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Abstract. We show that a straightforward extension of a simple learning model based on the
Hebb rule, the previously introduced association-reinforcement Hebb rule, can cope with ‘delayed’,
unspecific reinforcement also in the case of structured data and lead to perfect generalization.

1. Introduction

Learning from unspecific reinforcement may be essential in various contexts, both natural Note 1
and artificial, where, typically, the results of particular actions add to a final consequence
which only is valuated. The freedom residing in each step is not (or only partially) controlled
directly and the learner must cope with the necessity of improving its performance only from
information concerning the final success of a complex series of actions. This is a recognized
difficult kind of problem (‘class III’ problems in the classification of Hertzet al [1]—see,
e.g. [2,3] for evolved AI algorithms), which, however, may be of vital significance in natural
or simulated life situations.

It is therefore important to find out whether there aresimple and robust proceduresfor
such problems,which might have developed under natural conditions and which may be basic
also for artificial learning rules. In previous works [4,5] we have introduced an ‘association-
reinforcement’ (AR) learning model based on the following conception.

(1) For each given input (external situation) the agent answers with an action (operation)
depending solely on the input and on its instantaneous internal (cognitive) structure, and
simultaneously strengthens (in its internal structure) theblind association between this
particular input and action.

(2) At the end of a series of actions (path) the final success is judged. Then the associations
‘situation–operation’ which have been involved on this path are re-weighted equally (in
the internal structure), depending only on the final success:unspecificreinforcement.

In [5] we studied an implementation of this model to a classification problem for
perceptrons, the AR Hebb rule. This implementation is mathematically tractable by well
developed methods and allows us, under certain circumstances, to obtain exact results. Our
analysis showed some amazing properties.
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Table 1. Convergence condition for the AR Hebb rule.

L = 1 L > 1
Specific reinforcement Unspecific reinforcement

Unstructured data λ > 0 λ > 0 [5]
Structured data λ = 0 [6] This study

(a) Despite the fact that feedback on the learner’s performance enters its learning dynamics
only in an unspecificway in that it cannot be associated with single identifiable
correct or incorrect associations, convergence of the AR Hebb algorithm in the sense
of asymptotically perfect generalizationcan be proven to occur under rather general
conditions.

(b) For given initial conditions, this convergence depends on the learning parameters
characterizing the two steps described above; in particular none of these steps can be
completely inhibited. Alternatively, for given algorithm parameters convergence may
depend on initial conditions.

In detail the dynamics of this algorithm was found to be very complex and interesting, being
controlled by fixed points in the pre-asymptotic regime, and having a continuous set of asymp-
totic convergence laws. These results could easily be extended to the more realistic case where
in the second step the unspecific reinforcement is randomly applied to only part of the associa-
tions achieved in the first step (the agent does not recall everything it has done in the trial) [5].
Further extensions concern the question of structured data and of multi-layer perceptrons.

Structured data represent a more involved classification problem and it is known that for
L = 1 (specificreinforcement in our terminology) when teacher and data vectors are not
fully aligned (or exactly uncorrelated) the usual Hebb rule does not lead to convergence of
the student vector onto that of the teacher, while the perceptron algorithm does [6]. The AR
Hebb rule has an intrinsic parameterλ and forL = 1 it interpolates between the perceptron
algorithm (forλ = 0) and the usual Hebb rule (forλ = 1

2), which are both known to converge.
For L > 1 the AR Hebb rule does not converge forλ = 0 [5]. The situation is succinctly
described in table 1.

It is therefore a non-trivial question whether the unspecific reinforcement problem (L > 1)
can be solved for structured data and in particular, whether some immediate extension of the
AR Hebb rule can be shown to converge in this case. This is, however, an important question
if we want to argue that the AR-learning algorithm is a basic process with a certain natural
basis, since structured data is the generic situation. It is therefore this question which we
shall address in this paper. In a future publication we shall treat the problem of the committee
machine as a first step to multi-layer perceptrons.

In section 2 we shall describe the learning model in the general setting and in section 3 we
shall discuss its convergence properties, providing numerical and analytical results. Thereby
we shall briefly recall the non-structured data case and then concentrate on the general,
structured data case. Section 4 contains the conclusions.

2. Learning rule for perceptrons under unspecific reinforcement

We consider one-layer perceptrons with Ising or real number unitssi , real weights (synapses)
Ji and one Ising output unit:

s= sign

(
1√
N

N∑
i=1

Ji si

)
. (1)
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HereN is the number of input nodes, and we set no explicit thresholds. The network (student)
is presented with series of patternssi = ξ (q,l )i , q = 1, . . . , Q, l = 1, . . . , L to which it answers
with s(q,l ). A training period consists of the successive presentation ofL patterns. The answers
are compared with the corresponding answerst (q,l ) of a teacher with pre-given weightsBi and
the average error made by the student over one training period is calculated:

eq = 1

2L

L∑
l=1

|t (q,l ) − s(q,l )|. (2)

The training algorithm consists of two parts:

(I) a ‘blind’ Hebb-typeassociationat each presentation of a pattern:

Ji
(q,l+1) = Ji

(q,l ) +
a1√
N

s(q,l )ξ (q,l )i ; (3)

(II) an ‘unspecific’ but gradedreinforcementproportional to the average erroreq (2), also
Hebbian, at the end of each training period,

Ji
(q+1,1) = J(q,L+1)

i − a2√
N

eq

L∑
l=1

rl s
(q,l )ξ

(q,l )
i (4)

whererl is a dichotomic random variable:

rl =
{

1 with probability ρ

0 with probability 1− ρ.
(5)

Because of these two steps we called this algorithm the ‘AR Hebb rule’. The relevant parameter
is the ratioλ = a1/a2. We are interested in the behaviour with the number of iterationsq of
the generalization errorεg(q):

εg(q) = 1

π
arccos

(
J ·B
|J ||B|

)
; (6)

in particular we shall test whether the behaviour ofεg(q) follows a power law at largeq:

εg(q) ' constq−p. (7)

The training patterns{ξ (q,l )i } are generated randomly from the following distribution:

P(ξ) = 1
2

∑
σ=±1

P(ξ|σ)

P(ξ|σ) =
N∏

i=1

1√
2π

e−
1
2 (ξi−mσCi )

2
(8)

and we take

C2 = B2 = N C ·B = ηN (9)

with fixed, givenm, η. Note the following features.

(a) During training the student only uses its own associationsξ(q,l ) ↔ s(q,l ) and the average
erroreq, which does not refer specifically to the particular stepsl .

(b) Since the answerss(q,l ) are made on the basis of the instantaneous weight valuesJ (q,l ),
which change at each step according to equation (3), the series of answers forms a



4 M Biehl et al

correlated sequence with each step depending on the previous one†. Thereforeeq measures
in fact the performance of a ‘path’, an interdependent set of decisions.

(c) In contrast with the case studied in [5] the patterns can now have a structure. This
introduces essential differences to the previous situation, as we shall see in the next section.

(d) We explicitly account for imperfect recall at the reinforcement step by the parameterρ (5).
This introduces a supplementary, biologically motivated randomness, which, as already
suggested in [5], does not appear to introduce qualitative changes in the results, however
(see section 3).

(e) For L = 1 (andρ = 1) the algorithm reproduces the usual ‘perceptron rule’ (fora1 = 0,
i.e.λ = 0) or to the usual ‘unsupervised Hebb rule’ (fora2 = 2a1, i.e.λ = 1

2) for on-line
learning, for which the corresponding asymptotic behaviour is known [6,8,9].

To study the learning behaviour we use Monte Carlo simulation and coarse-grained
analysis. The latter is provided by combining theblind association(3) during a learning
period ofL elementary steps and the gradedunspecific reinforcement(4) at the end of each
learning period into one coarse-grained step

J(q+1,1)
i = J(q,1)i +

1√
N
(a1− a2eq)

L∑
l=1

rl sign

(
1√
N

N∑
j=1

J(q,l )j ξ
(q,l )
j

)
ξ
(q,l )
i (10)

eq = 1

2L

L∑
l=1

∣∣∣∣sign

(
1√
N

N∑
k=1

J(q,l )k ξ
(q,l )
k

)
− sign

(
1√
N

N∑
i=k

Bkξ
(q,l )
k

)∣∣∣∣. (11)

For simplicity we shall take for the time beingrl = 1, i.e.ρ = 1 in equation (5). We use

α = qL/N λ = a1/a2 (12)

and rescale everything witha2, which means that we can take without loss of generalitya2 = 1
in (10), (11). We define the overlaps

R(α) = 1

N
B · J (q,l ) Q(α) = 1

N
[J (q,l )]2 D(α) = 1

N
C · J (q,l ). (13)

Note that in the ‘thermodynamic limit’L/N → 0 the overlaps are self-averaging and we can
neglect the dependence ofR, D andQ on l . We shall follow standard procedures [1, 9–11].
Treatingα as a continuous variable we obtain the coarse-grained equations:

dR
dα
=
(
λ− 1

2

)
AJ T +

1

2L
AT T +

1

2

(
1− 1

L

)
SJ T AJ T (14)

dD
dα
=
(
λ− 1

2

)
AJC +

1

2L
AT C +

1

2

(
1− 1

L

)
SJ T AJC (15)

d
√
Q

dα
=
(
λ− 1

2

)
AJ J +

1

2L
AT J +

1

2

(
1− 1

L

)
SJ T AJ J

+
1

2
√
Q

[(
λ− 1

2

)
SJ T +

1

4

(
1− 1

L

)
S2

J T +

(
λ− 1

2

)2

+
1

4L

]
(16)

† In the ‘thermodynamic’ limitL/N → 0, which is relevant for the coarse-grained analysis in the next section,
this aspect is lost—however, forL/N small this aspect is significant. This can be observed especially well in more
‘realistic’ problems such as the one described in [7], where a small neural network using the AR Hebb rule controls
a ‘robot’ finding its way on a board with obstacles, the only feedback being the time to arrive at the destination. In
that case the ‘answers’ of the robot are actual ‘actions’, since not only does it change its internal structure (synapses)
but it also takes corresponding steps on the board. In the case of the perceptron the answers are followed by ‘actions’
only in the sense that the network changes its synapses accordingly.
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where the expectation valuesA., S. are given in the appendix (section A.1). These equations
describe the flow of the three quantitiesR, D andQ with α and involve the data/teacher
parametersm andη and the learning parameterλ. In terms ofR andQ, the generalization
error is given by

εg = 1

π
arccos

( R√
Q

)
. (17)

3. Convergence behaviour of the AR Hebb algorithm

3.1. Non-structured data

The case of non-structured data—m= 0 in equations (36)–(43)—has been treated in [5]; here
we briefly recall some of the results for the later comparison with the structured data case.

Monte Carlo simulations indicate that in spite of the partial information contained in the
unspecific reinforcement perfect generalization is achieved by the AR Hebb algorithm and it
depends on the learning parameters—see [5]. This intriguing behaviour is elucidated by the
coarse-grained analysis. In this case equations (14)–(16) reduce to two equations (forR and
Q), which have as general asymptotic solutions

ε2
g '

1

2π( 1
λL − 1)

α−1 + c̃1α
− 1
λL for λ 6= 1

L
(18)

ε2
g '

(
1

2π
lnα + c̃2

)
α−1 for λ = 1

L
(19)

Q ' 2

π
λ2α2 (20)

at largeα. We see that forλ < 1
L we obtain asymptotically perfect generalization, the dominant

term exhibiting the usual power− 1
2, while for λ > 1

L the second term in (18) dominates and
ensures again perfect generalization but with a different power law,−1/(2λL). For λ = 1

L
we obtain logarithmic corrections—see equation (19). Notice that these results hold also for
L = 1 where one re-obtains the asymptotic behaviour found in [8]. One can generally see that
for λ = 0 one cannot have perfect generalization forL > 1 [5].

This learning algorithm is further characterized by highly interesting pre-asymptotics,
dominated by two stationarity conditions, one for the self-overlap, dQ/dα = 0, and one for
the generalization error dεg/dα = 0. For suitable values of the network parameters, the two
stationarity conditions may simultaneously be satisfied, leading to fixed points of the learning
dynamics, one of them stable and of poor generalization, the other with one attractive and one
repulsive direction. Correspondingly, the flow is divided by a separatrix defined by a critical
λc(Q0) into trajectories leading to convergence according to the asymptotic behaviour (18)–
(20) forλ > λc(Q0), or to poor generalization otherwise.

The salient features of these results for the case of non-structured data are the convergence
of the AR Hebb algorithm in the sense ofasymptotically perfect generalizationwith a power
law depending on the learning parametersL and λ and the existence of a minimal value
λc(Q0), fixed by the pre-asymptotic structure and below which the system is driven toward
complete confusion. Notice also that the best convergence is achieved forλ just aboveλc.
One last point concerns the recalling parameterρ, equations (4), (5). A rough first quantitative
characterization of this modification would be that it leads to an effective rescaling of the
parameterλ, namelyλ → λ/ρ, leading to a corresponding reduction of criticalλs by
approximately a factorρ. This is well supported by numerical simulations and we conclude
that the algorithm is stable against this supplementary element of indeterminism.
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3.2. Structured data

Numerical simulations indicate that form 6= 0 and 0< |η| < 1 the behaviour of the algorithm
for all ρ is more involved: generically, no convergence is found in this case for fixed values of
the learning parameters. This agrees with the expectations, since, on the one hand the situation
found atL = 1,ρ = 1 for structured data [8] could be expected to hold the more so forL > 1,
namely that Hebb updating leads to a non-zero asymptotic generalization error. On the other
hand, the situation found before for non-structured data should hold also for structured data,
namely that forL > 1 the perceptron rule (λ = 0) (which for L = 1 was shown to work also
in the structured data case [8]) does not lead to convergence. See table 1.

In fact one can make a general argument that for fixedλ the AR Hebb rule does not lead to
perfect generalization for generically structured data. To obtain good generalization requires
R/
√
Q → 1 andD/

√
Q → η, from which one may obtain the necessary dominant scaling

(with Q) of the various integrals appearing in (36)–(43), namely

AJ T ' κ
AT J '

√
Qκ + o(

√
Q)

AJ J '
√

Qκ + o(
√

Q)

AJC ' κ
AT C ' κ
AT T ' κ
SJ T ' 1

with

κ = mηϕ(mη) +

√
2

π
e−m2η2/2. (21)

This in turn would lead to the following asymptotic expressions for the flow equations (14)–(16)
(at fixedλ):

dR
dα
' κλ

dD
dα
' κλ

dQ
dα
' √Qκλ + λ2.

The solution at largeα would beR' κλα + R0 andD ' κλα + D0, whileQ is asymptotically
given through the implicit equation

√
Q ' 1

2
κλα +

λ

κ
ln(
√
Qκ + λ) +

1

2
κλκ0. (22)

HereR0, D0 andκ0 are integration constants. Hence, asymptotically,
√
Q ∼ 1

2κλα, which is
incompatiblewith the requirement of good generalizationR/

√
Q → 1. Thus the algorithm

will not converge, ifλ is kept fixed.
The question arises, however, of whether a simple extension of the algorithm may not

overcome the Odyssean dilemma hinted at in the beginning of this section. We hence suggest
tuning the parameterλ such that it is large enough at smallα to overcome the pre-asymptotic
conditions and it tends to zero at largeα in order to approach asymptotically the perceptron
rule. As can be seen in figures 1 and 2 this procedure is successful.
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Figure 1. Structured data, unspecific reinforcement equations (3)–(5), numerical results. Tuning
dependence: generalization errorεg versusq = αN/L for L = 10, N = 100, starting point√
Q(0) = 100, data/teacher parametersm = 1, η = 0.28 and recall probabilityρ = 1, for two

λ-tuning procedures. (1)λ = 4./
√
α; (2) λ = 6./

√
α; (3) λ = 10./

√
α; (4) λ = 0.5e(α;1),

equation (35). (a), (b) illustrative power laws (1/
√
α, 1/α, respectively). Note the change in

behaviour betweenλ0 = 4 (1) andλ0 = 6, 10 (2), (3): in the first case there is no learning; in the
other cases learning is obtained. The asymptotic regime sets in earlier forλ = λ0e(α;1) tuning
than forλ = λ0/

√
α tuning—compare (4) with (2) and (3). Both types of tuning show thresholds

in λ0.

Since the situation is now much more complicated we shall not try to solve the general
asymptotic problem, as we did in the case of non-structured data, but we shall limit ourselves
to prove that robust solutions exist. To do so, it is useful to introduce

x ≡ πεg = arccos

( R√
Q

)
(23)

y ≡ arccos

( D√
Q

)
(24)

z≡ arccosη (25)

for which the geometric constraint

sin
y

2
− sin

z

2
= ω sin

x

2
|ω| 6 1 (26)

should be noted. We can replace the variabley byω. For a power-law tuning of the parameter
λ according to

λ = λ0α
−r (27)

an ansatz of the form

Q = c2α2q (28)

εg = aα−p (29)

ω = bα−s (30)
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Figure 2. Structured data, unspecific reinforcement equations (3)–(5), numerical results. Parameter
dependence: generalization errorεg versusq = αN/L for L = 10, N = 100, starting point√
Q(0) = 100, various data/teacher parametersm, η, recall probabilitiesρ and variable types.

(1) m = 1, η = 0.28,ρ = 1, λ = 10./
√
α; (2) m = 1, η = 0.28,ρ = 1, λ = 10./

√
α, (Ising);

(3) m = 1, η = 0.28,ρ = 0.5, λ = 5./
√
α; (4) m = 1, η = 0.6, ρ = 1, λ = 10./

√
α; (5) m = 4,

η = 0.28,ρ = 1, λ = 10./
√
α; (6) m= 1, η = 0., ρ = 1, λ = 10./

√
α; (a), (b) illustrative power

laws (1/
√
α, 1/α, respectively). Note the robustness of learning (forλ0 large enough) against

change of variable types—(1), (2)—, recall behaviour (after the rescalingλ0→ wλ0)—(1), (3)—
and variation of the data parameters—(1), (4), (5). Notice that theη = 0 case (6) is essentially
equivalent to the unstructured data case, which converges also for fixedλ.

with p ' q ' r > s > 0, if inserted into the flow equations (14)–(16), gives rise to the
following asymptotic equations.

2
√
Qdεg

dα
' A11λ +

A12√
Q

+ A2εg (31)

2
√
Q sin

z

2
εg

dω

dα
' B11λ +

B12√
Q

+ B2εg (32)

d
√
Q

dα
' C0λ + C1εg. (33)

Here the coefficientsAγ , Bγ ,Cγ are function ofm, z, L and ofω (the explicit expressions are
given in the appendix, section A.2).

It is easy to see that an asymptotic solution can exist for

p = q = r = 1
2 s= 0 (34)

which is therefore compatible with the assumptions used to derive the asymptotic
equations (31)–(33). Thena,b, c are obtained as functions ofm, η, L for given λ0, with
some restrictions on the latter (notice that the coefficientsAγ , Bγ ,Cγ depend nonlinearly on
ω, hence onb). For illustration, we show in figure 3 the values ofa,b andc as functions of
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(1)
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(3)
(4)
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(6)

Figure 3. Coefficients of asymptotic solutions equations (28)–(34) forλ = λ0/
√
α tuning, for

L = 10, m = 1 and two values of the overlap,η, as functions ofλ0. There are generally
two solutions: a,±b, c with b practically independent ofη. (1), (2), a/λ0 for η = 0.28,0.6,
respectively. (3), (6),±b. (4), (5),c for η = 0.28,0.6, respectively. Note that there is no solution
for λ0 < λ

asympt
0,c ∼ 0.2.

λ0 for L = 10,m = 1 and two values of the data-teacher overlapη. Notice that there is no
asymptotic solution forλ0 below'0.2. This is a new feature, compared to the unstructured
data case: we find already in the asymptotics a lower bound onλ, namelyλ > λ

asympt
0,c /

√
α.

In figure 4 we show the solution of the full equations (14)–(16) forλ ∼ 1/
√
α scaling—

compare also with figures 1 and 2—which can be seen to approach the asymptotic solution (27)–
(30), (34). The solutions are robust in the sense that for allm, η, L there exists a large region
of λ0 leading to convergence according to (34).

We have thus shown that the simple decrease ofλ as 1/
√
α provides convergence to

asymptotic perfect generalization with the power− 1
2. Alternatively, one can decreaseλ as

1/
√
Q, or ase(α;q0), where

e(α;q0) = 1

q(α)− q0 + 1

q(α)=αN/L∑
q=q0

eq (35)

using the running ‘observed error’eq (2) (this is in a sense the most natural choice, since the
student only uses the observed error rateeq to become increasingly sensitive to the feedback).

Convergence to perfect generalization is also observed for the slowerλ ∼ α−r scaling
with r < 1

2, albeit with correspondingly reduced convergence rates. This demonstrates the
robustness of the general set-up. We have not systematically studied the dependence of the
convergence rates onr , however.

In all cases the pre-asymptotic regime is very important. Here phenomena similar to
the non-structured data case seem to take place: the flow is divided by a separatrix defined
by aλ0,c—see figure 4 (the MC simulation presents the same effect, compare figure 1). For
λ0 < λ0,c the flow runs into the attractive fixed point of poor generalization (in figure 4 we
stop the algorithm when the flow approaches the fixed point; from the simulation it can be seen
that then the error stays practically 0.5 for ever—see curve (1) in figure 1). Because of the
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(1)
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(4)
(5)
(a)
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(b)

Figure 4. Solution of the flow equations (14)–(16) forλ = λ0/
√
α tuning, for L = 10, starting

point
√
Q(0) = 100, m = 1 and various overlapsη: flow with α in the εg–

√
Q plane (a), εg

versusα (b), ω versusα (c) and
√
Q versusα (d). (1) η = 0.28, λ = 3.9/

√
α; (2) η = 0.28,

λ = 4.1/
√
α; (3) η = 0.28,λ = 10./

√
α; (4) η = 0.6, λ = 10./

√
α; (5) η = 0., λ = 5./

√
α; (a),

(b), (c) illustrative power laws (1/
√
α, 1/α and

√
α, respectively). Note the change in behaviour

betweenλ0 = 3.9 (1) andλ0 = 4.1 (2) and higher (3), compare with figures 1 and 2. We indicate
by a square the position of the attractive fixed point of poor generalization and by a cross (a) the
position of the second (attractive/repulsive) fixed point which determines the separatrix. Again,
η = 0 (5) is a special case.

complexity of the variable and parameter space we could not obtain a systematic picture of the
fixed point structure. Instead we tried to select some generic points inL, m, η, ρ and generic
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Figure 4. (Continued)

initial conditions, and study numerically the convergence properties of the equations (14)–(16)
as function of the learning parameterλ. Therefore the following results are only illustrative. In
the tables we give the boundλ0,c for various parameters for scaling with 1/

√
α—table 2, and

for scaling withe(α;q0)—table 3. In the second case an averaging overeq is needed in order
to avoid strong fluctuations, but the amount of averaging is not essential. The dependence on
the teacher/data overlap parameterη increases with the anisotropy parameterm as expected,
and the flow structure may become more complex, as suggested by the curve (5) in figure 2.
All these dependences are reflected quantitatively in the threshold valuesλ0,c; the qualitative
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Table 2. Critical value ofλ0 for L = 10, ρ = 1, various
√
Q0 and data parametersm, η. Here

λ = λ0/
√
α tuning is used.

√
Q0 10 100 1000

η 0.28 0.6 0.28 0.6 0.28 0.6

λ0,c (m= 1) 3.7(1) 4.5(1) 3.95(5) 5.1(1) 6.1(1) 9.3(1)
λ0,c (m= 4) 3.9(1) 0.17(1) 6.1(1) 0.19(1) 14.1(1) 0.5(1)

Table 3. Critical value ofλ0 for L = 10,ρ = 1, m = 1, various
√
Q0 and overlap parameterη.

Hereλ = λ0e(α;q0) tuning is used, withq0 = 1 (1) and withq0 = αN/L−10 000 (2)—i.e.,e(α)
is eq averaged from the beginning or averaged over the last 10 000 iterations, respectively.

√
Q0 10 100 1000

η 0.28 0.6 0.28 0.6 0.28 0.6

λ0,c (1) 0.45(1) 0.45(1) 0.31(1) 0.31(1) 0.19(1) 0.23(1)
λ0,c (2) 0.41(1) 0.41(1) 0.31(5) 0.31(1) 0.19(1) 0.23(1)

picture, however, remains unaffected. Forλ0 above the quotedλ0,c learning is obtained, but is
slower with increasingλ. (See also figure 4.)

4. Summary and discussion

In this paper we have investigated the performance of the AR Hebb algorithm [5] in the case
where the input patterns are structured. The pattern statistics is characterized by the anisotropy
vectormC and performance of the learning rule depends onm and on the overlapη between
the anisotropy vector and the vectorB that defines the rule—apart from the parametersλ, L
andρ which characterize the AR Hebb algorithm. We have seen that varying arbitrarily the
projection of the data vector onto the teacher vector, as well as varying the strength of the data
anisotropy itself, does not change the general result: in the first case only slight changes in the
threshold and convergence parameters are found; in the second case additional fixed points
may appear, complicating the preasymptotic behaviour, however not in an essential way. Since
this kind of data structure provides a quite extreme learning problem we do not expect more
complex patterns in the data structure to produce new learning behaviour. A systematic test of
this conjecture would have gone, however, beyond the scope of this paper.

As for usual Hebb learning, a rescaling of learning parameters isrequiredto achieve good
generalization for the classification of structured patterns. In this way the algorithm is tuned to
approach the perceptron algorithm in the limiteq � 1. Notice, however, that the thresholds for
λ found even in the asymptotic behaviour forL > 1 mean that even in this limit the algorithm
remains different from the perceptron one—in contradistinction to theL = 1 case.

GivenL andρ the only free parameter of the algorithm isλ, and tuning ofλmay proceed in
various ways. For instance, one may scaleλ either withα, i.e. with the number of input–output
pairs presented, or with the self-overlapQ, or with the empirical error rateeq.

Our analysis of the asymptotics reveals that the scalingλ ∼ α−1/2, which according to that
analysis is equivalent to the scalingsλ ∼ Q−1/2, or λ ∼ e(α), leads to asymptotically perfect
generalization. The behaviour is robust in the sense that the prefactorλ0 may be varied over
a wide range without changing the asymptotic scaling of the generalization error. The tuning
(annealing) required to obtain a working algorithm is not fine-tuning. The only requirement for
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obtaining good generalization is thatλ0 in (27) exceeds a certain minimum value,λ
asympt
0,c . This

behaviour is reminiscent of the fact that a minimum value ofλ was also required in the case
of unstructured data. In that case, however, the reason was entirely related to pre-asymptotic
behaviour related to the fixed-point structure of the flow equations, whereas the above analysis
pertains to the asymptotic domain.

In what concerns the pre-asymptotic behaviour, we see from the numerical solution of
the full flow-equations and from simulations some empirical evidence that a non-trivial fixed-
point structure governing this behaviour is present also in the case studied here, in analogy to
what has been found in [5]. As the present dynamical problem isthreedimensional instead
of two dimensional, however, the consequences of this might be suspected to be less severe.
For instance, a fixed point with stable and unstable directions in three dimensions does not
necessarily produce a separatrix as in the two-dimensional case. However, the projection onto
the εg-

√
Q plane shows a separatrix and hence aλ0,c, as in the unstructured data case (see

figure 4), withλ0,c > λ
asympt
0,c . This, and the necessity to scale downλ, seems to be a rather

general feature.
The detail of theλ tuning does not seem important: essentiallyλ should not be too small

during the preasymptotics (it may even stay constant) and should decrease in the asymptotics
asα−r with 0 < r 6 1

2 (but with a prefactor bounded from below). Any law which ensures
these conditions appears to work, in particularλ = λ0/

√
α or λ = λ0e(α;q0) with λ0 above

the thresholds given in the tables 2, 3. This holds, of course, also for the unstructured data
case, where however the scaling down ofλ modifies the asymptotic law leading to faster
convergence. The exceptional behaviour observed forη = 0 illustrates this fact, since in the
student–teacher scenarioη = 0 is equivalent to the unstructured case. Finally we find again
that the algorithm is stable against noise or a further dilution of the information introduced by
takingρ < 1—see figure 2.

As shown in our analysis the concept of learning introduced in section 1 leads to simple
and robust procedures for the problem of learning under the rather realistic condition of
unspecific reinforcement. This is a problem whose solution may be of vital importance in
typical ‘life’ situations, whether natural or artificial, and it is important to find out whether
natural mechanisms can develop to tackle it. Our model may have this capacity, since it involves
two, rather natural, steps: theblind association, which means in fact ‘crediting’ its own best
choice for an action, and theunspecific reinforcement, which means taking into account the
lesson from the environment. The implementation for perceptrons has allowed systematic
statistical and analytical results, showing that a good learning behaviour is obtained in this
way. Learning turns out to be very stable against variations in the parameters, but requires a
minimal amount ofblind associationsimultaneously with a scaling down of that parameter,
e.g. proportionally with the observed error, or inversely proportionally to the square root of
the number of iterations. A heuristic argument as to whyλ = 0 does not work for unspecific
reinforcement was suggested in our earlier paper. It is roughly as follows: since forL = 1
eq can only be 0 or 1λ = 0 means penalty for failure, no change for success, which is the
usual perceptron learning rule known to converge. However, forL > 1 eq can take fractional
values in the interval [0,1]. In this caseλ = 0 means a penalty for all answers which are
short of perfect, i.e. even if the pupil is successful in far above 50% of the cases. This implies
that the student does not really ‘learn’ but only is confirmed when he already has learned
perfectly; all partial failures are treated as complete failure. ForL = 1 partial failureis
complete failure, therefore the usual perceptron algorithm provides a specific punishment. For
L > 1 this is no longer true and we need the blind association to indirectly provide an element
of specificity in the punishment. The mathematical realization of this condition is represented
by the fixed-point structure and the asymptotic behaviour.
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Although a full description of the parameter space was not possible, we could show that the
qualitative features discussed above hold over a wide range of generic conditions. Away from
the thermodynamic limit, i.e. for non-infinitesimalL/N, and even more so for the ‘realistic’
models in [4, 7], it is significant that the blind association cannot be understood as a simple
renormalization of the unspecific reinforcement. As can be seen from equations (10) and (11),
the two steps are of different character, since the erroreq which enters the reinforcement step
depends on allJ (q,l ) which are updated at eachl -blind association step. The simulations show,
however, in all these cases a learning behaviour not dissimilar to that found in the coarse-
grained limit, in particular the peculiar features of the possibility of perfect generalization in
spite of the unspecific reinforcement, and the necessity of the blind association. This, together
with the stability to noise, suggests that the properties observed here may really be of a very
general nature.
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Appendix

A.1. Expectation values

The expectation valuesA., S. in (14)–(16) are

AJ T = mηϕ

(
m
D√
Q

)
+

√
2

π

R√
Q

e−
m2D2

2Q (36)

AT T = mηϕ(mη) +

√
2

π
e−

m2η2

2 (37)

SJ T = 1 +ϕ

(
m
D√
Q

)
− ϕ(mη)− 4G

( R√
Q
,
D√
Q
, η

)
(38)

AJ J = m
D√
Q
ϕ

(
m
D√
Q

)
+

√
2

π
e−

m2D2

2Q (39)

AT J = m
D√
Q
ϕ(mη) +

√
2

π

R√
Q

e−
m2η2

2 (40)

AJC = mϕ

(
m
D√
Q

)
+

√
2

π

D√
Q

e−
m2D2

2Q (41)

AT C = mϕ(mη) +

√
2

π
ηe−

m2η2

2 (42)

where

G

( R√
Q
,
D√
Q
, η

)
= 1

2

∫ m D√
Q

−∞

dt√
2π

e−
1
2 t2

1 +ϕ

 t R√Q −mη√
1− R2

Q

 (43)

andϕ(x) = erf(x/
√

2), with erf the error function.
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A.2. Asymptotic coefficients

In terms of the parametrization introduced in (23)–(26) and the combinations

u = 1
2mcos(z)

√
2 (44)

v = msin( 1
2z)
√

2 (45)

g(vω) = vωerf(vω) (46)

f (vω) = vωerf(vω) +
e−v

2ω2

√
π

(47)

the Maple expressions for the coefficientsAγ , Bγ ,Cγ in (31)–(33) are given as

A11 = −4
sin( 1

2z)erf(u)ω

π
(48)

A12 = e−u2
f (vω)

π
√
πL

(49)

A2 =
e−u2

(−21+2v2ω2

L + 4(1− 1
L )erf(u) f (vω))√

2π
(50)

B11 = 4
msin( 1

2z)2erf(u)(ω2− 1 + s2)

π
(51)

B12 = −
sin( 1

2z)e−u2
ω f (vω)

π3/2L
(52)

B2 = 4
msin( 1

2z)2e−u2
(ω2− 1 + s2)( vωL − (1− 1

L )erf(u) f (vω))√
π

(53)

C0 =
√

2uerf(u) +

√
2e−u2

√
π

(54)

C1 = −
(

1− 1

L

)
e−u2

f (vω)(
√
πmerf(u)cos(z) +

√
2e−u2

). (55)
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