
Spectra of Sample Auto-Covariance Matrices Derived

from Time Series

Reimer Kühn and Peter Sollich

Disordered Systems Group
Department of Mathematics, King’s College London

Dresden, Sept 28, 2012

Details in Europhys. Lett. 99 20008 (2012), available from http://www.mth.kcl.ac.uk/∼kuehn

1 / 29



Outline

1 Sample Auto-Covariance Matrices of Time Series

2 Comparison with Wishart-Laguerre Ensemble

3 Spectral Density and Resolvent

4 Performing the Average
Exploiting Szegö’s Theorem
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Sample Auto-Covariance Matrices of Time Series

Auto-covariance matrix of stationary stochastic process (xt)t∈Z:

Cij =
1

M

M

∑
t=1

xi+txj+t =
1

M
(XX T )ij .

Here X = (xit) is N ×M matrix with entries xit = xi+t .
Expect finite sample fluctuation around mean

Cij = 〈xixj〉±O(1/
√

M) = C̄(i − j)±O(1/
√

M)

⇒ C is randomly perturbed Toeplitz matrix.

Spectrum of C as N → ∞, M → ∞ @ fixed α = N/M?
Known result as α → 0: Szegö’s Theorem

ρ0(λ) =
Z 2π

0

dq

2π
δ(λ− Ĉ(q))
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Comparison with Wishart-Laguerre Ensemble

Empirical covariances for N data, evaluated on the basis of M
measurements for each variable. Express in terms of N ×M
matrices X = (xit) as

Cij =
1

M

M

∑
t=1

xitxjt =
1

M
(XX T )ij .

Expect finite sample fluctuation around mean. For i.i.d. entries xit

Cij = 〈xixj〉±O(1/
√

M) = δij ±O(1/
√

M)

Spectrum of C as N → ∞, M → ∞ @ fixed α = N/M?
⇒ Marčenko Pastur-Law

ρα(λ) =
(

1− 1

α

)

+
δ(λ)+

√

4α− (λ− (1+α))2

2παλ
1Iλ∈[λ−,λ+]
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Principal Differences

Rows of X for the auto-covariance problem are sections of a
single time series (xt)t∈Z

X =











x1 x2 x3 . . . xM

x2 x3 x4 . . . x1+M
...

. . .
...

xN xN+1 xN+2 . . . xN+M











Number of random variables in the problem is O(N), rather than
O(N2) as in the Wishart Laguerre ensemble.

Extensive body of knowledge about the Wishart-Laguerre
ensemble and its variants (applications in multivariate statistics,
signal-processing, finance, . . . )
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Principal Differences (contd.)

Comparatively little is known about the auto-covariance problem

Existence of limiting spectral densityfor auto-covariance matrices
of moving average processes with i.i.d. driving (Basak et. al 2011)

Universality of results: independence of statistics of i.i.d. driving
(numerical, Sen 2010)

Existence of limiting spectral density for random Toeplitz matrices
with i.i.d. entries (Bryc 2007)
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Spectral Density and Resolvent

Spectral density of sample covariance matrix from resolvent

ρ(λ) = lim
N→∞

1

πN
Im Tr

〈

[

λε1I−C
]−1
〉

, λε = λ− iε

Express as (S F Edwards & R C Jones, JPA, 1976)

ρα(λ) = lim
N→∞

1

πN
Im

∂
∂λ

Tr
〈

ln
[

λε1I−C
]

〉

= lim
N→∞

− 2

πN
Im

∂
∂λ

〈

lnZN

〉

,

where ZN is a Gaussian integral:

ZN =
Z N

∏
k=1

duk
√

2π/i
exp

{

− i
2 ∑

k ,ℓ

uk(λεδkℓ−Ckℓ)uℓ

}
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Performing the Average

Standard Approach – Replica Method

〈

lnZN

〉

= lim
n→0

1

n
ln
〈

Z n
N

〉

For integer n, Z n
N is partition function of n identical copies of the

system (n-th power of Gaussian integral)

Experience: final result has structure of replica-symmetric
high-temperature solution ⇔ annealed calculation (n = 1).
〈lnZN〉 ≃ ln〈ZN〉 ⇒ Do annealed calculation from the start

〈ZN〉 =

〈

Z

∏
k

duk
√

2π/i
exp

{

− i
2

λε ∑
k

u2
k +

i
2 ∑

kℓ

Ckℓuk uℓ

}〉

,
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Performing the Average (contd.)

Insert definition of C

〈ZN〉 =

〈

Z

∏
k

duk
√

2π/i
exp

{

− i
2

λε ∑
k

u2
k +

i
2

α
M

∑
i=1

z2
i

}〉

with disorder dependence of ZN only through the M variables

zi =
1√
N

N

∑
k=1

xk+iuk , 1 ≤ i ≤ M .

By CLT (for weakly dependent rv’s) normally distributed for large
M with

〈zi〉 = 0 , 〈zizj〉 =
1

N ∑
kℓ

〈xk+ixℓ+j〉uk uℓ ≡ Qij

and Q given in terms of true process auto-covariance

Qij = 〈zizj〉 =
1

N ∑
kℓ

C̄(i − j + k − ℓ)uk uℓ
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Exploiting Szeg ö’s Theorem for Spectral Sums

{zi} average is Gaussian

〈ZN〉 =
Z

∏
k

duka
√

2π/i
exp

{

− i
2

λε ∑
k

u2
k −

1

2
lndet(1I− iαQ)

}

Q is a Toeplitz matrix. ⇒ evaluate ln det (1I− iαQ) using

Szegö’s theorem : Given an N ×N Toeplitz matrix A with
elements Aik = a(i − k), where a = (a(n)) ∈ ℓ1(Z). Then the
spectral density has a weak limit

ρN(λ) =
1

N

N

∑
i=1

δ(λ−λi)
w−→

Z π

−π

dq

2π
δ(λ− â(q)) ,

as N → ∞, where â(q) is called the ‘symbol’, and is nothing but
the Fourier transform of a

â(q) =
∞

∑
n=−∞

a(n)eiqn .
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Szegö (keeping track of finite-M finite-N expressions)

lndet(1I− iαQ) ∼
(M−1)/2

∑
µ=−(M−1)/2

ln
(

1− iαQµ

)

where

Qµ =
1

N ∑
kℓ

Ĉ(qµ)e
−iqµ(k−ℓ) uk uℓ = Ĉ(qµ)|û(qµ)|2 ≡ Q(qµ)

with

û(qµ) =
1√
N

N

∑
k=1

eiqµk uk , qµ =
2π
M

µ

Enforce Qµ definitions using δ-functions. ⇒ Get Gaussian
uk -integrals.

〈ZN〉 =
Z (M−1)/2

∏
µ=0

dQ̂µdQµ

2π
exp
{

−
(M−1)/2

∑
µ=0

iQ̂µQµ

−
(M−1)/2

∑
µ=0

ln(1− iαQµ)−
1

2
lndet(λε1I−R)

}
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Do Qµ integrals using residues; gives R matrix elements

Rkℓ =
2

M

(M−1)/2

∑
µ=0

Q̂µĈ(qµ)cos(qµ(k − ℓ)) ,

with exponentially distributed Q̂µ.

R is Toeplitz matrix. Evaluate lndet(λε1I−R) using Szegö,

lndet(λε1I−R) ∼
(N−1)/2

∑
ν=−(N−1)/2

ln
(

λε −Rν

)

with

Rν =
(M−1)/2

∑
µ=0

Q̂µĈ(qµ)Sνµ ≡ R(pν) , pν =
2π
N

ν

and

Sνµ :=
1

M ∑
σ=±1

sin(N(pν −σqµ)/2)

sin((pν −σqµ)/2)
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Enforce Rν definitions via δ-functions

〈ZN〉 =

〈

Z (N−1)/2

∏
ν=0

{

dR̂νdRν

2π
e−iR̂νRν

λε −Rν
eiR̂ν ∑(M−1)/2

µ=0 Q̂µĈ(qµ)Sνµ

}〉

{Q̂µ}

Do Rν integrals using residues. Gives

〈ZN〉 =

〈

(N−1)/2

∏
ν=0

Fν

〉

{Qµ}

with

Fν = i
Z ∞

0
dR̂ν e

−iR̂ν

(

λε−∑µ Q̂µĈ(qµ)Sνµ

)
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Decoupling & Decorrelation Approximations

S-kernel couples Q̂µ for µ∈ Iν = {µ; |µ−ν/α| ≤ 1/α}.

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 60  80  100  120  140
S

µ

Sνµ at ν = 10 as a function of µ,for α = 0.1

Approximations (using smoothness of Ĉ(qµ) on qµ scale)

(i) ∑
µ

Q̂µĈ(qµ)Sνµ ≃
α
2

Ĉ(pν) ∑
µ∈Iν

Qµ

(ii)

〈

(N−1)/2

∏
ν=0

Fν

〉

{Q̂µ}
≃

(N−1)/2

∏
ν=0

〈

Fν

〉

{Q̂µ}
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Closed Form Approximation & Scaling

Allow closed form expression of 〈ZN〉, and hence ρα(λ)

〈ZN〉 =
(N−1)/2

∏
ν=0

{

2 i

αĈ(pν)

Z ∞

0
dy

e−iyλε2/(αĈ(pν))

(

1− iy
)2/α

}

Gives

ρα(λ) =
Z π

0

dq

π
1

Ĉ(q)
ρ(0)

α

(

λ
Ĉ(q)

)

As Ĉ(q) ≡ 1 for uncorrelated data, we have to identify ρ(0)
α with

the spectral density for auto-covariance matrices of i.i.d.
(uncorrelated) data.
Our approximations give

ρ(0)
α (λ) = − lim

ε→0

1

π
Im

∂
∂λ

ln Iα
( 2

α
λε

)

with

Iα(x) = i(−x)−1+2/α e−xΓ(1−2/α,−x) , Imx < 0 .
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The Scaling Function — Spectrum for i.i.d. Data

Spectral density for xn ∼N (0,1) i.i.d. @ α = 0.1

 0
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 0.6
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 0  0.5  1  1.5  2  2.5

ρ(
λ)

λ

Simulation results (green); analytic approximation for ρ(0)
α (λ) (red),

Marčenko-Pastur law (blue-dashed).
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AR-1 Process @ α = 0.1

(Logarithmic) Spectral density for AR-1 process @ α = 0.1

xn = a1 xn−1 +
√

1−a2
1 ξn
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Left : i.i.d. data, simulation (green) and analytic result (red).

Right : a1 = 0.8. Comparing scaling based on the empirical scaling

function (black) with that based on the analytic result (red) and

simulations (green).
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AR-1 Process @ α = 0.8

(Logarithmic) Spectral density for AR-1 process @ α = 0.8
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Left : i.i.d. data, simulation (green) and analytic result (red).

Right a1 = 0.8. Comparing scaling based on the empirical scaling

function (black) with that based on the analytic result (red) and

simulations (green).
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AR-2 Process (Two Real Eigenvalues)

(Logarithmic) Spectral density for AR-2 process

xn +a1xn−1 +a2xn−2 = σξn

a1 = 0.5, a2 = −3/16 , σ such that C̄(0) = 1 .
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Comparing scaling based on the empirical scaling function (black) with
that based on the analytic result (red) and simulations (green).

Left : α = 0.1, Right : α = 0.8.
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AR-2 Process (Complex Conjugate Eigenvalues)

(Logarithmic) Spectral density for AR-2 process

xn +a1xn−1 +a2xn−2 = σξn

a1 = 0.5, a2 = 5/16 , σ such that C̄(0) = 1 .
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Comparing scaling based on the empirical scaling function (black) with
that based on the analytic result (red) and simulations (green).

Left : α = 0.1, Right : α = 0.8.
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A Process with Long Range Auto-Correlation

A process with power-law decay of auto-correlation

C̄(n) =
1

1+(n/2)2
,
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Comparing scaling based on the empirical scaling function (black) with
that based on the analytic result (red) and simulations (green).

Left : α = 0.1, Right : α = 0.8.
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An application (Work in Progress)

DNA-Methylation Levels for different cancers
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Spectral density of auto-covariance matrices of DNA mathylation levels

with N = 100 at α = N/M = 0.025. Thin red lines are for individual

patients from the P class, dashed blue are for individual patients from

the N class. The thicker green and black lines correspond to average

spectra of the P and N classes, respectively.
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Summary

Computed DOS of sample auto-covariance matrices
using annealed calculation.

Key ingredient: Szegö’s theorem for Toeplitz matrices

Rectangular window and decorrelation approximation ⇒ Closed
form approximation.

Use of Szegös theorem suggests a scaling form for DOS.
results suggest that scaling is exact
ideas for independent proof

Applications: time-series analysis, signal processing, information
theory, finance . . .

Thanks! K. Anand, L. Dall’Asta, P. Vivo
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