI investigation, our strategy is to require 
stability with respect to input-data errors and to allow a limited output precision in the 
mapping (1). More specifically, we q u i r e  that 

g(Y(h’kK) )€  I , “ t ( ~ ” , € ) ~ [ ( ” - € , < ” + € I  ! .L= l . . . .>P  (3) 

where h” is the local field generated by the input cfl, i.e. h” = (1/fi) cj .+;, and 
where K and E denote the required input stability and the allowed output-mor tolerance, 
respectively. The method we use is to compute the volume in the space of couplings [6] 
satisfying the modified version (3) of the mapping (1). 

Note that for our problem, the concept of volume in J-space is well defined wirhaur 
additional scale constraints like the mean spherical constraint usually adopted in such 
investigations. The reason is that a global rescaling of the Jj will generally lead to violations 
of either lower or upper bounds set on the outputs for each of the patterns. In what follows, 
we shall nevertheless adopt such a constraint for two reasons. The first is to see how 
(3) comp-for special cases-with what is known about the standard perceptron with 
the same constraint [6,71. The second more specific reason is to fix a scale for the gain 
parameters y of the input-output relations we consider. 
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In the present paper, we restrict our attention to unbiased input patterns with (5:) = 0 
and (e,!‘$”) = d,,,di,jAo. Since the effect of A. in (1) can be absorbed in the gain parameter 
y ,  we henceforth take A0 = 1. Neither the input-output relation g nor the statistics of the 
outputs <& need to be specified at this point, however. Of course, for each <&, Io&”. E) 
should have a non-empty intersection with the range of g in order to have cu, > 0. 

To compute the available volume in J-space satisfying’ (3). we note that (3) can be 
rewritten 

h” E I& = {x ;  g(y(x  ic K)) E Io&’’, e ) }  f i  = 1, . . . ; p .  (4) 

This formulation  indicates the most general input-output relation that can be handled 
by our approach. The transfer function g should be such that the sets I” defined in 
(4)  are measurable. In general, the sets I, forin a collection of intervals in R, that is 
I” = U-’;” = Um[l;, $1 where 1; and U; denote lower and upper bounds of the subintewal 
I;”. respectively. In the case of monotonic, non-decreasing input-output relations, the sets 
I, are simply connected intervals, I, = [l,, U ]  with lower and upper bounds I ,  and U, 
defined by 

lfi = i:f[x; g(y(x  - K)) > <& - E ]  ’ and U” = sup(x; g(y(x +K)) < <& + E } .  
x 

(5) 

For inveriihle g’s,onehasI,=(l/y)g-’(<”---)+~ andul,=(I/y)g-’(r’+-+)-~, 
where E- = min[E, <” - inf, g(x ) ]  and E+ = min(6, sup, g(x)  - c”) are chosen such that <” q e* a i  in the range of g-’. 

With these definitions, the fractional volume of J’s  satisfying (4) reads 

Here the ~ ’ 6 ‘  are characteristic functions of the sets I& defined in (4). with integml 
representation x’*(x) = !,- dy !(dy/2z) exp@?(y - n)}. Following Gardne~ [6], we use 

 the replica technique to evaluate U = lim,+,, N-’((ln V)), where ((. . .)) denotes an average 
over the statistics of inputs {$] and outputs {(PI. Assuming that replica symmetry is 
unbroken, we get the following result, 

u = a ( S D z I n [ ~ ( X ( L ~ ) - H ( ( I , . ) )  -q)+-- 21-q (7) 

where q must be chosen to satisfy the fixed point equation 

Here we have introduced the abbreviations L; = (LE +&z)/-, U; = 
(U; + a z ) / f i ,  and H(x) = J,” Dz, with Dz = (dz/&)exp(-z2/2). In (7) and 
(8). averages over the output statistics remain to be done. 
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3. Results 

Let us now tum to results. Specializing in what follows to the case of monotonic non- 
decreasing g’s, and supposing that the maximal capacity CY = ac in (7), (8) is signalled by 
the Gardner criterion [61 4 + 1, asymptotic analysis of (8) gives 

The optimal capacity is a function of both E and K ,  because lp and up are (see equations (4) 
and (5) ) .  Moreover, aC depends on the input-dutput relation g, on the gain parameter y ,  and 
on the statistics of the desired outputs. Note that, formally, (9) resembles results previously 
obtained for networks of multi-state neurons [9,10]. This is a consequence of our choice to 
formalize the graded-response problem at hand by introducing a desired input stability K for 
the mapping ( I )  alongside with an admissible output tolerance E ,  and a final specialization to 
monotonic non-decreasing g’s. For continuous input-output relations, a non-vanishing input 
stability is not to be had without non-zero output-error tolerance. The fact that the input- 
output relations considered in the present paper are graded implies a number of differences 
from previous work. The <’ are. generally related in a non-linear way to the 1, and the up 
which-in contrast to previous work [9, IO]-is not everywhere singular but, in many cases 
of interest, even invertible. Consequently, the statistics of  the t* translates non-linearly into 
a statistics of the I ,  and the up. In contrast to multi-state perceptrons, the graded-response 
perceptron can realize mappings with outputs in a continuous output range. Accordingly, 
one of the questions about this system to be answered is how variations in output statistics 
affect the network performance, and to what extent they can be compensated by appropriate 
choices of gain functions or gain parameters. 

4. Results for exact mapping 

The first case to consider is where the inputs are. mapped exactly onto the desired 
outputs, i.e. the case K = E = 0. For invertible input-output relations, this implies 
ip = U, = h’ = (l/y)g-’(p‘) in (5x9). Hence (9) leads to the remarkably simple 
relation 

cu;l = ((h’)2)<. + 1. (10) 

This result shows that we have an upper bound cr, < 1 for exact mapping. The actual value 
of ffC depends only on the second moment of the local-field distribution required to produce 
the desired <’ statistics, and it is strictly smaller than 1, if ((hfi)2)5p 2 8 for some 6 =- 0. 

At first sight, this result seems to be in conflict with the fact that the pseudo-inverse 
solution (2) exists up to a = 1. However, closer investigation reveals that (2) does not 
generally satisfy the spherical constraint cj J,? = N. To satisfy it, we musf use the freedom 
of adding a coupling vector orthogonal to the space spanned by the stored input patterns. 
Let j’ be any such vector of  unit length, and let us adopt the convention 

for a solution to ( I )  that does satisfy the sperical constraint 
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with 

We argue that, with a spherical constraint thus imposed, the optimal capacity must indeed be 
expected to be a monotonic decreasing function of ((hr)’)p as suggested by (IO). To see 
this, note that C, hence e-’, are positive definite matrices. As a consequence c: > 0 in (12) 
and (13) for h” + 0. Moreover, cf would be a monotonic increasing function of the h” scale 
necessary to produce the desired output statistics. That is, cf({Ah”]) = A2cf({h”)). Thus, if 
the necessary h” scale becomes large due to, e.g., a small value for the gain parameter y. 
then the multiplicity of solutions based on the pseudo-inverse solution (II), which can, in 
principle, exist up to a =.l, is lost due to the spherical constraint when cf = a-’, enforcing 
c: = 0. At this point the opening angle (0 of the cone of solutions (ll), (0 = tan-’(cL/cl) 
will be zero, signifying that a =.ac for the given-set of input pattems (as embodied in the 
C,J, output pattem statistics, input-output relation and gain parameter y which determine 
the h” scale. That is, a, must be expected to be a decreasing function of the h” scale hence 
of ((hfi)2)c,., as announced. To get a rough order-of-magnitude check of (10) let us work 
with the average of C-’ (rather than with C-’ itself), namely with the unit matrix 1 in 
(13). Taking C-’  N ll gives c:~= ((h”)’)t,.. implying a;’ = ( (h”)2)p as long as the 
resulting ac is less than 1, and otherwise 1. Salient features of the ‘typical‘ result (10) are 
thus reproduced fairly well by this simple argument. 

5. Non-zero output tolerance and finite input stability 

If we allow a finite, i.e. non-zero output tolerance E > 0, then aC(e, K, y )  is found to be a 
monotonic nondecreasing function of E. The behaviour of ac as a function of y ,  given E 

and K, is strongly dependent on the output statistics. It is important to-remark immediately 
that the results obtained are not always stable against replica symmetry breaking (RSB). One 
can show that, to check this stability, it is sufficient to look at the sign of rhe product of 
the eigenvalues of the matrix of transverse fluctuations, the so-called ‘replicon’ eigenvalue 
AR. One needs to Satisfy 

where 

For K = 0, and for monotonic nondecreasing input-output relations-hence simply 
connected I,-a straightforward calculation leads to the following interesting identity 
p = 1 ,  . . . , p  
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Figure 1. The optimal capacity uc and the replicon 
eigenvalue AR as a function of the gain parameter y for 
K = 0 and for various values of 6. The output slatistics 
is given by (16) with d = 0, i.e. it is uniform over the 
in@rval [ - I .  I]. 

F w r e  2. The optimal gain parameter yapl as a function 
of the output tolerance € for K = 0 and for different 
output statistics: equation (16) with d = 0 (long- 
dashes); equation (16) with d = 0.5 and x = 0.75 (full 
curve); equation (16) with d = 0.5 and x = 1.0 (short- 
dashes); equation (17) with y = 0.7 (chain curve). The 
doted vertical lines indicate the asymptotes. 

relating the sign of the replicon eigenvalue with the sign of the derivative of a, with respect 
to the gain parameter y. This relation is true for all E ,  and independent of the statistics of the 
5’. Equation (15) implies the existence of an optimal gain parameter yapt such hat, given 
E and the output statistics, e, is maximal at y = y,,, and replica symmetry is unbroken for 
all y satisfying y < yap,. The optimal gain parameter yOp can be either k i t e  or infinite, 
depending on the distribution of outpuk <’ and on the output-error tolerance 6. 

In figures 1-3, we illustrate this behaviour, showing some representative examples for 
the input-output relation g(x) = tanh(x), which is widely used for networks trained by the 
back-propagation algorithm and for the following two types of output sratistics, 

and 

The first distribution, (16), consists of a contribution which is constant over the interval 
[-I, I ]  and a pair of 6 peaks at b, with adjustable relative weights for the smooth and the 
singular part of P (F’). The second distribution, (17), is made of two constant contributions 
extending inward from the boundaries of the interval [-1, I], symmetric about zero and 
with qual weight. 

In figure 1, we show the behaviour of a, as a function of y for the output distribution 
(16) with d = 0, i.e. for a constant homogeneous distribution on the interval [-1, I]. As 
long as E < 1, the critical storage capacity ac approaches a constant smaller than or equal 
to 2, as y + ca. The replicon eigenvalue (14) is also depicted in figure 1, illustmting the 
relation (15) between the sign of AR and the slope of the a, against y curve. 

Figures 2 and 3 show yopt and ac(yop) as a function of E for E E [0,1]. The most 
interesting features are the following. For a constant homogeneous distribution of the 
outputs, i.e. for (16) with d = 0, y,, decreases monotonically from 03 to 0, while ac(yopt) 
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increases monotonically from I to 00, as E varies between 0 and 1. If one allows 6 peaks 
in the output distribution (16), this behaviour changes depending on the position x of these 
peaks. Ford = 0.5 and x = 1, i.e. for 6 peaks at the boundaries of the interval [- 1, I], yopt 
isinfinite for E E [O, 41, whereas it is finite for E > 4 and decreases to zero, as E approaches 
1. The corresponding ac(yapt) increases monotonically from the value 1.33 up to 4. For 
d = 0.5 and x = 0.75, i.e. with 6 peaks shifted to the interior of [-I, 11, ywt is infinite 
only in the interval E E [0.25,0.34]; outside this interval, yopt is finite, and it diverges if E 

approaches either zero or the boundaries of this interval. For E z 0.34, yopt is monotonic 
decreasing to zero, a s ~ e  + 1. The corresponding ctc(yW) shows a finite jump discontinuity 
at E = 0.25, the lower bound of the interval in which yopt = 00. No anomaly of cr, could 
be detected at the upper bound of this interval. 

For the  output distribution (17) with y = 0.7, yapt is infinite throughout the interval 
E E [0,0.85]. The corresponding optimal capacity increases quickly from a, = 1 (at E = 0) 
to ac = 2 (at E = 0.3), and stays-at cl, = 2 for the remainder of the E interval in which 
yopt = 00, i.e. for all E satisfying g(kco) E IoUt(&y. E). Qualitatively the same behaviour 
is found for the piecewise-linear input-output relation g ( x )  = sgn(x) min{lxl, 1). 

In general, we expect yopl(~) to be different from zero and the corresponding ac(ywt, E )  
to be finite, as long as E is such that g(0) @ Iout(+l, E ) .  Furthermore, yOpt(e) is infinite if 
in the distribution of outputs the tot@ weight of the 5” for which g(0) @ Io&+, E ) ~  and 
g(+m) E Io&+, E) dominates the weight of the {” for which g(0) E Io&&. E ) .  

Figure 3. The optimal capacity aa at yapt as a function 
of the output tolerance f for K = 0 and for the same 
output statistics as in figure 2 . ~  

Figure 4. Theoptimal capacity ac as a function o€the 
gain parameter y for Y = 0.1 and for various values of 
E.  The output statistics is given by (16) with d.= 0, 
i.e. it is uniform over the interval 1-1. 11. The curves 
shown correspond m 6 = 0.25 (chain curve). B = 0.5 
(full curve). and c = 0.80 (broken curve). respectively. 
The don& vettical lines indicate the value of y beyond 
which ac is strictly zem. 

In brief, if we demand correctness only of the sign of the output, we do recover the 
wC = 2 result of Cover [17] and Gardner [6]. By increasing the output tolerance, we 
eventually come to a point where the requirement on the mapping is weaker than the 
demand for a correct sign of the output, so that we can have a, > 2 for sufficiently large 
E .  Where exactly this occurs, and how large the E that can sensibly be tolerated actually 
are, will naturally depend on g, on y ,  and on the desired output statistics, as illustrated by 
figures 2 and 3. 
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Figure 5. The Same as figure 4, but for the replicon eigenvalue .LE. Note the restomtion of 
stability against FSB for large values of y in the upper curve, corresponding to e = 0.8. 

If both E and K are non-zero, then there is an upper bound on y beyond which 
ac(c, K ,  y )  = 0. The reason is that for < p  in the range of steep parts of g, there will be an 
upper bound on y beyond which the set I,, = (h”; g ( y ( h ” - ~ ) )  > <,,-E, g(y(h’+K)) 4 
<”+E) is empty, signalling that the required output precision and the desired input stability 
are no longer compatible. The limiting y will depend on the input-output relation g, on 
the support of the distribution of outputs and, naturally, on K and E. In figures 4 and 5 we 
illustrate this by showing the typical behaviour of U, and as functions of y ,  given the 
output statistics P ( < P )  as well as E and a non-zero K .  The figures represent results for the 
hyperbolic tangent input-output relation and for the constant output distribution (16) with 
d = 0: Again, the piecewise linear input-output relation leads to similar results. 

In particular. we see that ffc drops to zero discontinuously at y = tan-‘(s)/K. For 
sufficiently large E, a maximum of a, as a function of y may occur, and RSB may be 
observed for sufficiently large y. However, relation (15) equating the position of the uc 
maximum with the boundary of stability against RSB is no longer valid in the present K # 0 
case. In all cases we have studied, though, replica symmetry was found unbroken up to and 
usually even beyond the position of the ac maximum whenever such a maximum existed. 
RSB was found to occur at intermediate values of y beyond the position of the maximum, 
the replica symmetric results becoming stable again for still higher values of y. usually 
including the y value at which the discontinuous breakdown of aC occurs. The behaviour 
of yopt and cuc(yop) as functions of E is not fundamentally different from that at K = 0 as 
illustrated in figures 2 and 3. 

There are two further directions in which the previous considerations allow immediate 
generalization. One is annealed dilution [IS], where the perceptron is chosen to organize 
itself in a manner that only a fraction f of its N bonds remain; this fraction, however, being 
optimally adapted to the storage task. With an appropriately adapted spherical constraint on 
the couplings [I81 we find, again in the replica symmetric limit, 

where U and f are related through f = erfc(u). The result (9) is recovered in the limit 
f + 1. For any f < 1, replica symmetry is found to be broken on the Gardner-Demda 
line [6,7]. 
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The second possibility is to tum to the Gadner-Demda [7] ensemble by introducing a 
soft non-negative errof measure E ( < , ,  h,) > 0, taken to be zero only if p.= g(yh@),  and 
to investigate the canonical ensemble generated by E = E, E ( < @ ,  hw) at a given inverse 
temperature B. The free energy in the replica symmetric limit is given by 

1 1 
2 2 1 - 9  2 

+ - In(l - q )  + -- ' 4 +,-( l+InZn) 

where q is chosen to make the right-hand side of (19) stationary. Here one might 
investigate the behaviour of the average energy as a function of temperam to assess 
network performance. So far, however, we have not investigated this case in any detail. 

A third possible topic, the generalization ability of graded-reponse perceptrons h& 
recently been investigated by Bos et ai 1191. 

6. Summary and outlook 

In summary, we have computed optimal storage capacities of graded-response perceptrons 
within the Gardner approach to neural networks. Since optimal capacities are found to 
depend mainly on local-field distributions necessary to produce the desired output statistics 
(see, e.g. equation (IO)), optimal capacities are strongly influenced by input-output relations 
and, more pronounced even, by gain parameters. Gain parameters can therefore be used 
fairly effectively to compensate for the effects of changes in ouput statistics on optimal 
capacities. However, if a certain non-zero input stability is demanded, there are upper limits 
to the gain parameter y beyond which the required input stability is no longer compatible 
with the desired output precision so that the task set to the graded-response perceptron 
becomes unsolvable. In the case of sigmoid input-output relations such as g(n) = tanh(x), 
the problem arises first for outputs (thus local fields)~near zero, where tanh(n) has its 
maximum slope. Incidentally, a related phenomenon is also observed in recursive networks 
of graded-reponse neurons [15]. At high gains, the local field dishibutions of stationary 
configurations develop a gap around zero, implying that in recursively stable situations small 
fields, thus small outputs, are systematically avoided, because at small fields the combination 
of input stability and output precision necessary to produce recursively stable configurations 
are incompatible for high gains. Which E+ combinations ar-5 generally required to achieve 
recursive stability near the optimal capacity of networks of graded response neurons is an 
interesting question which we are, as yet, unable to answer and which certainly deserves 
further study. 

An interesting and, indeed, unexpected result is the restoration of local stability against 
RSB at the Gardner-Demda line for large values of the gain parameter y at non-zero K ,  as 
illustrated in figure 5. As yet, it is unclear whether this stable phase at large y is unique 
or whether it coexists with other stable phases which do exhibit RSB, and, if so. which of 
them would describe the proper physics of the problem. 

Note also that our results conceming stability with respect to RSB in general shed 
some light on a popular argument which states that convexity of a solution space implies 
connectedness and hence precludes RSB. For the systems with monotonic non-decreasing 
input-output relations we have investigated quantitatively, the intervals I, are simply 
connected, implying that the set of couplings satisfying (4) is convex. This convexity 



in RN does, indeed, imply connectedness in RN, but not necessarily within the subset of 
Jj's which also satisfy the spherical constraint. Thus RSB is not precluded, and is indeed 
observed, despite convexity of the set of couplings satisfying (4). 

In the present paper we have not evaluated the case of perceptrons with non-monotonic 
input-output relations in any detail, though we do consider such systems worth studying. 
In particular, we expect them to give rise to new and enhanced processing capabilities. 
To mention just one example, a perceptron with an input-output relation given by g(x) = 
~11/2,3p1(x)-the characteristic function of the interval [f, ;]-is able to solve the notorious 
XOR problem without additional hidden units: Take J1 = J2 = 1 and a 0-1 representation of 
inputs. This example, however simple, might indicate that considerable processing power, 
or-from a complemenmy point of view-considerable design simplifications, are to be 
gained by employing non-monotonic input-output relations when realizing, for instance, 
Boolean logic in networks of 'simple' processing elements. A systematic investigation of 
perceptrons with non-monotonic input-output relations is currently under way [20]. 
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