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Chemical Structure of F8BT

Figure S1: Chemical structure of F8BT. Hydrogen atoms are implied and in this work, n = 6.
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Figure S2: Intermonomer dihedral distributions. Intermonomer dihedral distributions for
(a) water (blue) and THF (orange) and (b) amorphous F8BT at 350 K.
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Solvation Mechanisms of F8BT in Water and THF

Figure S3 shows radial distribution functions (g(r)) and associated coordination numbers

that describe the solvation mechanisms of F8BT in water (Figure S3(a)) and THF (Figure

S3(b)). F8BT is insoluble in aqueous solution. In water, the benzothiadiazole ring is more

strongly hydrated than the fluorene moiety. The highest level of solvation in the benzoth-

iadiazole ring is seen for the S atom. Similarly, we observe that the CD and CE atoms

are the most hydrated fluorene ring atoms, as these atoms are those least shielded by the

octyl side chains. We observe preferential solvation of specific benzothiadiazole and fluorene

atoms in water, while for F8BT in THF (Figure S3(b)), solvation is almost uniform across

each of the benzothiadiazole and fluorene rings, i.e., the respective coordination numbers for

benzothiadiazole and fluorene rings are almost the same. This indicates that both benzoth-

iadiazole and fluorene ring atoms are not shielded from, and interact strongly with, THF (as

opposed to water, in which we observe significantly lower levels of fluorene hydration than

for benzothiadiazole).
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Figure S3: F8BT ring solvation in (a) water and (b) THF. A cutoff value of 7.5 Å was used
to calculate the coordination numbers shown as bar charts. RDFs are vertically shifted by
1 for clarity.
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Similar relative behaviour is also observed in the solvation mechanisms of the octyl side

chains in water and THF (Figure S4). The coordination number of THF around the alkyl

chain increases monotonically moving down the chain from the fluorene ring (with the ex-

ception of the terminal methyl group, which is expected to be due to the slight difference

in steric hindrance conferred by the methyl H atoms). Conversely, for the case of F8BT

in water, we note that preferential hydration is experienced by C3 compared to atoms we

might expect to be found further into aqueous solution (C4, C5, and C6). This indicates

that hydrophobic collapse of the side chains reduces solvent interactions with the side chains.
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Figure S4: F8BT side chain solvation in (a) water and (b) THF. A cutoff value of 7.5 Å was
used to calculate the coordination numbers shown as bar charts. RDFs are vertically shifted
by 1 for clarity.
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Quantifying Polymer Deformation and Relaxation

The following quantity provides a simple metric by which to compare the dynamics of poly-

mer chains in different conditions (melt phase and in solution) and at different temperatures.1

The root-mean squared deviation (RMSD) of a polymer chain given a lag time, τ , is defined

as

RMSD (r(t), r(t+ τ)) =

√√√√ 1

N

N∑
i

(ri(t)− ri(t+ τ))2 (1)

Now we define Γ(τ) ≡ ⟨RMSD (r(t), r(t + τ))⟩, the RMSD as a function of the lag time,

averaged over all molecules and different start times t. Assuming that Γ → Γmax as τ → ∞,

we model the relaxation process using a simple first order ordinary differential equation

(ODE):

dΓ

dτ
= k(Γmax − Γ) (2)

Integrating the ODE and applying the initial conditions Γ = 0 when τ = 0 yields

Γmax − Γ(τ) = A exp(−kτ) (3)

We evaluate A = Γmax and as such, letting k = τ−1
r in addition, we obtain

Γ(τ) = Γmax(1− exp(−τ/τr)) (4)

We have defined k = τ−1
r , where the constant τr is the relaxation time, a measure of the

relaxation timescale of the chains according the evolution of Γ(τ). Therefore when τ = τr,

Γ(t = τr) = Γmax(1 − e−1) ≈ 0.63Γmax. The delay time measures the time by when the

polymer has lost its memory of its initial conformation, acting as a timescale by which to

measure chain relaxation dynamics. Furthermore, the value of Γmax gives a sense of how free

the polymer is to explore different conformations, i.e. it is a measure of deformability. We

calculate Γmax for τ = 1.5 ns.
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Reparametrization of the F8BT Force Field

Initial structures of ‘F0BT’ chains (i.e., F8BT chains with their octyl side chains replaced

by H atoms) were obtained using the semi-empirical xTB-GFN2 method as implemented in

the xTB package.2 Note that the octyl chains present in F8BT were not included in these

calculations since they have been shown to hinder convergence and accuracy of geometry

optimisations.3 Furthermore, they were not included in the F0BT chains used to calculate

partial charges for similar reasons.
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Figure S5: Chemical structure of the F0BT monomer. Note that hydrogen atoms are im-
plicit.

Reparametrization of Partial Charges

F0BT oligomers were used to determine partial charges using the RESP method. Initial

structures of F0BT oligomers were minimized using the xTB-GFN2 semi-empirical method

before DFT energy minimization was performed. Full geometry optimisations were con-

ducted on each F0BT chain. Using the outputted electron density, the Multiwfn package

was used to calculate partial charges using the widely-used restrained electrostatic potential

(RESP) method.4 No constraints were applied when generating the partial charges, with

respect to symmetry or with reference to the normal behaviour of the CHARMM force

fields. Subsequently, the octyl alkyl chains were parameterised using the CHARMM Gen-

eral Force Field and merged with the calculated charges for the rest of the molecule. Each

alkyl carbon atom that is connected to a F0BT carbon had its charge modified simply as
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qC,new = qC,orignal + qH,removed. Partial charges were then directly implemented in the GRO-

MACS topology file, which is available as part of the Supporting Information.

An interesting comparison can be made between the CHARMM36 and RESP partial

charges for the F0BT monomer. In donor-acceptor polymers such as F8BT, one can consider

the donor unit (here fluorene) to undertake partial charge transfer towards the acceptor unit

(here benzothiadiazole). This is reflected in the large, positive partial charge of C9 as

calculated by RESP, which is not reflected in the CHARMM partial charge.
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Figure S6: F0BT monomer partial charges from RESP and CHARMM. Atom names are
the same as in Figure S5. Note that CHARMM underestimates the N partial charges and
does not account for partial charge transfer from fluorene to benzothiadiazole, as indicated
clearly by the respective C9 partial charges.

Reparametrization of Covalent Bond and Bond Angle Terms

We performed relaxed geometry scans to obtain energy profiles for covalent bond and bonded

angle interactions that are poorly described by the classical force field, either to flagged by the

large penalties arising in the initial parameterization, or because the chemical analogy made

in the initial parameterisation was not appropriate. The geometry scans were performed on

an F0BT monomer.
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1. Calculate an approximate initial geometry using the semi-empirical GFN2-xTB method

with the xTB package2

2. For each bonded interaction of interest (bond or angle), calculate the potential en-

ergy surface using relaxed scans by DFT calculations (B3LYP exchange-correlation

functional5,6 and def2-TZVPP Karlsruhe basis set) using the Orca quantum chemistry

package7

3. Fit the target potential energy surfaces with an appropriate classical force field function

(we used non-linear least squares as implemented in the scipy Python package)

Covalent bonds are described in the CHARMM force field as V (r) = kr(r − r0)
2, with

kr having units of kcalmol−1Å−2 and r0 having units of Å, which we also used for the

fitting procedure. However, direct implementation into the GROMACS topology file requires

V (r) = kr
2
(r − r0)

2, with kr having units of kJmol−1nm−2 and r0 having units of nm.

Table 1: Fitting results for select covalent bond interactions converted to CHARMM units.
Note that the original CHARMM kr values were used in our final force field.

Bond kr [kcalmol−1Å−2] r0 [Å]
C2-C3 457 1.45
C2-N1 437 1.35
N1-S 342 1.45
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Figure S7: DFT bond energy scans and fitted force field functions for C2-C3, C2-N1, and
N1-S (left to right).

Bonded angle deformations are described in the CHARMM force field as V (θ) = kθ(θ −

θ0)
2, which we also used for the fitting procedure. However, for direct implementation into the
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GROMACS topology file requires V (θ) = kθ
2
(θ− θ0)

2, with kr having units of kJmol−1rad−2

and r0 having units of deg.
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Figure S8: DFT angle deformation energy scans and fitted force field functions for C1-C2-
C4, C1-C2-N2, N1-S-N2, and C2-N2-S (left to right).

Table 2: Fitting results for bonded angles in the F0BT monomer converted to CHARMM
units. Note that the original CHARMM kθ values were used in our final force field.

Angle kθ [kcalmol−1rad−2] θ0 [deg]
C1-C2-N2 239 113
C1-C2-C4 178 121
C2-N2-S 226 107
N1-S-N2 275 101

Reparametrization of the Donor-Acceptor Dihedral Angle

We followed a similar approach to that of Wildman and co-workers to obtain suitable pa-

rameters to accurately describe the donor-acceptor dihedral angle.3

1. Build a representative oligomer and calculate an approximate initial geometry using

the semi-empirical GFN2-xTB method with the xTB package2

2. For the dihedral of interest, calculate the potential energy surface using relaxed scans

by DFT (B3LYP exchange-correlation functional5,6 and def2-TZVPP Karlsruhe basis

set) using the Orca quantum chemistry package7

3. Scan each of the bonded interactions with the Gromacs MD simulation engine (with

dihedral potential energy term under investigation set to 0) to obtain the background
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correction energy (mitigating double counting from the quantum chemistry data used

by the fitting process3)

4. Subtract the background correction energy from the fitted functional forms to obtain

the final target energy function for the dihedral interaction

5. Fit the target potential energy surfaces with an appropriate classical force field function

(we used non-linear least squares as implemented in the scipy Python package)

Figure S9 shows the ‘push-pull’ intermonomer dihedral pair used in the dihedral imple-

mentation in this work. The DFT and MD background energy scans were performed on the

left-hand dihedral (note that this choice is arbitrary).
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Figure S9: The ‘push-pull’ intermonomer dihedral pair.

Dihedral rotations are described using the following terms in the force field, with force

constants and phase differences listed in Table 3.

V (ϕ) =
5∑

n=1

kϕ,n(1 + cos(nϕ− δn)) (5)

Figure S10 shows the results from each section of the dihedral angle fitting procedure.

Note the large contribution made by the background effects of the classical FF (gray line)

and that the difference between the DFT dihedral energy (blue) and the overall classical

FF dihedral energy as implemented in this work (green) is within chemical accuracy (i.e., a

difference of less than 4 kJmol−1) for all dihedral angles.
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Table 3: Fitting results for the donor-acceptor dihedral as implemented in the GROMACS
topology file.

ϕC3C4C9C10 n kϕ,n [kJmol−1] δn [deg]
1 2.14 180
2 −9.94 0
3 0.58 0
4 1.86 180
5 0.33 180

ϕC5C4C9C10 n kϕ,n [kJmol−1] δn [deg]
1 2.14 0
2 −9.94 180
3 0.58 180
4 1.86 0
5 0.33 0
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Figure S10: Final fitting results for the intermonomer dihedral angle potential.
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Validation of the F8BT Force Field

While direct comparisons to the experimental structure of the amorphous state are not pos-

sible given a lack of experimental methods to probe the structure at the atomistic level of

detail, experiments do however provide a suitable point of reference by which to test the va-

lidity of the new force field. F8BT is insoluble in water but highly soluble in tetrahydrofuran

(THF).8 To test the solubility of F8BT as modelled by our new force field we performed two

simulations, both containing 17 F8BT chains in water and THF respectively.

Simulation Details. F8BT was modeled using the reparameterized CHARMM-based

force field9,10 developed as part of this work. Before use in any production simulation, the

F8BT chain was subject to high temperature dynamics in vacuo to randomize its inter-

monomer dihedral distribution. We note that frequent transitions between different dihedral

states are observed in all simulations in addition. Water was treated with the CHARMM-

modified TIP3P model11 and tetrahydrofuran (THF) was modeled using the CHARMM36

force field.9,10 The MD simulations were performed using the GROMACS 2019 simulation

engine.12,13 In all simulations, the Lennard-Jones and Coulomb interaction cut-off distances

were set to 12 Å. The particle-mesh Ewald method was used to calculate long-range elec-

trostatic interactions. Periodic boundary conditions were applied in all dimensions in all

simulations. A 1 fs timestep was used for all equilibration and production simulations. The

leapfrog integration scheme was used in both simulations. For both water and THF simula-

tions, 17 F8BT chains were randomly placed in a simulation box measuring 110×110×110 Å3.

Solvent molecules were added to yield a system containing F8BT with a concentration of

10.0 wt. % (see Table 4 for details). Both systems were once more subjected to energy min-

imization by steepest descent before the temperature was equilibrated to 350 K for 100 ps

using the Nosé-Hoover thermostat. Subsequently, the production simulation for the F8BT

chain in water was performed using the velocity-rescale thermostat14 (target temperature of

353 K) and the Parrinello-Rahman barostat15 (target pressure of 1 atm) for 200 ns to allow

for any molecular aggregation to be observed.
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Table 4: Details of the two simulated systems.

System natoms nF8BT nsolvent Final box size [Å3] Conc. [wt. %]
F8BT chains in H2O 97 213 17 29 673 100.6×100.6×100.6 10.0
F8BT chains in THF 104 485 17 7 407 109.8×109.8×109.8 10.0

Analysis Methods. Simulation analysis was performed using in-house Python scripts,

which make wide use of the MDAnalysis16 and NetworkX packages.17 Simulation visual-

izations were produced using VMD.18 Clustering was performed using a graph-theoretic

technique described fully elsewhere,19 using a cutoff distance of 20 Å was used between the

methylene carbon atom of the central fluorene moiety of each polymer. The largest aggregate

time series was then calculated, as well as the aggregate size distribution at stationarity. A

burn-in time of 150 ns was selected by considering the time series results in Figure S11(c).

Summary of Simulations. We find that our force field correctly describes the solu-

bility of F8BT in water and THF. Figure S11(a) shows that after 200 ns of simulation time,

all of the F8BT chains phase separate to form a single aggregate, which traverses the peri-

odic boundaries of the simulation box. Whereas after the same amount of time, the F8BT

chains in THF are observed to remain well-dispersed (Figure S11(b)). These observations

are quantified by calculating the fraction of F8BT chains found in the largest aggregate for

each solvent, which is presented as the time series in Figure S11(c), where we see that after

a burn-in time of 150 ns, at stationarity, essentially all of the F8BT chains are found in one

aggregate in water, while no large clusters are formed in THF. The probability distributions

of aggregate size at stationarity are shown for water and THF in Figures S11(d,e) respec-

tively, which highlight the qualitatively different behavior observed for the two solvents in

the simulations, in agreement with the experimental solubility of F8BT in both water and

THF.
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Figure S11: Snapshots of the final frame of each simulation showing (a) the aggregation of
F8BT chains in water and (b) the dispersion of individual F8BT chains in THF. (c) Fraction
of F8BT molecules in the largest aggregate over time for both systems (water in blue, THF
in orange). Probability distributions of F8BT aggregate size for chains in (d) water and (e)
THF. N.B.: a burn-in time of 150 ns was used to calculate these distributions at stationarity
with respect to aggregation in both systems.
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Theoretical Modelling of the Ring Stacking Network

The following is a summary of key concepts that go into the analysis of inter-chain percolation

in a glassy configuration of a system of conjugated polymers. The analysis conceives of the

amorphous polymer mixture as a network of randomly interlinked polymers, with the links

realized through ring stacking interactions as described in the main paper. We will in the

following, therefore, refer to polymers also as nodes or vertices of a network or graph, and

to the ring stacking interactions as the edges. The theory described below is based on the

cavity-approach to percolation formulated by Karrer et al. ,20 supplemented by techniques

to expose the full heterogeneity in the problem and to analyse it in the thermodynamic limit

as described in Kühn and Rogers.21

Cavity Approach to Percolation

As input to our analysis, we use the empirically determined probability mass function (pmf)

of the polymer stacking degree determined from the simulation, as displayed in Figure 3(b)

in the main text. We will assume that the configuration is a random realization of an

amorphous configuration of a network giving rise to the pmf of polymer stacking degrees,

and that this stacking degree distribution is characteristic of the true limiting stacking degree

pmf one would observe in the thermodynamic limit N → ∞ of infinite system size.

Probabilistic Description

Our analysis is based on a probabilistic analysis of bond percolation in large heterogeneous

networks, devised in Karrer et al.20 They consider a network or graph G = (V,E), with

V denoting the set of vertices or nodes of the graph, and E the set of edges or links, the

polymer stacking interactions in the case at hand. We use N = |V | to denote the size of the

graph and i ∈ {1, . . . , N} to label the nodes.

Bond percolation is a process by which each edge (ij) ∈ E is either kept with probability
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p or deleted with probability 1 − p. A probabilistic description of percolation is obtained

by noting that the configuration of connected clusters will be random and be determined by

the random realization of the percolation process. For the purpose of the present study, we

will eventually be interested in the results of the probabilistic description in the limit p → 1,

where all edges of the system are kept.

In Karrer et al., the authors analyse the probabilities πi(s), i ∈ {1, . . . , N}, of individual

nodes i to belong to a cluster of finite size s, s ∈ N = {1, 2, . . . }.20 Note that, in the thermo-

dynamic limit N → ∞, the πi are not necessarily normalized probability mass functions, as

a fraction of nodes may sit in a percolating or giant connected cluster (GCC) of the system

which is not of any finite size. The πi(s) satisfy the following equation20

πi(s) =
∑
s∂i

[ ∏
j∈∂i

π
(i)
j (sj)

]
δs,1+

∑
j∈∂i sj

(6)

in which s∂i =
(
sj
)
j∈∂i denotes the collection of cluster sizes sj that can be reached through

the edges (ij) connected to i, and π
(i)
j (sj) denotes the probability that sj nodes can be

reached from i trough the edge (ij). This equation expresses the logic that the size of the

cluster containing i must be equal to the sum of the sizes of the clusters that can be reached

through edges connecting to i, plus 1 (accounting for the node i itself).

For the π
(i)
j (sj) a set of self-consistency equations is derived,20 which express the same

line of reasoning, viz.

π
(i)
j (sj) = (1− p)δsj ,0 + p

∑
s∂j\i

[ ∏
ℓ∈∂j\i

π
(j)
ℓ (sℓ)

]
δsj ,1+

∑
ℓ∈∂j\i sℓ

, (7)

in which the first contribution corresponds to the configuration that the edge (ij) is absent,

while the second contribution describes the configuration in which the edge (ij) is present.

These equations are exact only on trees. However they provide excellent approximations

for large finitely connected systems, as the one under study, and are known to become
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asymptotically exact in the thermodynamic limit.20–22

Equations (6) and (7) are most efficiently analysed using probability generating functions

or z-transforms corresponding to πi(s) and π
(i)
j (s), respectively, defined as20

Gi(z) =
∑
s≥1

πi(s)z
s (8)

and

H
(i)
j (z) =

∑
s≥0

π
(i)
j (s)zs . (9)

For these, Eqs. (6) and (7) entail

Gi(z) = z
∏
j∈∂i

H
(i)
j (z) (10)

H
(i)
j (z) = 1− p+ pz

∏
ℓ∈∂j\i

H
(j)
ℓ (z) , (11)

so these equations can be solved independently for each z.

Noting that Gi(1) is the probability that site i belongs to a cluster of any finite size s,

one can conclude that

gi = 1−Gi(1) = 1−
∏
j∈∂i

H
(i)
j (1) (12)

is the probability that site i belongs to the giant cluster, and thus

ḡ =
1

N

N∑
i=1

gi (13)

gives the average fraction of sites occupied by the giant cluster.

Given a site i is not on the giant cluster, the expected size of the finite cluster to which

i belongs is

⟨si⟩ =
∑

s sπi(s)∑
s πi(s)

=
G′

i(1)

Gi(1)
= 1 +

∑
j∈∂i

H
(i)
j

′(1)

H
(i)
j (1)

. (14)

Its evaluation requires the z-derivative H
(i)
j

′(z) evaluated at z = 1, which is obtained from
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(11) as

H
(i)
j

′(1) = p

[
1 +

∑
ℓ∈∂j\i

H
(j)
ℓ

′(1)

H
(j)
ℓ (1)

] ∏
ℓ∈∂j\i

H
(j)
ℓ (1) . (15)

Equations (11) (at z = 1) and (15) can efficiently be solved by forward iteration using

random initial conditions, and the solutions can then be used to evaluate (12) and thereby

the average fraction ḡ of sites contained in the giant cluster (13) as well as the average

sizes ⟨si⟩ of finite clusters (14) containing individual nodes in the system. Averages are

here to be understood as averages over many instances of the percolation problem on the

same large complex network, so using the present setup avoids simulating many instances

of a percolation experiment for the purpose of averaging. Given a large single instance

of a complex network, the solution of (11) will in general be heterogeneous across bonds

(ij) entailing that the gi as well as the ⟨si⟩ will be heterogeneous across nodes. Note,

however, that the analysis described above requires complete knowledge of the original graph

G = (V,E). In the absence of such knowledge, one can resort to an analysis of the system

in the thermodynamic limit N → ∞ that only requires knowledge of the limiting degree

distribution p = (pk)k≥0 of the nodes in the system.

The Large System Limit

Assuming that, in the limit of infinite system size, there is a limiting joint probability density

function of the H
(i)
j ≡ H

(i)
j (1) and the H

(i)
j

′ ≡ H
(i)
j

′(1), such that

dπ̃(h, h′) ≡ π̃(h, h′) dhdh′ = Prob
(
H

(i)
j ∈ (h, h+ dh], H

(i)
j

′ ∈ (h′, h′ + dh′]
)
, (16)

one can use stochastic self-consistency arguments in Eqs. (11) and (15), as explained by Kühn

and Rogers,21 to obtain the following non-linear integral equation for this joint probability
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density function

π̃(h, h′) =
∑
k≥1

k

c
pk

∫ [ k−1∏
ℓ=1

dπ̃(hℓ, h
′
ℓ)
]
δ
(
h−

(
1− p+ p

k−1∏
ℓ=1

hℓ

))
× δ

(
h′ − p

(
1 +

k−1∑
ℓ=1

h′
ℓ

hℓ

) k−1∏
ℓ=1

hℓ

)
. (17)

Here k
c
pk with c = ⟨k⟩ is the probability that a randomly chosen neighbour of a node has

degree k, assuming as we do that there are no degree correlations in the system.

From its solution, which can be very efficiently obtained using a stochastic so-called

population dynamics algorithm,23 one obtains, with reference to Eq. (12), the probability

density function P (g) of the gi
21 as

P (g) =
∑
k

pk

∫ [ k∏
ℓ=1

dπ̃(hℓ, h
′
ℓ)
]
δ
(
g − 1 +

k∏
ℓ=1

hℓ

)
(18)

and, with reference to Eq. (14), the probability density function Q(s) of the ⟨si⟩ as

Q(s) =
∑
k

pk

∫ [ k∏
ℓ=1

dπ̃(hℓ, h
′
ℓ)
]
δ
(
s− 1−

k∑
ℓ=1

h′
ℓ

hℓ

)
. (19)

Note that the probability density function Q(s) of the average sizes of clusters containing a

randomly selected node is related to the cluster size distribution P (s) via

Q(s) =
s

⟨s⟩
P (s) , with ⟨s⟩ =

∫
ds s P (s) , (20)

which follows from the fact that each cluster of size s has s nodes which belong to it.

For the purposes of the present investigation we are interested in the p → 1 limit of these

identities and results. In this limit, the solution of the system Eqs. (11) of self-consistency

equations can be shown to take values H
(i)
j ≡ H

(i)
j (1) ∈ {0, 1} and the solutions H

(i)
j take

the meaning of indicator variables, which take the value H
(i)
j = 1, if the edge (ij) does not
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connect node i to the GCC, and the value H
(i)
j = 0, if it does. As a result, the gi defined by

Eq. (12), will in this limit themselves be indicator variables, taking the value gi = 1 if i is

part of the GCC, and gi = 0, if it is not, with Eq. (12) in this limit expressing the logic that

for a node to belong to the GCC, it must be connected to the GCC through at least one

of its neighbours. In this sense the system Eqs. (11) of self-consistency equations at z = 1

provide a local algorithm that is able to reveal whether a node belongs to the GCC of a given

network or not. One can similarly convince oneself that in the limit p → 1 the solutions

H
(i)
j

′ ≡ H
(i)
j

′(1) of the system (15) and (11) (for z = 1) of equations take values on the

non-negative integers N0 = {0, 1, 2, . . . } entailing that both P (s) and Q(s) will be supported

on the positive integers. Results for P (s) obtained from the large system limit of the theory

as described above are displayed in Figure 3(c) in the main text. The only input that goes

into obtaining them is the empirical degree distribution p = (pk) of the polymer stacking

interaction obtained from the MD simulations of amorphous F8BT which is displayed in

Figure 3(b) in the main text. Results from theory and the numerical experiments are in

excellent agreement, despite the moderate system size. This is in line with many other

studies of percolation on complex networks, according to which finite-size corrections are

expected to be small except in the immediate vicinity of the percolation transition. With

the GCC occupying approximately 89% of the system, the present conditions do indeed place

the simulated glassy polymer configuration far away from the percolation transition. The

probability distribution of small clusters, as calculated by the methodology outlined here, is

shown in Figure S12 below.
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Figure S12: Probability distribution of small clusters.
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