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Department of Mathematics, King’s College London, Strand, WC2R 2LS,
United Kingdom

E-mail: Giuseppe.torrisi@kcl.ac.uk

Received 15 February 2022 
Accepted for publication 7 April 2022 
Published 13 May 2022

Online at stacks.iop.org/JSTAT/2022/053303
https://doi.org/10.1088/1742-5468/ac66d0

Abstract. Dynamic processes of interacting units on a network are out of equi-
librium in general. In the case of a directed tree, the dynamic cavity method
provides an efficient tool that characterises the dynamic trajectory of the process
for the linear threshold model. However, because of the computational complexity
of the method, the analysis has been limited to systems where the largest num-
ber of neighbours is small. We devise an efficient implementation of the dynamic
cavity method which substantially reduces the computational complexity of the
method for systems with discrete couplings. Our approach opens up the possi-
bility to investigate the dynamic properties of networks with fat-tailed degree
distribution. We exploit this new implementation to study properties of the non-
equilibrium steady-state.We extend the dynamic cavity approach to calculate the
pairwise correlations induced by different motifs in the network. Our results sug-
gest that just two basic motifs of the network are able to accurately describe the
entire statistics of observed correlations. Finally, we investigate models defined on
networks containing bi-directional interactions. We observe that the stationary
state associated with networks with symmetric or anti-symmetric interactions
is biased towards the active or inactive state respectively, even if independent
interaction entries are drawn from a symmetric distribution. This phenomenon,
which can be regarded as a form of spontaneous symmetry-breaking, is peculiar
to systems formulated in terms of Boolean variables, as opposed to Ising spins.
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1. Introduction

A broad range of disordered and complex systems can be modelled in terms of binary
units, which update their state according to stochastic Boolean functions of the neigh-
bouring units. They include spin glasses [1–3] in physics, gene-regulatory and immune
networks [4–8] in biology, artificial neural networks [9–12] in computer science, agent-
based models [13–16], models of operational or credit risk [17, 18] in economics and
finance, and a variety of hard combinatorial optimization problems [19–23] to name but
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a few. In recent years there was, in particular, a surge of interest in systems where each
unit interacts only with a finite set of neighbours, and which are thus defined on finitely
connected networks.

Statistical mechanics provides a rich arsenal of tools to analyse the equilibrium
behaviour of sparse systems [3, 24–26]. However, the assumption of equilibrium is not
satisfied in systems that are driven, dissipative or exhibit a degree of asymmetry in the
interactions. Here, one has to resort to tools of non-equilibrium statistical mechanics,
which are however much more challenging. Non-equilibrium dynamics has been analysed
in explicit detail for a class of models where the dynamics of units has an absorbing
state [27–30] often combined with the simplifying feature that interactions are of pure
product form, e.g. in contagion processes [31, 32].

However, the dynamics of a large class of Boolean models does not have an absorbing
state. In the present manuscript, we analyse the stochastic dynamics of linear threshold
models, formulated in terms of {0, 1} variables, and discuss extensions to threshold mod-
els with multi-node interactions and models with Ising spin {±1}, which do not have
absorbing states. In such models, approximation schemes that are successfully used for
dense systems, such as the heterogeneous mean-field and TAP approaches [23, 33], have
been shown to be ineffective for sparse systems [34, 35]. On the other hand, generat-
ing functional analyses [36] can accurately characterise site averaged quantities, such
as global magnetization and time-lagged correlations [37, 38], in sparse heterogeneous
systems. However they require averaging over graph ensembles, hence they are not able
to describe single instances. These can instead be investigated by the dynamic cavity
method [29, 32, 38, 39] which is particularly effective in the analysis of sparse systems,
whenever short loops are rare. In particular, the dynamic cavity method can poten-
tially investigate dynamic properties at the level of individual nodes [39]. Single-node
statistics has, for instance, been shown to be highly heterogeneous for non-equilibrium
models with an absorbing state [27, 32, 40]. Little, however, is known for other models,
including spin models and linear threshold models.

In particular, explicit analysis has been feasible only for quite a narrow choice of net-
works, namely directed trees and fully asymmetric random graphs, where bi-directional
links are sampled independently [38, 39]. Moreover, both the dynamic cavity and gen-
erating functional methods require evaluating averages over a configuration space that
grows exponentially with the in-degree of the nodes, which limits the applicability of
both methods to networks with small in-degrees. Due to this computational complexity
barrier, a large class of networks, in particular those characterised by a fat-tailed degree
distribution, are out of reach for analytical characterisation. Networks with fat-tailed
degree distribution are, however, known to appear in many real-world problems and
represent the outcome of generating network models based on preferential attachment
[41–46]. They are characterised by large differences in the local environment surround-
ing nodes, which are known to lead to heterogeneous node properties at equilibrium
[26]. Therefore, the aforementioned exponential complexity in the in-degrees has so far
prevented a detailed study of node heterogeneities, precisely in those systems where
they play a bigger role.

We have recently proposed a method based on dynamic programing that overcomes
this complexity barrier when couplings are chosen randomly from any discrete set of
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equidistant values, the simplest example being couplings chosen from the set {±J},
see [47]. Our algorithm reduces the computational complexity in the in-degrees of the
system from exponential to quadratic, thus allowing us to characterise the probabilistic
evolution of individual node states in networks with a broad in-degree distribution.

In this manuscript, we extend our analysis of heterogeneous properties of the linear
threshold model in fully asymmetric networks to include pairwise correlations between
node states. Our analysis shows that the statistics of pairwise correlation is almost
completely captured in terms of simple motifs of length two. This reveals the extent to
which, in terms of path distance, node states significantly influence each other.

In addition, we extend our formalism to investigate systems with multi-node inter-
actions, using bipartite (or factor) graphs, which provide a more flexible model for
combinatorial control; see [48]. Multi-node interaction models can represent generic
Boolean functions, which are of particular interest in the context of gene regulation [4,
49–51]. We present our extended formalism for models of indicator variables 0, 1 as well
as models of Ising spins ±1, for which our formulation in terms of bipartite graphs leads
to (sparse) mixed p-spin models.

Finally, we extend our analysis to systems with bi-directional links. For this class
of systems, the cavity method requires following the probability of the full dynamic
trajectory, which cannot be reduced to the product of one-time-step terms, because bi-
directional links introduce retarded self-interactions of nodes with their past. This leads
to an exponential scaling with the time horizon considered, which effectively restricts
the application of the method to follow the dynamics over a few time-steps only, thus
making the investigation of long time behaviour infeasible. An approximation technique
called the one-time approximation (OTA) [34, 35, 39] has been proposed to overcome
these restrictions.

The OTA factorises the probabilities of dynamic trajectories into one-time-step prob-
abilities, and it leads to two sets of coupled equations, one for the marginals and one
for the cavity marginals, which become closed under further assumptions. This makes
the problem solvable also for the stationary state. Both equations are affected by the
aforementioned in-degree complexity, hence the OTA greatly benefits from our dynamic
programing method. Within the OTA framework, different closure schemes have been
proposed in the literature [34, 35]. We evaluate the impact that different closure schemes
have on the results, and we use such analysis to motivate our choice. A thorough
inspection of the result leads to a surprising finding: networks with the same number of
positive and negative interactions may sustain a biased distribution of node activation
in presence of bi-directional links. This phenomenon, which can be regarded as a form
of spontaneous symmetry breaking, is peculiar of systems with {0, 1} representation of
states (as opposed to Ising spins with {±1} representation).

Our paper is organized as follows. In section 2 we describe the dynamic programing
approach to the linear threshold model on fully asymmetric networks with fat-tailed
degree distribution. Its non-equilibrium stationary state is characterised in terms of
individual nodes statistics in section 3, and pairwise site correlations in section 4. In
section 5 we extend our method both to models with multi-node interactions, formulated
in terms of bipartite networks, and to networks of Ising spins. In section 6 we include bi-
directional links in the analysis of linear threshold models, using the OTA. In section 7
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we investigate the unexpected occurrence of a form of spontaneous symmetry breaking
in these systems. We summarise and discuss our results in section 8. Finally, we include
two appendices: the first containing the high noise limit for the asymmetric network
model and our multi-node interactions model, the second containing details concerning
the derivation of OTA schemes. The interested reader can find the code to reproduce
the results shown in this paper at the following link1.

2. Derivation of dynamic cavity equation on fully asymmetric networks

We consider a directed network consisting of N nodes labelled i = 1, . . . ,N . For each
edge (i, j), the edge weight Jij ∈ R defines the strength of the interaction carried from
node j to node i, while Jij = 0 if the link (i, j) does not exist. In this section we will
consider fully asymmetric networks, i.e. directed networks such that ∀i, j if the link (i, j)
exists, the link in the opposite direction (j, i) does not exist. We denote ∂i = {j :Jij �=
0} the set of predecessors of node i and kin

i = |∂i| the in-degree of node i. We will
drop the superscript ‘in’ in kin

i whenever it does not lead to ambiguity. Every node
i can be in one of two states, described by a binary state variable ni ∈ {0, 1} with
i ∈ {1, . . . ,N}. Several Boolean models can be defined on a given graph depending on
the choice of the update rule of node states, a prominent example being the random
Boolean network model [4].

In the present section, we consider the linear threshold model defined on a weighted
directed network, which is specified by the interaction matrix J = (Jij) and thresholds
{ϑi}Ni=1. A node i evaluates a local field

hi(n) :=
�

j

Jijnj, (1)

and becomes active in the next time-step if the sum of the local field and a random
noise contribution zi exceeds the threshold ϑi, i.e.

ni(t+ 1) = Θ (hi (n(t))− ϑi − zi(t)) , (2)

where the zi(t) are independent identically distributed random variables, with cumula-
tive distribution function Prob[zi(t) < x] :=Φβ(x), for all i, t, and T = β−1 is a param-
eter that characterises the noise strength. The local field hi(n∂i) depends on the states
of nodes that are predecessors of node i. We use n∂i = {nj, j ∈ ∂i} to denote the states
of this set. In the following, we explicitly write the argument of the local field using the
notation hi(n∂i). Given the states n∂i , the probability that node i is active at the next
time-step is Φβ(hi(n∂i)− ϑi), hence the transition probability to state ni, for node i, is

W [ni|hi(n∂i),ϑi] = niΦβ(hi(n∂i)− ϑi) + (1− ni)(1− Φβ(hi(n∂i)− ϑi)). (3)

1 https://doi.org/10.5281/zenodo.5996772.
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Given the joint probability P (n∂i , t) of the states n∂i at time t , the probability that node
i is in state ni at time t+ 1 is given by

P (ni, t+ 1) =
�

n∂i

W [ni|hi(n∂i),ϑi]P (n∂i , t), (4)

where
�

n∂i
(·) :=�j∈∂i

�
nj={0,1}(·) indicates the sum over all possible configurations of

the microscopic variables. For finitely coordinated random graphs of the type considered
here, the cavity method [24] can be used to analyse the dynamics of the system. It is
exact on trees and known to become exact for finitely coordinated random graphs in
the thermodynamic limit, as the typical length of any loops in such systems diverges
logarithmically in system size N . On the cavity graph where node i, along with the
edges connected to it, has been removed, the cavity approximation assumes

P (i)(n∂i , t) =
�

j∈∂i
P (i)(nj, t), (5)

which holds on a tree-like structure. The probability P (i)(n∂i, t) of the states of nodes
neighbouring i will in general be different from the corresponding probability on the
original graph, i.e. P (n∂i , t) �= P (i)(n∂i, t), but equality does hold on a directed tree and
it holds approximately on a random fully asymmetric graph, in which loops are rare [38,
39, 50].2 Using the equivalence of the cavity and non-cavity dynamics, from equation (4)

P (ni, t+ 1) =
�

n∂i

W [ni|hi(n∂i),ϑi]
�

j∈∂i
P (nj, t). (6)

In particular, the probability of node activation becomes

P (ni = 1, t+ 1) =
�

n∂i

Φβ (hi(n∂i)− ϑi)
�

j∈∂i
P (nj, t). (7)

Let us denote by Pi(t) :=P (ni = 1, t) the activation probability of node i at time t, let
the angle bracket � · �n∂i

, t indicate an average over the states of the predecessors of node
i, evaluated using their joint node activation probabilities at time t

�(·)�n∂i
, t :=

�

n∂i

�

j∈∂i
Pj(t)

nj [1− Pj(t)]
1−nj (·). (8)

Combining equations (8) and (7) a concise expression for the activation probability
P i(t+ 1) is obtained as

Pi(t+ 1) = �Φβ (hi(n∂i)− ϑi)�n∂i
, t. (9)

The average in equation (9) is evaluated over a configuration space containing 2ki

elements, as shown in equation (8). Thus, the evaluation of the average hits an (expo-
nential) complexity barrier whenever ki � 1. In [47] we have proposed a new method

2Cavity method can be applied also in the general case, as discussed in [39] and in appendix B. However the evaluation is more
challenging.
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that uses dynamic programing to efficiently perform the average in equation (9) using
a polynomial number of operations. In the following, we recap the main ideas of the
method.

Dynamic programing . Equation (9) depends on the distribution of states n∂i through
the local field hi(n∂i). If couplings are extracted from a discrete set of values, e.g.
Jij = {0,±J}, there is a degeneracy of values of hi(n∂i), i.e. several configurations of ki

states (nj1 , . . . ,njki
) are associated with the same value of local field. In fact, for a given

realisation of the interaction terms
�
Jij1 . . . Jijki

�
the number of possible values of hi(n∂i)

is ki + 1, while the number of configurations of states is 2ki. We exploit this degener-
acy by averaging directly over the local fields, rather than over the micro-states of the
set of predecessors, using a dynamic programing approach. We show below that our
approach reduces the computational complexity of the problem from O(2ki) to O(k2

i ),
[47].

Let us consider a node i with in-degree ki, and let us use {1, . . . , ki} to label the
indices of the predecessors of node i. We first define the sub-problem

fi(�, h̃) =

�
Φβ

	
h̃+

ki�

j=�

Jijnj − ϑi


�

n�,...,ki
,t

for � ∈ {1, . . . , ki}, (10)

which consists in performing the average over a sub-set of nodes. We will refer to
h̃ as an auxiliary field. At any given �, the set of fi(�, h̃) of interest would in fact
correspond to the set of averages representing the sub-problems of equation (9) that
remain to be evaluated after the average over the first �− 1 nodes has been per-
formed. Averages in equation (10) are not performed directly, but through the recursive
relationship

fi(�, h̃) = P�(t) fi(�+ 1, h̃+ Ji�) + (1− P�(t)) fi(�+ 1, h̃), (11)

for 1 � � � ki, with the terminal boundary condition

fi(ki + 1, h̃) = Φβ

�
h̃− ϑi

�
. (12)

The original average P i(t+ 1) of equation (9) that we are ultimately interested in is,
within this backward iteration scheme, obtained as

Pi(t+ 1) = fi(1, 0). (13)

In our earlier work [47], we have shown that equation (11) leads to a dramatic
reduction of the computational complexity for binary interactions Jij ∈ {0,±J}. The
computational and memory requirement for the evaluation of P i(t+ 1) is seen to scale
as k2

i , for a node with in-degree ki, rather than 2ki, as it would in a naive evaluation.
This entails that the complexity of our algorithm is O(

�
ik

2
i ).

https://doi.org/10.1088/1742-5468/ac66d0 7
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3. Node activation heterogeneity

It has been shown that fully asymmetric graphs do not exhibit a spin-glass phase
in a variety of dynamical models, and the time-dependent local magnetizations or
node activation probabilities are expected to converge to a fixed point [37, 39, 52,
53]. We exploit this fact to investigate the trajectory of nodes’ states by iteration of
equation (9). Our dynamic programing implementation provides an efficient method to
evaluate node activation probabilities. We apply our formalism to inspect the dynamical
properties of networks with fat-tailed degree distributions. The theoretical evalua-
tions presented in this section would not be feasible without our dynamic programing
implementation.

Model parameters used in this study . In the present section, we consider models of
synthetic networks in the configuration model class, i.e. we will study ensembles of max-
imally random directed graphs J with constrained in-degree and out-degree sequences of
nodes. The in-degree of nodes are drawn from the distribution ρin(k) = N−1

�
iδk,kini . In

this paper, we use the same distribution for the out-degree of nodes kout
i .3 The in-degree

and out-degree for the same node are drawn independently. We use �kin� to denote the
mean in-degree. Our synthetic model uses parameters observed in real-world networks.
Specifically, we use parameters extracted from a gene regulatory network [54], which is
characterised by a node in-degree distribution with a power-law tail P γ(k) ∼ γk−γ−1

and γ = 2.81, which we implement in terms of the discrete fat-tailed distribution
P γ(k) = k−γ − (k + 1)−γ; it is defined for positive integers 1 � k ∈ N and has the desired
power-law behaviour for large k. For every link (i, j), the corresponding interaction term
Jij is sampled from the distribution P (Jij) = ηδ(Jij − J) + (1− η)δ(Jij + J) and we use

η = 0.621 as suggested by the data in [54] and J = 1/
�
�kin� ≈ 0.72 unless stated other-

wise. We set the value of the threshold to be the same for all sites, ϑi = ϑ∀i. We assume
a ‘thermal’ noise distribution with Φβ(x) = 1/2


1 + tanh βx

2

�
.

3.1. Comparison between theory and simulation

The dynamic programing algorithm allows to speed up the evaluation of the node acti-
vation probability at time t+ 1 given the knowledge of node activation probabilities at
time t. By iterating the procedure over the time-steps of interest, we solve the dynam-
ics for the nodes activation probabilities. In this section, we compare the analytical
results against Monte Carlo (MC) simulations of the microscopic dynamics. Several
results in the literature indicate that the dynamic cavity method is effective to repro-
duce the trajectory of fully asymmetric graphs, see [39, 55]. While those results inspect
the site average of node activations for Ising spins, we consider the full distribution of
node activations for indicator variables. In particular, we compare the stationary val-
ues of the node activation probabilities P i = limt→∞ P i(t) ∀i ∈ {1, . . . ,N} obtained from
simulations with those obtained via the cavity approach. The stationary activation prob-
abilities are obtained by running the iterative procedure equation (9) until convergence.

3 If the distributions of in- and out-degree are drown from different distributions, a minimal requirement is
�

ik
in
i =

�
ik

out
i that

guarantees the conservation of the number of links.

https://doi.org/10.1088/1742-5468/ac66d0 8
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Figure 1. (Left) Distribution of the node activation probability, as computed from
cavity theoretical calculation (blue solid line) and from MC direct simulation of
the microscopic dynamics (dotted green line). (Right) Distribution of the dif-
ferences δi = P i,MC − P i, evaluated for each node i of the network. Parameters:
N = 100 000,T/J = 0.2, γ = 2.81, η = 0.5,ϑ/J = 0.1,J = 1.

The convergence is controlled by measuring the difference between activation probabil-
ities 
t+1 = maxi|P i(t+ 1)− P i(t)| in two consecutive steps; this criterion is adopted in
the entire manuscript. Let us call P i = P i(t) corresponding to the smallest t satisfying
the exit condition, which we took to be 
t < 10−4. We test cavity predictions against
simulations of the microscopic dynamics equation (2). We evaluate the stationary node
activation probability of simulated dynamical trajectories by taking the sample average
of node activations

Pi,MC =
1

ts

t0+ts�

t=t0

ni(t), (14)

for ts � 1, and t0 a sufficiently long time to allow the dynamics to relax to stationarity.
In the following, we use the general notation Π(x) to denote the probability density
function for the realisation of local quantities xi, e.g. Π(P ) = N−1�

i δ(P i − P ). In
figure 1 we show the distribution of the node activation probability as computed via
the cavity method and by estimation from simulations. These are found to be in excel-
lent agreement, confirming the validity of the cavity method to describe the stationary
state, see figure 1. We note that, to reach the resolution imposed by cavity 
t < 10−4

through simulations, we need to simulate long trajectories in equation (14) with ts ∼ 108,
which makes the evaluation from simulation computationally far more expensive than
an evaluation based on the cavity method. For the same realisation of a network of
N = 100 000 nodes and identical parameter choices, the cavity implementation took 9 s,
whereas simulations took more than 11 days on the same machine.

Time evolution. We investigate the statistical properties of dynamical trajectories
through forward iteration of equation (9). We initialise the system with random initial
conditions for the node activation probabilities P i(0). We stop iterations at convergence
using the same criterion as above. The time evolution of the dynamics for each site is
shown in figure 2. Node activation probabilities converge after very few time-steps. This
property is linked to the absence of feedback signals in the dynamics, thanks to the
directed tree-like structure of the network. The probability density function of the node

https://doi.org/10.1088/1742-5468/ac66d0 9
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Figure 2. Trajectory of probabilities of node activation up to convergence. The
colour of the pixel located at row t and column i maps the value P i(t). Colour-bar
on the right maps the colours to the value of activation probability. For visual-
isation purposes nodes are sorted by the value of P at the end of iteration, i.e.
column locations are sorted according to their value in the top row. Parameters:
N = 200 000, ϑ/J = 0.2, T/J = 0.3,J ≈ 0.72, η = 0.621.

activation probabilities at stationarity is shown in figure 3 for different noise levels T .
The distribution of the node activation probabilities is not uni-modal, indicating the
need to inspect the full distribution of node activations, as measures of central tendency
are not representative. This is also true in the high noise limit, where the problem is
directly solvable; see appendix A.

The multi-modal structure of the node activation distribution can be rationalised
by simple reasoning. Thanks to the fat tailed property of the network, more than 87%
of nodes have in-degree 1. Let us consider a node i with only one predecessor j, let
us call ρ±(P ) the probability that node i is active, given that Jij = ±J , and that the
node activation probability of that predecessor is P , i.e. ρ±(P ) = �Φβ(±Jn− ϑ)�n with
�n�n = P . The explicit expression of functions ρ±(P ) becomes

ρ±(P ) =
P

2

�
1 + tanh

β

2
(±J − ϑ)

�
+

1− P

2

�
1− tanh

βϑ

2

�

=
1

2

�
1− tanh

βϑ

2

�
+

P

2

�
tanh

β

2
(±J − ϑ) + tanh

βϑ

2

�
. (15)

The properties of nodes with in-degree 1 can be captured in terms of the map shown
in figure 4. We denote p∗ the fixed point defined as p∗ = ρ+(p

∗). The composition of
function ρ± is able to describe the trends observed in figure 3. In figure 5, we highlight
the contribution to the distribution of node activation probability from nodes with in-
degree 1. The values of ρ±(1) give the lower and upper bounds of the node activation
probability for nodes with in-degree 1. Even though nodes with in-degree 1 account for
the vast majority of nodes, the dynamical properties of node activation depends on the
contribution of other nodes as well.

https://doi.org/10.1088/1742-5468/ac66d0 10
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Figure 3. Heat-map of the distribution of node activation probabilities Π(P ) at
different values of noise parameter T/J (top). Dashed, dotted, and dot-dashed lines
show the graph of different function compositions of ρ± at different values of T , see
equation (15). Vertical dotted lines mark the noise levels at which the histograms
of Π(P ) are shown in the lower panels. They probe the regimes at low, intermediate
and high noise, corresponding to T/J = 0.1, 0.3, 0.6 from left to right. The central
lower panel corresponds to the histogram of the Π(P ) realised in figure 2, once the
system has converged. The same parameters as in figure 2 are adopted.

3.2. Comparison with the nMF approximation

Solving the dynamics of the linear threshold model for generic couplings is computa-
tionally demanding as already discussed above. In the context of disordered systems,
approximate methods have been proposed, which are effective for models with dense
interactions, such as the dynamic naive mean-field (nMF) approximation and dynamic
TAP equations, for interactions with an arbitrary degree of symmetry [33], and specifi-
cally for fully asymmetric interactions [56]. However, for diluted systems, dynamic nMF
approximations have been shown to be less effective [35, 57] for systems with both ferro-
magnetic and spin-glass interactions, especially at low temperature. In this section, we
investigate the distribution of node activations and we highlight that even in the region
of parameters where the site average of the node activation probability is well captured
by the nMF method, the nMF turns out to be incapable of reliably capturing the full
distribution of node activation probabilities.

We briefly expose the intuitive idea of the mean-field approximation, and we refer to
[35] for more details. For a node i let us consider the local field hi =

�
j J ijnj and the

probability associated Prob(hi) = �δ(hi −
�

j Jij nj)�n. The core idea of the mean-field
approximation is to approximate Prob(hi) with a delta-function peaked on the mean
value �hi�, which implies �Φβ (hi − ϑi)� ≈ Φβ (�hi� − ϑi). This assumption is motivated
in the limit where the number of neighbours of node i diverges where, thanks to the
law of large numbers, one expects Prob(hi) to concentrate—for suitably normalized
Jij—around the mean value. However, in the case of sparse matrices, the number of

https://doi.org/10.1088/1742-5468/ac66d0 11
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Figure 4. Graphical solution of the equation ρ±(P
∗) = P ∗. The black line represents

the graph of the function f(x) = x. Fixed points p∗± are obtained by the intersections
of the lines ρ± with the bisector. The same parameters as in figure 2.

Figure 5. Distribution of the node activation probability and contribution from
nodes with in-degree 1 (orange). Vertical lines indicated the range of possible values
of P for nodes with in-degree 1, as predicted by figure 4. The same parameters as
in figure 2.

neighbours is typically small. Therefore, we expect the nMF to fail. However, our results
below indicate that the site averaged node activation is well captured by the mean-field
approximation in a variety of conditions.

Starting from equation (2), the associated mean-field equation for fully asymmetric
networks is

https://doi.org/10.1088/1742-5468/ac66d0 12
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Figure 6. Comparison between nMF and cavity (cav) solutions at T/J = 0.2 in
random directed networks with N = 100 000 nodes and regular topology with
kin = kout = 3 (left) and heterogeneous in- and out-degrees, drawn from a fat-tailed
distribution with γ = 4 (right). Upper panels show the average activation prob-
ability �P � = N−1

�N
i=iPi versus the bias η, for ϑ/J = 0, 0.5. Results from cavity

are shown by triangle markers, while squares show mean-field results. Lower panels
show the distribution Π(P ) of the site-dependent activation probabilities {Pi}Ni=1,
for ϑ = 0, η = 0.7. Orange lines show results from cavity equation (7), blue lines
show results from nMF equation (16).

Pi(t+ 1) = Φβ

	�

j

JijPj(t)− ϑi



, (16)

which represents an approximation of equation (7). We run equation (16) for each
node i starting from random initial conditions until convergence. We apply the het-
erogeneous mean-field in the same class of networks as above (fully asymmetric adja-
cency matrix with discrete coupling strength) and use the cavity result as a ground
truth to evaluate the performance of the mean-field approximation. We compute the
site average of the node activation probability �P � = N−1�

i P i both in the case
where the set {Pi}Ni=1 is computed by using equations (16) and (7). In figure 6 we
compare the results for the site average of node activation at different values of
bias η and threshold ϑ for two network models, namely the directed random reg-
ular graphs, and networks with fat-tailed degree distribution. Results indicate the
mean-field captures remarkably well the behaviour of the site average for different
choices of network models and both in the absence and presence of an external
threshold. However, the mean-field approximation captures poorly the heterogeneous

https://doi.org/10.1088/1742-5468/ac66d0 13
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site dependence, and the distribution Π(P ) presents large differences between the cavity
and mean-field results.

4. Pairwise correlation for the linear threshold model on fully asymmetric
networks

Temporal and pairwise correlations are of great interest for the analysis of dynam-
ics on networks. For example, correlations are used extensively to discover patterns of
relationships in numerous inverse problems [58–61]. In the context of spin models on
networks, the correlations have been investigated in the dense regime for asymmetric
interactions through mean-field [56] and an analytical expression for the site correlators
can be formally solved through TAP equations for generic systems not at equilibrium
[33]. However, in the latter case, the analytical equations are difficult to solve. In this
section, we introduce a method to evaluate spatio-temporal correlations in the sparse
regime using dynamic cavity techniques.

As shown above, in the cavity approach the evaluation of the one-point expectations
�ni� relies on the assumption that the states associated with the predecessors of a node
are independent of one another, which is true on a tree. Instead, for a given pair of nodes,
the states of the joint predecessors are not independent of one another, even on a tree.
The cavity method has recently been applied in the presence of node correlations on
loopy graphs to investigate percolation, random matrix spectra [62], and the equilibrium
state of Ising spin models [63]. The authors explicitly include the contribution from short
loops, e.g. triangles, which break the assumption of independence of states the cavity
method relies on. Here, we solve a different problem, namely, we adapt the cavity method
to evaluate two-point expectations. In our context, a new set of motifs that break the
assumption of independence of states arises, which are present even in directed trees.
Therefore, we devise a method that incorporates node correlations inside the cavity
equations.

If the graph admits a giant connected component, every set of nodes belonging to
the giant out-component shares at least one common ancestor, which would make the
evaluation of node correlation infeasible on a large graph. In the following, we assume
correlations to be mainly generated by two network motifs, where nodes have common
predecessors either at distance one or two, and we test our approximate results against
direct simulations.

Let us consider the stationary (time-translation invariant) pairwise connected
correlation (also called covariance)

Cc
ij(τ) := lim

t→∞
�ni(t+ τ)nj(t)� − PiPj , (17)

that is defined between any pair of sites {i, j} and time-lag τ . The empirical station-
ary pairwise connected correlation (as computed from MC simulations) is analogously
defined as

https://doi.org/10.1088/1742-5468/ac66d0 14
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Figure 7. Single-site lagged Pearson autocorrelation ρii(τ) for different nodes i (left)
and its site average �ρ(τ)� (right) as a function of the time-lag τ in a directed random
regular graph with parameters: N = 10 000, kout = kin = 2, T/J = 0.2,ϑ = 0.

Ĉc
ij(τ) :=

1

ts

t0+ts�

t=t0

ni(t+ τ)nj(t)− Pi,MCPj,MC, (18)

for ts � 1, and t0 a sufficiently long time to allow the dynamics to relax to stationarity.
The covariance Cc

ij(τ) depends both on the sites and on the lag. In the following we
restrict ourselves to two levels of analysis, namely the single-site lagged auto-covariance
Cc

ii(τ), and the covariance at zero time-lag, Cc
ij(0). We compare analytical results for

those two types of covariance against simulations.
Single-site lagged auto-covariance. For the dynamics described by equation (2), we

first investigate the lagged auto-covariance Ĉc
ii(τ). We will present and discuss results in

term of the time-lagged local Pearson correlation defined as, ρii(τ) := Ĉc
ii(τ)/Ĉ

c
ii(0), as

well as its sample average �ρ(τ)� = N−1�
i ρii(τ). Simulation results show that ρii(τ) ≈ 0

for ∀i, ∀τ > 0 (hence trivially �ρ(τ)� ≈ 0), which means that the dynamics presents no
retarded auto-covariance, see figure 7. This is consistent with the theoretical predic-
tion from the cavity formalism on fully asymmetric networks in the absence of loops,
Cc

ii(τ) = 0 ∀i, ∀τ > 0. Heuristically, non-zero auto-covariance is associated with feedback
loops which send the information back to the starting node with a delay. However, on a
directed tree this never happens.

Pairwise connected correlation. Below we compute the analytical pairwise covariance
at zero time-lag, Cc

ij(0), which we refer to as Cc
ij for simplicity. Correlations between

two nodes i, j are expected to arise from common ancestors of the two nodes. Given
the earlier result of the absence of single-site lagged auto-covariance, we expect that
if the common ancestor k is not at the same distance from i and j, signals would
need a different amount of time to travel from k to i and j, respectively, entailing that
Cc

ij(τ) �= 0 only at a non-zero τ corresponding to the difference in distances. Here we are
interested in the equal-time connected correlation, Cc

ij(0), which is thus non-zero only if
the common ancestor k is at the same (finite) distance from nodes i and j. Therefore,
network motifs that produce non-zero values of the pairwise equal-time covariance are
required to have their common root node at equal distance from the leaf nodes; see for
example the motifs that are shown in figures 8(a) and (b). The (equal-time) connected

https://doi.org/10.1088/1742-5468/ac66d0 15
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correlation is obtained from the joint expectation

Cij = �ninj� =
�
Φβ (hi(n∂i)− ϑi)Φβ


hj(n∂j)− ϑj

��
n∂i

∪ n∂j

, (19)

via Cc
ij = Cij − PiPj, where n∂i ∪ n∂j indicates the set of states associated with the

predecessors of nodes i or j. In the following we consider contributions to the correlations
coming from the two types of motifs shown in figures 8(a) and (b). They are (a) a pair
of nodes sharing one predecessor, and (b) a pair of direct descendants from the nodes
in motif (a). We show that those motifs provide the dominant contributions to the Cij

distribution. If we assume that the joint probability of the states of the predecessors of
nodes i or j factorises over single-node terms4, i.e.

P (n∂i ∪ n∂j , t) ≈
�

�∈∂i∪ ∂j

P (n�, t), (20)

we are able to take into account the effect of motif (a) (but only motif (a)). This is
because the nodes belonging to the set of predecessors of both i and j, {�, � ∈ ∂i ∩ ∂j},
appear only once in the product on the rhs of equation (20). This then explains why
Cc

ij �= 0 in these cases.
We evaluate equation (19) in the approximation that takes motif (a) into account

through dynamic programing in a similar fashion as done above in the context of the
node activation probability. Let K = |∂i ∪ ∂j| be the number of joint predecessors of
nodes i or j and, to ease the notation, let us use {1, . . . ,K} to enumerate the nodes in

this set of predecessors. We define the family of recursive functions C
(1)
ij (�, h̃i, h̃j) such

that � represents the node we perform the average over. If node � is active, it gives a
contribution Ji� and Jj� to the auxiliary fields h̃i and h̃j, respectively. Otherwise the
auxiliary fields do not change. The dynamic programing evaluation for Cij becomes

Cij = C
(1)
ij (1, 0, 0)

C
(1)
ij (�, h̃i, h̃j) = P�C

(1)
ij (�+ 1, h̃i + Ji�, h̃j + Jj�)

+ (1− P�)C
(1)
ij (�+ 1, h̃i, h̃j) for 1 � � � K

C
(1)
ij (K + 1, h̃i, h̃j) = Φβ

�
h̃i − ϑi

�
Φβ

�
h̃j − ϑj

�
,

(21)

where P � is the stationary probability of node �. From the connected correlation we
obtain the Pearson correlation coefficient

ρij =
Cc

ij�
(Pi − P 2

i )(Pj − P 2
j )

, (22)

and we compare the values ρij obtained through cavity approximation with that
obtained from the direct evaluation of the microscopic dynamics in figure 8(c). For the

4Note that while independence of the neighbours of a single node, as used in the standard cavity method, e.g. equation (5), is exact
on trees and, in the thermodynamic limit, also on locally tree-like graphs, the factorization assumed in (20) is only an approximation,
even on trees, due to the presence of common ancestors.

https://doi.org/10.1088/1742-5468/ac66d0 16
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Figure 8. (a), (b) Network motifs that contributes to correlation. (c), (d) Proba-
bility density of the Pearson correlation coefficient ρ. Only elements of the upper
triangular matrix (including the diagonal) of ρ are taken into account for the
histogram. Parameters: kin = 2. N = 5000, T/J = 0.4, ϑ = 0.

reasons explained above, we obtain non-zero values of ρij if and only if nodes i and
j have a common predecessor �, as in the motif shown in figure 8(a). Apart from the
trivial peak at 1, resulting from the diagonal terms of the distribution, the largest abso-
lute values of ρ are captured nearly perfectly by the motifs illustrated in figure 8(a).
On the other hand, such motifs do not capture well the events giving rise to small
correlations.

In order to improve the characterisation of these events, for every pair of nodes {�i, �j}
that are described by the motif (a), we investigate the connected correlation associated
with the pair of nodes {i, j}, with i and j a successor of �i and �j respectively. This
motif is illustrated in figure 8(b) and consists of a pair of nodes {i, j} that has at least
one common ancestor m at distance two. In the following, we use the estimate of the
joint expectation for {�i, �j} provided by equation (21) to estimate the joint expectation
of the pair {i, j}. For the two nodes denoted �i and �j in the figure, there is a non-zero
correlation, ρ�i�j �= 0 as shown above, hence the joint probability of the states of the
predecessors of i or j does not factorise, and equation (20) does not hold anymore. For a
given pair {i, j}, let us denote the set of pairs of their predecessors {{�i, �j}} which have
a predecessor in common by L1 = {{�i, �j} : �i ∈ ∂i, �j ∈ ∂j and ∂�i ∩ ∂�j �= ∅}, and let L0

be set of predecessors of i or j, which do not appear in L1 and are treated as independent.
Instead of equation (20), the marginal probability of the joint set of neighbours contains

https://doi.org/10.1088/1742-5468/ac66d0 17
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the two-points joint probability of the pairs of states in the set L1

P (n∂i ∪ n∂j , t) ≈
�

�∈L0

P (n�, t)
�

�i,�j∈L1

P (n�i,n�j , t). (23)

For each pair of sites in L1, the joint probability P (na,nb, t) is

P (na,nb, t) = �[naΦβ (ha(n∂a))) + (1− na)(1− Φβ (ha (n∂a)))] [nbΦβ (hb(n∂b))

+ (1− nb) (1−Φβ (hb(n∂b))]�n∂a∪ n∂b
,t−1. (24)

To simplify the notation, we drop the explicit time dependence in P (na,nb, t); the result
can be written in terms of Cab,Pa,Pb as

P (na,nb) = (1− na)(1− nb) + Pa(2na − 1)(1− nb) + Pb(2nb − 1)(1− na)

+ Cab(2na − 1)(2nb − 1), (25)

and Cab is computed from equation (21). We now evaluate equation (19) using
equation (23), which also takes into account motifs (b), in contrast to equation (20)
which only accounts for motifs (a). The correction applies to the evaluation of the
entries Cij for which a node m exists which is an ancestor of both nodes i and j through
the paths (i, �i,m) and (j, �j ,m); see motif in figure 8(b). Let K0 = |L0| and K1 = |L1|,
and let L0 = {1, . . . ,K0} and L1 = {{a1, b1}, . . . , {aK1

, bK1
}}. Equation (21) is replaced

by the dynamic programing relationships

Cij = C
(1)
ij (1, 0, 0)

C
(1)
ij (�, h̃i, h̃j) = P�C

(1)
ij (�+ 1, h̃i + Ji�, h̃j + Jj�)

+ (1− P�)C
(1)
ij (�+ 1, h̃i, h̃j) for 1 � � � K0

C
(1)
ij (K0 + 1, h̃i, h̃j) = C

(2)
ij (1, 0, 0)

C
(2)
ij (�, h̃i, h̃j) = P (na� = 1,nb� = 1)C

(2)
ij (�+ 1, h̃i + Jia�, h̃j + Jjb�)

+ P (na� = 1,nb� = 0)C
(2)
ij (�+ 1, h̃i + Jia�, h̃j)

+ P (na� = 0,nb� = 1)C
(2)
ij (�+ 1, h̃i, h̃j + Jjb�)

+ P (na� = 0,nb� = 0)C
(2)
ij (�+ 1, h̃i, h̃j) for 1 � � � K1

C
(2)
ij (K1 + 1, h̃i, h̃j) = Φβ(h̃i − ϑi)Φβ(h̃j − ϑj),

(26)

where the two-point marginals P (na,nb) are computed from equation (25) using
equation (21) to compute Cab. The comparison between simulations and the analytical
calculation is shown in figure 8(d). The results indicate that the motifs in figures 8(a)
and (b) very accurately capture the salient properties of pairwise correlations in this
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system. This finding suggests that methods for network reconstruction from experimen-
tally measured correlations may have limited ability to characterise motifs that involve
common ancestors at distance larger than two.

5. Extensions

5.1. Multi-node interaction model

The linear threshold model presented above in equation (9) describes a dynamic model
consisting of pairwise interactions between nodes. However, approaches based on pair-
wise interactions may not always be appropriate [64, 65]. Therefore several models that
explicitly consider multi-node interactions (called high-order models) have been pro-
posed, which can be implemented in terms of hypergraphs [66], simplicial complexes
[67], and bipartite or factor graphs.

Let us consider a directed bipartite graph G(V,E), where V denotes the set of nodes
and E the set of edges. The set of nodes V is composed of two disjoint sets X and Y ,
with no edges in E having both endpoints in X or Y . Let |X| = N , and |Y | = αN . We
refer to the N elements of X as variable nodes and the αN elements of Y as function
nodes. To define a dynamic process on the bipartite network, we associate a dynamic
variable with every node of X. We use {ni}Ni=1 and {τμ}αNμ=1 to denote the dynamic vari-
ables and the function nodes respectively. Every function node μ is associated with a
Boolean function gμ(·), with the function gμ(n∂μ) depending on the states of μ’s predeces-
sors n∂μ . Every variable node i evolves according to a linear threshold function depending
on node i’s predecessors τ ∂i . The bipartite graph is defined by the bi-adjacency matrix
A = (Aμi) and the interaction matrix J = (Jiμ), with entries independent of A. The
matrix A = (Aμi) has dimension αN ×N ; a value Aμi = 1 indicates that a link from the
variable node i to the function node μ exists, signifying the fact that the state ni is an
argument of the function gμ, and Aμi = 0 otherwise. The interaction matrix J = (Jiμ)
has dimension N × αN ; a non-zero entry Jiμ represents the strength of the influence
of the function μ on the variable node i. For any realisation of the matrices A and J,
we can define di(J) as the number of predecessors of node i and cμ(A) the number of
predecessors of node μ:

di(J) =
αN�

μ

Θ (|Jiμ|) , cμ(A) =
N�

i

Aμi. (27)

We consider the dynamics where the state of the function node μ, given by the binary
variable τμ, is determined by gμ(n∂μ). Conversely, the binary variables ni follow a linear
threshold dynamics formulated in terms of the τμ, i.e.

ni(t+ 1) = Θ

	�

μ

Jiμτμ(t)− ϑi − zi(t)




τμ(t) = gμ

n∂μ(t)

�
,

(28)
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Figure 9. Snapshot of a network describing a pairwise model; each link carries the
signal from one node only (left). A bipartite graph is used to represent multi-node
interaction, here the node i receives the signal from nodes j, k through function
nodes μ, ν and λ, with node λ representing a Boolean function of two variables
(right). Arrows indicate a link pointing from a function node to a node, square
markers join a function node with the arguments of the function.

where the zi(t) represent independent identically distributed stochastic noise terms,
whose statistics are defined in terms of their cumulative distribution function Φβ(z)
as before. The update rule in equation (28) represents a more flexible model than the
pairwise interaction model defined in equation (2). In figure 9(a) we show an example
of a small monopartite network that captures pairwise interactions as described by
equation (2): a node i receives the signal from the two nodes j and k through distinct
links. Instead, the bipartite graph model shown in figure 9(b) is more flexible, as the
function nodes return arbitrary Boolean functions gμ(·), gν(·), gλ(·) of their respective
inputs. These can represent the standard pairwise interactions through function nodes
such as node μ in figure 9(b), which is a function of a single variable nj, but also generic
multi-node interactions such as through node λ, which depends on two Boolean variables
nj and nk.

In what follows, we develop the formalism to solve the dynamics of bipartite graphs
of the type represented in figure 9(b), and we show that these systems benefit from the
speedup of the algorithm discussed above. We will specifically look at an example of a
system with multi-node interactions that is motivated by gene regulations [50]. In the
following we investigate the case gμ(n) =

�
i∈∂μni, which represents an ‘AND’ gate logic,

ni(t+ 1) = Θ

	�

μ

Jiμτμ(t)− ϑi − zi(t)




τμ(t) =
�

j∈∂μ
nj(t).

(29)

Let P i(t) be the probability that state ni(t) = 1. Let Pμ(t) := Prob [τμ(t) = 1] be the
probability that state τμ(t) = 1. If the directed bipartite graph does not contain short
loops, the dynamic cavity method provides an efficient approximate solution of the
dynamics. In particular the node activation probabilities are given by the set of
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expressions

Pi(t+ 1) = �Φβ (hi(τ ∂i)− ϑi)�τ ∂i
, (30)

Pμ(t) =
�

j∈∂μ
Pj(t), (31)

with hi(τ ∂i) =
�

μJiμτμ. Equation (30) is of the same form as equation (9) and thus the
dynamic programing approach can speed-up the evaluation of the average. Let us con-
sider a node i with in-degree di, and let ν ∈ {1, . . . , di} be the indices of the predecessors

of node i. We define a function fi(ν, h̃) recursively

fi(ν, h̃) = Pν(t)fi(ν + 1, h̃+ Jiν) + (1− Pν(t))fi(ν + 1, h̃) for 1 � ν � di

fi(di + 1, h̃) = Φβ

�
h̃− ϑ

�
.

(32)

In terms of this recursion, we have

Pi(t+ 1) = fi(1, 0). (33)

In analogy with the pairwise model, we assume that Jiμ ∈ {−Ji, 0, Ji} with Ji a real
positive number that may depend on the variable node. Under this condition, the
dynamic programing algorithm provides a speedup of the evaluation of node activation
probabilities.

Node activation probability with multi-node interaction. As for the linear threshold
model, we inspect the stationary state of the node activation probabilities at different
values of the noise intensity; results are shown in figure 10. In our investigation, we use
the same degree distribution of the in- and out-degree as in the monopartite network,
both for the variable and function nodes. The variable η refers to the fraction of positive
terms in the interaction matrix J in analogy to the monopartite case.

Dominant peaks of the node activation probability can be rationalised in terms
of the discrete stochastic map of equation (15). This should not come as a surprise:
given our choice of the degree distribution, the majority of nodes only have a pairwise
interaction with a single predecessor node. Therefore the same argument used to derive
the theoretical lines of equation (15), which describes the noise strength dependence
of some of the prominent peaks in the distribution of node activation probabilities,
still holds. However, the distribution shown in figure 10 is substantially different from
the distribution obtained in the linear threshold model at zero thresholds, which was
analysed in [47], highlighting contributions due to multi-node interactions. The effect of
multi-node interactions is particularly easy to analyse in the high noise regime, which
is discussed in appendix A.

5.2. Any Boolean function can be written in terms of a linear combination of AND gates

We have demonstrated above, how our linear programing method can be extended to
analyse the stochastic dynamics of multi-node interaction models, using a formalisation
in terms of bipartite graphs in which all function nodes are logical AND gates, i.e. we
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Figure 10. Heat-map of the distribution of node activation probabilities Π(P )
at different values of noise parameter T resulting from the microscopic dynam-
ics detailed in equation (29) (top). Dashed, dotted, and dot-dashed lines show
the graph of different function compositions of ρ± at different values of T , see
equation (15). Vertical dotted lines mark the noise levels at which the histograms
of Π(P ) are shown in the bottom panels. They probe the regimes at low, inter-
mediate, and high noise corresponding to T/J = 0.1, 0.4, 0.8, from left to right.
Parameters: N = 200 000, α = 1, γ = 2.81, ϑ = 0.

have τμ = gμ(n∂μ) =
�

j∈∂μnj for all μ. We now show that the bipartite model with AND

gates is universal in the sense that a local field of the form hi =
�

μ Jiμτμ as it appears
in equation (29) can represent arbitrary functions of ki = |∂i| Boolean variables. To see
this, consider an arbitrary real function g : {0, 1}k → R of k Boolean variables. It can
always be written using an expansion of the form

g(n) = a(0) +
k�

i

a
(1)
i ni +

k�

i<j

a
(2)
ij ninj +

k�

i<j<�

a
(3)
ij�ninjn� + · · ·+ a(k)

k�

�=1

n�,

(34)

in which terms are arranged by increasing order, with suitable coefficients
a0,a (1),a (2), . . . , a(k), which can be found recursively by considering values of g(n) suc-
cessively for configurations n , with non-zero components on subsets of {1, . . . , k} of
increasing size. The local field hi in equation (29) is exactly of this form if the μ ∈ ∂i,
i.e. the μ for which Jiμ �= 0, are arranged in order of increasing |∂μ|.

5.3. Spin dynamics

Let σi, i ∈ {1, . . . ,N}, denote a set of Ising spin variables, taking values in {−1, 1},
located on the N nodes of a complex network, and let Jij denote the strength of the
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interaction from node j to node i. The Ising spin dynamics is defined as

σi(t+ 1) = sgn

�
N�

j

Jijσj(t)− ϑi − zi(t)

�
, (35)

where ϑi is a threshold, and zi(t) is an independent identically distributed random
variable defined as above with Prob[z < x] = Φβ(x).

5 The average of sgn(x− z) over
the noise distribution can be expressed in terms of the cumulative distribution function
of the noise as

Φ̃β(x) := �sgn(x− z)�z = 2Φβ(x)− 1. (36)

Let us denote by mi(t) :=
�

σPi(σ, t)σ = �σi�σi,t the time dependent average of the Ising
spin at node i. For a fully asymmetric graph, the cavity method provides an expression
for the magnetisation in a similar form as above. Performing the average in (35) gives

mi(t+ 1) =
�
Φ̃β (hi(σ∂i)− ϑi)

�
σ∂i

, t
, (37)

in which hi(σ∂i) =
�

jJijσj and σ∂i plays a role analogous to equation (8) for spin
variables. In analogy to the linear threshold model, equation (35) can be evaluated
efficiently through the recursion

mi(t+ 1) = fi(1, 0)

fi(�, h̃) =
1 +m�(t)

2
fi(�+ 1, h̃+ Ji�)

+
1−m�(t)

2
fi(�+ 1, h̃− Ji�) for 1 � � � ki

fi(ki + 1, h̃) = Φ̃β

�
h̃− ϑi

�
.

(38)

Mixed p-spin model . We briefly specify the expression for the p-spin model, whose
equilibrium properties have long been investigated in the literature [68]. Let us consider
a system defined on a bipartite network with state variables σi ∈ {±1} and τμ ∈ {±1}.
The update rule is

σi(t+ 1) = sign

	�

μ

Ji,μτμ(t) + zi(t)− ϑi




τμ(t) =
�

j∈∂μ
σj(t).

(39)

Let mμ(t) = �τμ�τμ,t, and mi(t) = �σi�σi,t denote the time dependent averages of the τμ

and the σi, respectively. The time evolution of the local magnetizations mi(t) is given

5Note that, in analogy with the rest of the manuscript, the variables ϑi represent a threshold and not an external field.
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by

mi(t+ 1) =
�
Φ̃β (hi(τ ∂i)− ϑi)

�
τ ∂i

,t
,

mμ(t) =
�

j∈∂μ
mj(t),

(40)

with hi(τ ∂i) =
�

μ∈∂iJiμτμ. Equation (40) can be efficiently evaluated using the recursive
procedure below

mi(t+ 1) = fi(1, 0)

mi(ν, h̃) =
1 +mν(t)

2
fi(ν + 1, h̃+ Jiν)

+
1−mν(t)

2
fi(ν + 1, h̃− Jiν) for 1 � ν � di

mi(di + 1, h̃) = Φ̃β

�
h̃− ϑi

�
.

(41)

6. Beyond fully asymmetric networks

Feedback loops are associated with multi-stability and oscillatory behaviour of dynami-
cal systems [69, 70]. These two phenomena are often observed also in biological systems.
Indeed, feedback mechanisms represent an essential ingredient of biological networks,
e.g. in the context of gene regulation [71–73]. However, it is not yet clear what hap-
pens in the case where a combination of many of these patterns is present in a
network. The presence of bi-directional links with opposite signs of the interactions
(such as in predator–prey systems) have been shown to produce oscillatory behaviour
in the context of continuous linear dynamics [74], but little is known in the context of
discrete state dynamics, e.g. for the linear threshold model. The dynamics investigated
in section 3 is defined on tree-like fully asymmetric network models, where feedback
loops are absent.

In this section, we consider the linear threshold model of equation (2) in the presence
of bi-directional links. Any bi-directional link can be considered as a de-facto short loop
of length two of the network. As expected, the presence of these short loops makes the
use of the dynamic cavity method more challenging. In the cavity graph, where a node
and its links have been removed, the presence of a short loop causes a retarded self-
interactions that make the dynamics of the cavity variables non-Markovian; see [38, 39]
and appendix B. An approximation scheme, called the OTA, has been proposed with
the intent to reduce the computational complexity created by this form of non-
Markovianity [39, 75]. The approximation factorises the memory kernel to include a
one-time-step memory term. It exactly describes the full dynamics of fully asymmet-
ric networks and the equilibrium steady-state of systems with symmetric interactions
in the replica symmetric phase. Furthermore, the OTA has been shown to effectively
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capture the stationary state also of systems with partially symmetric links in the high
noise regime [55, 75]. However, the literature has so far focussed on the agreement of
macroscopic observables, such as the mean activation, while the distribution of indi-
vidual node activations has generally been overlooked. In this section, we investigate
the heterogeneous node activation in networks with bi-directional links using the OTA
and compare the results with simulations. Among other things, our investigation leads
to an unexpected observation: the stationary state of networks with symmetric and
anti-symmetric interactions are biased towards the active and the inactive states,
respectively.

6.1. The one-time-step approximation

In this section we will only provide brief account of the OTA, leaving a more extensive
discussion to the appendix B. Let us consider the model equation (2) in the case where
the network of interactions contains bi-directional links. For any node i in the graph,
the probability of the state at time t+ 1 depends on the states of node i’s neighbours,
n∂i , at the previous time-step t through the transition probability W [ni|hi(n∂i),ϑi], see
equation (4). If links are bi-directional, the states of nodes n∂i at time t are not indepen-
dent, because the state of every node j ∈ ∂i depends on the past history states of node i
through the terms Jjini(s) for s ∈ {t− 1, t− 3 . . .}.6 In order to describe the dynamics of
the nodes j ∈ ∂i on the cavity graph from which node i and connections to it are removed,

it is useful to introduce the time-dependent cavity thresholds ϑ
(i)
j (s) :=ϑj − Jjini(s) for

s = 0, . . . , t− 1 and ϑ
(i)
j (0) :=ϑj, which encodes the trajectory of node i in terms of

threshold terms, and the local field in the cavity graph

h
(i)
j

�
ns
∂j

�
:=

�

�∈∂j\{i}
Jj�n

s
�, (42)

where here and in what follows we have denoted ns
j = nj(s) to make the notation more

compact. Let us call n0,...,t
j the trajectory of node j from time 0 to t. For every bi-

directional link (i, j), the dynamic cavity method provides a recursive expression for the

conditional probability P
(i)
j

�
n0,...,t
j |ϑ(i)0,...,t−1

j

�
of the trajectory of node j in terms of the

time-dependent thresholds ϑ
(i)0,...,t
j = (ϑ

(i)
j (0), . . . ,ϑ

(i)
j (t)), as discussed in [38, 39] and in

appendix B. The OTA assumes that, for every j ∈ ∂i, the probability of the trajectory
factorises into one-time conditional probabilities

P
(i)
j

�
n0,...,t
j |ϑ(i),0,...,t−1

j

�
≈ P

(i)
j (n0

j)
t−1�

s=0

P
(i)
j (ns+1

j |ϑ(i),s
j ). (43)

The factorisation procedure proposed in equation (43) is not sufficient to fully specify
the cavity and marginal probabilities, but an additional closure condition is required,
as shown in appendix B. In appendix B we re-investigate the derivation of the OTA,
we show that different choices of the closure conditions lead to the different versions

6Bi-directional links are the only origin of loops present on a tree, thus every node depends on its own history at even time lag.
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of the OTA known in the literature [34, 35], and we also propose a new version of the
closure condition. It has been shown that, for symmetric couplings, the version of [35]
admits the equilibrium state as a solution, while the version of [34] has not been designed
with that goal. We compare the performance of OTA under different closure conditions,
including the accuracy in characterising the individual node activation probabilities,
as well as the computational complexity of their implementation. We show the version
of [35] outperforms the version of [34] at equilibrium, but the situation is reversed in
the non-equilibrium model we investigate. However, our results indicates the version of
[34] is more consistent through the different network symmetries investigated. Based
on our assessment, we expect the version of [34] to provide the best trade-off between
accuracy and ease of implementation to tackle the non-equilibrium stationary state. The
closed-form expressions for the single-time marginal probability of the OTA we will use
are7

Pi


nt
i|ϑi

�
=
�

nt−2
i

⎧
⎪⎨
⎪⎩
�

nt−1
∂i

W
�
nt
i|hi


nt−1
∂i

�
,ϑi

�
��

j∈∂i
P

(i)
j


nt−1
j |ϑj − Jjin

t−2
i

�
�⎫⎪⎬
⎪⎭

Pi(n
t−2
i |ϑi),

(44)

and for the cavity marginal,

P
(i)
j

�
nt−1
j |ϑ(i)

j

�
=
�

nt−3
j

�

nt−2
∂j \i

W
!
nt−1
j |h(i)

j

�
nt−2
∂j

�
,ϑ

(i)
j

"

×

⎡
⎣ �

�∈∂j\i
P

(j)
�


nt−2
� |ϑ� − J�jn

t−3
j

�
⎤
⎦Pj(n

t−3
j |ϑj). (45)

The possible values of ϑ
(i)
j that appear in equation (45) are ϑ

(i)
j = {ϑj,ϑj − Jji}. To solve

the dynamics over the trajectory of length t, the initial conditions for the marginal and

cavity probabilities Pj(n
0
j |ϑj), P

(i)
j (n0

j |ϑj), P
(i)
j (n0

j |ϑj − Jji) are set for ∀j and ∀i :Jij �= 0,

and Pj(n
1
j |ϑj) is computed from equation (6). To evaluate the trajectory of node

activation, equations (45) and (44) are propagated over the time-steps of interests
0, . . . , t. At every time iteration, both equations (45) and (44) would face a complexity
barrier created by a large in-degree of node i and j respectively, and their evaluation
benefit from our dynamic programing implementation. To this end, we note that the
term

�
nt−1
∂i

W [· · · ][�j∈∂i . . .] in equation (44) has the same structure as equation (8) and

can be evaluated using dynamic programing as explained in section 3.1. This also applies
to the corresponding average in equation (45).

In this section, we apply the OTA to networks with fat-tailed degree distributions and
bi-directional links. We will investigate three different degrees of symmetry of the inter-
action matrix, namely antisymmetric, symmetric and uncorrelated interaction matrix

7 In the following, we drop the time dependence from the cavity thresholds as this simplifies notation and does not lead to any
ambiguity.
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J , and we highlight how the symmetry affects the performance of the OTA in the regime
of low noise strength.

6.2. Comparison between OTA and simulations

Parameters of the model . We first generate an undirected network in the configuration
model class consisting of N nodes. In analogy with above, degrees of the nodes are sam-
pled from the fat-tailed distribution P γ(k) = k−γ − (k + 1)−γ. We then assign interaction
terms to the two directions of bi-directional links. In particular, interaction terms may
or may not have opposite sign in the two directions, i.e. JijJji = ±J2. In the following,
we investigate the correlation of the sign in bi-directional links and we focus on three
major symmetries: symmetric (Jij = Jji), uncorrelated (�JijJji� = 0), and antisymmet-
ric (Jij = −Jji) interaction matrix J . In all settings, the number of positive and negative
interactions are statistically the same. We iterate the OTA equations until convergence
using the same criterion we adopt on fully asymmetric networks, as we have discussed
in section 3.1.

Results. In order to compare the performance of OTA against MC simulation, we
define PMC and POTA the probability of node activation derived from microscopic MC
simulation of the dynamics and from equations (44) and (45) respectively at stationarity.
In figure 11 we compare PMC and POTA for bi-directional interaction matrices with the
three different types of symmetries detailed above. We recall that in the symmetric
setting, the stationary state of the dynamics is an equilibrium state, and in the absence
of replica symmetry breaking the equilibrium state is described by belief propagation
[24]. To evaluate the accuracy of the OTA, we consider the mean square difference of
POTA to PMC

error =

'
1

N

�

i

(Pi,MC − Pi,OTA)
2. (46)

Our results suggest that the OTA is able to capture the statistics of node activation in
the stationary state remarkably well, even in the regime of moderately low noise strength
when bi-directional links are present, both for the symmetric and the uncorrelated case.
However, at still lower noise strength we expect the results from OTA to be less accurate,
as observed in earlier work for spin models [35, 75].

Our earlier analysis on fully-asymmetric networks revealed that spatial correla-
tions are short-ranged and auto-covariance is zero at any finite time lag. On the other
hand, the presence of correlations in the weights is associated with time-lagged auto-
correlation at non-zero lag, as shown in figure 12. Simulation results indicate that the
antisymmetric and symmetric settings exhibit the slowest decrease of the time-lagged
auto-covariance, while the uncorrelated setting exhibits the fastest. Nevertheless, the
auto-covariance decays quite consistently in few steps even for the symmetric and anti-
symmetric interaction models, justifying the use of OTA to investigate the stationary
state. This observation suggests that a different factorisation that includes more time-
steps than in equation (43) may provide a better characterisation of the symmetric and
antisymmetric cases.
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Figure 11. Comparison of the OTA and MC simulations at stationarity in networks
with bi-directional links and weights chosen, from left to right, as uncorrelated,
symmetric and anti-symmetric. Top panels show scatter plots of single-node acti-
vation probabilities computed from OTA versus MC results. Bottom panels show
the distribution of node activation probabilities obtained through MC and OTA.
Simulations are obtained through an average of over 500 trajectories. Parameters
are N = 10 000, γ = 4, T/J = 0.5,ϑ = 0, ts = 104 steps.

Finally, figure 11 also reveals that the stationary distribution of node activations for
symmetric and antisymmetric interaction is skewed, even though we are in the regime
with zero thresholds, ϑi = 0∀i, and unbiased distribution of couplings, i.e. �Jij� = 0. We
refer to this setting as ‘unbiased parameter choice’ in the following. This behaviour is
confirmed in figure 12, where mean node activation are shown at different levels of the
noise. In the following, we discuss this unexpected result and we provide an intuitive
explanation.

7. Spontaneous symmetry breaking of the linear threshold model for unbiased
parameter choices

We have observed that, for an unbiased parameter choice, the linear model defined
in terms of {0, 1} variables exhibits a skewed distribution of node activations in the
presence of bi-directional links. This is somewhat surprising, as in spin systems, the
average magnetisation is well known to be zero in the case of an unbiased parameter
choice. In this section we compare the two models and we provide a simple example
that illustrates how such a phenomenology might arise.

The dynamics described in terms of indicator variables ni ∈ {0, 1} can be refor-
mulated in terms of spin variables σi ∈ {±1}. Recall that the dynamics of the linear
threshold model of equation (2), defined in terms of N indicator variables, is given by
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Figure 12. (Left) Site average of the lagged auto-correlation �ρ(τ)� for a network
with bi-directional links. Three choices of the interaction matrix J are considered:
symmetric (circle), uncorrelated (triangles), and antisymmetric (squares) interac-
tion matrices. The correlation is computed from MC simulated trajectories of the
dynamics. (Right) Site average of the node activation at different temperatures
�P � = N−1�

i P i for symmetric (blue, upper curve), uncorrelated (orange, middle
curve), and antisymmetric (green, lower curve) interaction matrices. Squares indi-
cate the result obtained through MC simulations, circles are obtained through the
OTA. Network and simulation parameters are the same as for figure 11.

ni(t+ 1) = Θ

	�

j

Jijnj(t)− ϑi − zi(t)



. (47)

Rewriting the analogous dynamics of a model of N interacting spins as defined in
equation (35) as

σi(t+ 1) = sgn

	�

j

J �
ijσj(t)− ϑ�

i − zi(t)



, (48)

with interaction matrix J � and thresholds {ϑ�
i}Ni=1, one can map one model onto the other

by setting

J �
ij = Jij/2, ϑ�

i = ϑi −
1

2

�

�

Ji�, ∀ i, j. (49)

Unless the mapping of equation (49) is implemented exactly, the trajectories of the
Boolean linear threshold model and the spin model will be different. In analogy
with the above, we use mi = �σi� and P i = �ni� to denote the stationary averages of
spins and indicator variables respectively. The phase diagram for spin systems has been
extensively studied at equilibrium, and it has been shown [24] that for an unbiased
parameter choice the mean magnetisation is zero, i.e. N−1�

i mi = 0, even at low
temperatures.

In a system with indicator variables instead, both MC simulations and an anal-
ysis using OTA show that the system exhibits spontaneous symmetry breaking
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N−1�
i P i �= 1/2 when the parameters are unbiased, as shown in figure 12. In particular,

at stationarity the average site activation N−1�
i P i is larger than 1/2 for symmet-

ric interaction matrices and smaller than 1/2 in the case of antisymmetric interaction
matrices.

We present an intuitive argument that explains how the biased distribution of node
activations emerges in a model with an unbiased choice of parameters. To this end, let
us consider a mini-network composed of just two nodes i, j connected by a bi-directional
link, i.e. JijJji �= 0. A key mechanism in bi-directional links is the dependence of a node
state on its own past, i.e. node i interacts with its neighbours ∂i which in turn interact
with i. The probability of the state of node i at time t+ 2 can be written in terms of the
probability of the state of node i at time t using the Markov property of the microscopic
dynamics,

Pi(n
t+2
i ) =

�
W (nt+2

i |Jijnj)
�
nj∼P (nt+1

j )

Pj(n
t+1
j ) =

�
W (nt+1

j |Jjini)
�
ni∼P (nt

i)
.

(50)

Considering the cases Jij, Jji ∈ {±J}, we note that �W (1|Jn)�n∼P = ρ+(P ) and �W (1|−
Jn)�n∼P = ρ−(P ) with ρ±(P ) defined earlier in equation (15). In accordance with the
unbiased parameters choice, the external threshold is set to zero, ϑi = ϑj = 0.

Symmetric network . In a symmetric network one has Jij = Jji. Thus only the two
following cases can be realised:

• Ferromagnetic coupling Jij = Jji = J , leading to P i(t+ 2) = ρ+(ρ+(P i(t))).

• Antiferromagnetic coupling Jij = Jji = −J , leading to P i(t+ 2) = ρ−(ρ−(P i(t))).

In the stationary state, the node activation probability is given by the fixed point of
the map p+ = ρ+(p

+) in the case of ferromagnetic couplings, or p− = ρ−(p
−) in the case

of antiferromagnetic couplings. We now exploit the above observation by considering an
unbiased network of isolated dimers, allowing us to use the above result obtained for
individual dimers. The site average of the node activation probability gives

�P � = p+ + p−

2
=

(
2− 1

2
tanh2(βJ/2)

)−1

> 1/2. (51)

While this result is derived for a special class of networks, we expect that for a generic
unbiased symmetric network the site average activation is larger than 1/2, as shown
by figure 12 where MC simulation shows that �P � > 1/2 at stationarity. Indeed, from
equation (51) this simple argument predicts that at T = 0, P = 2/3 which is comparable
with the simulation result in figure 12 (see blue markers).

Antisymmetric network . An antisymmetric network defined by Jij = −Jji is always
unbiased. Let Jij = J (then Jji = −J), equation (50) gives

• P i(t+ 2) = ρ+(ρ−(P i(t)))

• P j(t+ 2) = ρ−(ρ+(Pj(t))).

In the stationary state, the node activation of node i satisfies pi = ρ+(ρ−(pi)), and
the node activation of node j satisfies pj = ρ−(ρ+(pj)). Again, we consider a network of
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isolated dimers. The site average of the node activation probability gives

�P � = pi + pj
2

=

(
2 +

1

2
tanh2(βJ/2)

)−1

< 1/2, (52)

which suggests that in an unbiased antisymmetric network, the site average activation is
smaller than 1/2 and it is confirmed in figure 12. From equation (52), this simple argu-
ment predicts that at T = 0, P = 2/5 which is comparable with the result in figure 12
(see green markers).

The result of equation (51) is an example where the dynamics of Ising spin and
indicator variables leads to macroscopically different stationary states. While a spin
model defined for unbiased parameter choices presents N−1�

i mi = 0 at equilibrium,
for indicator variable we have rationalised that in general 2

�
i P i − 1 �= 0.

8. Summary and discussion

In this paper we have solved the stochastic dynamics of Boolean linear threshold models
for a class of networks characterised by fat-tailed degree distribution. On fully asym-
metric networks, the distribution of the node activation probabilities in the stationary
state is not unimodal in general but displays a rich structure. Salient features of the
distribution can in part be rationalised in terms of discrete stochastic maps resulting
from the underlying network structure and dynamics.

We have adapted the dynamic cavity method to study equal-time pairwise correla-
tions in the stationary state. For every pair of nodes, we have computed the correlation
produced by common ancestors at a distance of one or two from the pair. We demon-
strate that these two motifs capture most of the statistics of values, indicating that
pairwise correlation is effectively a local property of the network.

Finally, we have investigated the individual node activation statistics in the sta-
tionary state for two additional classes of models, namely for models with multi-node
interactions and for linear threshold models defined on networks with bi-directional
links. For models with multi-node interactions, we have adopted a bipartite graph rep-
resentation in which factor nodes represent ‘AND’ gates, and we have shown that this
construction is universal in the sense that it allows representing any Boolean function.
We have previously used models of this type to describe the regulatory mechanism of
transcription factors (TFs), and we have so far focussed on the percolation problem
[50, 51] as a way to identify structural properties that gene regulatory networks need
to exhibit in order to support multi-cellular life. The present manuscript provides an
additional perspective that incorporates the role of noise and of inhibition, which were
outside the focus of our previous analysis. In the high noise limit, we observe that
TFs having a large in-degree are more robust to spontaneous noise-induced activation,
which suggests a potential use as noise filters. On the other hand, results from percola-
tion theory suggest that the average in-degree of TF complexes should be small to allow
sustaining a multiplicity of attractors. Hence, the combination of those results may hint
at a trade-off between these antagonistic conditions being relevant for gene regulatory
networks.
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To study systems with bi-directional links, we apply an approximation procedure,
called OTA, to analyse the stationary state. The OTA assumes a factorisation of the
memory kernel which in some sense amounts to a Markov assumption. The reason why
the OTA is found to be effective in describing the non-equilibrium stationary state may
thus be very well be related to the fact that the lagged auto-correlation is found to be
short-ranged.

The dynamics of the linear threshold model with bi-directional links yields a some-
what surprising result: a network with an unbiased distribution of ±J interactions
sustains a biased distribution of node activation probability, both for symmetric and
anti-symmetric interaction matrices. We provide a heuristic argument that helps to
explain this phenomenon. Symmetric and anti-symmetric interactions are known to
appear in biological networks as a mechanism for positive and negative feedback mech-
anisms, respectively [76]. The present finding is of potential interest in the context of
biological networks and may help explain sustained activation or quiescence of nodes.
Also, it demonstrates once more how the intuition built about the Ising spins model
may be misleading if one investigates models defined on indicator variables [77].
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Appendix A. High noise regime

In the high noise (β → 0 limit), the expansion of Φβ(x) in equation (9) to first order in
βx gives8

Pi(t+ 1) ≈ 1

2
+ βΦ�

1(0)

	�

j

JijPj(t)− ϑi



. (A.1)

Using Pj(t) =
1
2
+O(β), we obtain that

Pi(t+ 1) =
1

2
+ βΦ�

1(0)

	
1

2

N�

j

Jij − ϑi



+O(β2), (A.2)

which is independent of the time-step t. The result of equation (A.2) states that in the
large noise limit, the node activation of node i, P i, is solely determined by the imbal-
ance of the interactions with i’s predecessors, i.e. by

�
j J ij. The mean node activation

probability over sites �P � =�
i P i/N reduces to

�P � = 1

2
+ βΦ�

1(0)

	
1

2N

�

i,j

Jij −
1

N

�

i

ϑi



+O(β2), (A.3)

8Note that Φβ(x) = Φ1(βx), both for thermal noise, and for Gaussian noise, if we equate β = σ in the Gaussian case.
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where the O(β) correction depends only on the macroscopic quantities
�

i,j Jij/N and�
i ϑi/N . This result is compatible with the expansion around the paramagnetic phase

done in [39].
Similarly, the high noise approximation for the AND gate dynamics discussed in

equation (31) gives

Pi ≈
1

2
+ βΦ�

1(0)

��

μ

JiμPμ − ϑi

�
, (A.4)

where

Pμ =

(
1

2

)cμ

+ βΦ�
1(0)

�

j∈∂μ

�

ν

Jjν

(
1

2

)cν

+O(β2). (A.5)

In this case, the average node activation probability is therefore given by

�P � = 1

2
+ βΦ�

1(0)

�
1

N

�

i,μ

Jiμ

(
1

2

)cμ

− 1

N

�

i

ϑi

�
+O(β2). (A.6)

In the high noise limit, the average activation probability of factor nodes converges to

�P� =
�

cμ

P (cμ)

(
1

2

)cμ

:=GC
0 (1/2), as β → 0. (A.7)

with GC
0 (x) the generating function of the in-degree of factor nodes. This demonstrates,

among other things, that the signalling through AND gates with large in-degrees is
effectively suppressed in the high noise limit. Thus, factor nodes with large in-degree
may operate as noise filters.

Appendix B. Derivation of the OTA

Dynamic cavity trajectory with bi-directional links. For completeness, we include in
this appendix a brief derivation of the OTA approximation from the dynamic cavity
equations, mainly following [35, 39]. We also compare different closure schemes of the
OTA which have been proposed in the literature and propose a new version as an
alternative.

Let us define Pi


n0,...,t
i |ϑi

�
the probability of the trajectory n0,...,t

i := (ni(0) . . . ni(t))

of node i over the time span 0, . . . , t, and P
(i)
j

�
n0,...,t−1
j |ϑ(i)0,...,t−2

j

�
the conditional prob-

ability of the trajectory n0,...,t−1
j := (nj(0) . . . nj(t− 1)) of node j, given the history of

node i, in the cavity graph where node i and its links have been removed, so that
the past values of node i act as external thresholds. Their contribution can be com-
bined with those of the constant threshold ϑj, to define time-dependent thresholds

ϑ
(i)0,...,t−1
j := (ϑ

(i)
j (0) . . .ϑ

(i)
j (t− 1)) with

ϑ
(i)
j (s) = ϑj − Jjini(s), (B.1)
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where Jjin
s
i is the signal received by j from i as a retarded interaction. Above, we have

used the notation with time superscript to indicate the collection of variables over the
trajectory. In what follows, to ease the notation, we will also use superscripts for single

time quantities, e.g. ni(s) = ns
i and ϑ

(i)
j (s) = ϑ

(i),s
j .

The probability of a single-node trajectory does not factorise in the time-steps, but
one needs to solve the set of equations, see [39, 75]

Pi


n0,...,t
i |ϑi

�
=
�

n0
∂i

. . .
�

nt−1
∂i

�
t−1�

s=0

W
�
ns+1
i |hi(n

s
∂i
),ϑi

�
�

×
�

j∈∂i
P

(i)
j


n0,...,t−1
j |ϑj − Jjin

0,...,t−2
i

�
Pi(n

0
i ), (B.2)

P
(i)
j

�
n0,...,t−1
j |ϑ(i)0,...,t−2

j

�
=
�

n0
∂j \i

· · ·
�

nt−2
∂j \i

�
t−2�

s=0

W
!
ns+1
j |h(i)

j (ns
∂j
),ϑ

(i),s
j

"�

×
�

�∈∂j\i
P

(j)
�


n0,...,t−2
� |ϑ� − J�jn

0,...,t−3
j

�
Pj(n

0
j), (B.3)

where ϑj = (ϑj, . . . ,ϑj) is a constant vector with identical entries ϑj. Note that for any
node j ∈ ∂i, i.e. such that Jij �= 0, one has Jji �= 0 only if the link (i, j) is bidirectional, so
the retarded self-interaction terms in equation (B.1) are absent for unidirectional links.

The transition probability W
!
ns+1
j |h(i)

j (ns
∂j
),ϑ

(i),s
j

"
indicates the conditional probability

of the state ns+1
j at time s+ 1 given the values of the cavity local field h

(i)
j (ns

∂j
),

h
(i)
j (ns

∂j
) :=

�

�∈∂j\i
Jj�n

s
� , (B.4)

and the cavity threshold ϑ
(i),s
j . The detailed function form of W

!
ns+1
j |h(i)

j (ns
∂j
),ϑ

(i),s
j

"

depends on the choice of the noise distribution. In analogy with the above we adopt a
thermal noise model for which

W
!
ns+1
j |h(i)

j (ns
∂j
),ϑ

(i),s
j

"
=

1

2

*
1 + (2ns+1

j − 1) tanh

�
β

2

�
h
(i)
j (ns

∂j
)− ϑ

(i),s
j

��+
.

(B.5)

In equations (B.2) and (B.3) the probability of the state of node i depends on the
states of neighbours ∂i, which in turn depend parametrically on the node i through the
cavity thresholds. This feedback effect is responsible for the non-Markovian structure of
equations (B.2) and (B.3), entailing that the computational complexity for a trajectory
of time length t grows as 2t, making the evaluation feasible only for relatively few
time-steps.

From now on, we focus on the single site cavity probability and we discuss the

quantity P
(i)
j

�
n0,...,t
j |ϑ(i),0,...,t−1

j

�
for the trajectory up to time t and not up to time t−
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1 as done in equation (B.3) to simplify the notation of the lagged time dependence.
A pragmatic approach is to assume that the single site cavity probability trajectory

P
(i)
j

�
n0,...,t
j |ϑ(i),0,...,t−1

j

�
factorises in a Markovian fashion under the OTA [39]

P
(i)
j

�
n0,...,t
j |ϑ(i),0,...,t−1

j

�
≈ P

(i)
j (n0

j)
t−1�

s=0

P
(i)
j (ns+1

j |ϑ(i),s
j ). (B.6)

Substituting equation (B.6) into equation (B.3)

P
(i)
j

�
n0,...,t
j |ϑ(i),0,...,t−1

j

�
=

⎡
⎢⎣
�

nt−1
∂j \i

W
!
nt
j|h(i)

j (nt−1
∂j

),ϑ
(i),t−1
j

" �

�∈∂j\i
P

(j)
�


nt−1
� |ϑ� − J�jn

t−2
j

�
⎤
⎥⎦

× P
(i)
j

�
n0,...,t−1
j |ϑ(i)0,...,t−2

j

�
, (B.7)

where we have grouped together the terms of equation (B.6) at the previous time-steps

P
(i)
j

�
n0,...,t−1
j |ϑ(i)0,...,t−2

j

�
=
�

n0
∂j \i

· · ·
�

nt−2
∂j \i

�
t−2�

s=0

W
!
ns+1
j |h(i)

j (ns
∂j
),ϑ

(i),s
j

"�

×
�

�∈∂j\i

�
t−3�

s=0

P
(j)
�


ns+1
� |ϑ� − J�jn

s
j

�
P�(n

0
�)

�
Pj(n

0
j).

(B.8)

Applying the OTA factorization to the rightmost factor in equation (B.7), i.e.
equation (B.8), one obtains

P
(i)
j

�
n0,...,t
j |ϑ(i),0,...,t−1

j

�
=

⎡
⎢⎣
�

nt−1
∂j \i

W
!
nt
j|h(i)

j (nt−1
∂j

),ϑ
(i),t−1
j

" �

�∈∂j\i
P

(j)
�


nt−1
� |ϑ� − J�jn

t−2
j

�
⎤
⎥⎦

×
�

t−2�

s=0

P
(i)
j (ns+1

j |ϑ(i),s
j )

�
Pj(n

0
j). (B.9)

This expression is particularly suitable to compute the marginal over the trajectory of
node j, i.e.

P
(i)
j

�
nt
j |ϑ(i),0,...,t−1

j

�
=
�

n0...t−1
j

P
(i)
j

�
n0,...,t
j |ϑ(i),0,...,t−1

j

�
. (B.10)

Thanks to the factorization of the last term in equation (B.9), the sum over n0...t−3,t−1
j is

trivial, as the term in the first square brackets does not depend on these variables, and
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conditional probabilities are normalised to one.

P
(i)
j

�
nt
j |ϑ(i),t−1

j ,ϑ
(i),t−3
j

�
=
�

nt−2
j

⎡
⎢⎣
�

nt−1
∂j \i

W
!
nt
j|h(i)

j (nt−1
∂j

),ϑ
(i),t−1
j

"

×
�

�∈∂j\i
P

(j)
�

⎛
⎝nt−1

� |ϑ� − J�jn
t−2
j

⎞
⎠
⎤
⎦P

(i)
j (nt−2

j |ϑ(i),t−3
j ).

(B.11)

In equation (B.11) the probability of node j depends on the two cavity thresh-

olds ϑ
(i),t−1
j ,ϑ

(i),t−3
j . This expression is directly derived from the OTA factorisation

equation (B.6). The one-step object P
(i)
j

�
nt
j |ϑ(i),t−1

j

�
can be obtained imposing a ‘closure’

condition that enforces the Markovian behaviour, and different choices could be made.
In [39, 75] the authors assume that, in the stationary state, the cavity threshold does

not have an explicit time dependence ϑ
(i),s
j ≈ ϑ

(i)
j ∀s. In [34] instead, the cavity term

is approximated by the non-cavity marginal P
(i)
j (nt−2

j |ϑ(i),t−3
j ) ≈ Pj(n

t−2
j |ϑj). Another

approach is to truncate the retarded dependence by taking an average over the state nt−3
i ,

which we detail below. Remembering from equation (B.1) that the ϑ
(i),s
j = ϑj − Jjin

s
i ,

then

P (ϑ
(i),t−3
j ) =

�

nt−3
i

δ
ϑ
(i),t−3
j ,ϑj−Jjin

t−3
i
P (nt−3

i |ϑi), (B.12)

with δ indicating the Kronecker delta. The one-time cavity marginal appearing in
equation (B.6) is given by

P
(i)
j

�
nt
j |ϑ(i),t−1

j

�
=
�

nt−3
i

P
(i)
j

�
nt
j|ϑ(i),t−1

j ,ϑj − Jjin
t−3
i

�
Pi(n

t−3
i |ϑi). (B.13)

Substituting equation (B.11) in equation (B.13), the expression for the one-step
probability becomes

P
(i)
j

�
nt
j |ϑ(i),t−1

j

�
=
�

nt−2
j

⎡
⎢⎣
�

nt−1
∂j \i

W
!
nt
j|h(i)

j (nt−1
∂j

),ϑ
(i),t−1
j

"

×
�

�∈∂j\i
P

(j)
�


nt−1
� |ϑ� − J�jn

t−2
j

�
⎤
⎦P

(i)
j (nt−2

j |ϑj), (B.14)

with

P
(i)
j (nt−2

j |ϑj) =
�

nt−3
i

P
(i)
j (nt−2

j |ϑj − Jjin
t−3
i )Pi(n

t−3
i |ϑi). (B.15)
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Figure B1. Comparison of different closures in the OTA. C.1 is the closure of [35].
C.2 is the closure of [34], C.3 is the closure of equation (B.15). The distribution
of the difference between the probability obtained using OTA and the probability
obtained using MC simulations. Network with symmetric (left) and antisymmetric
interactions (right). The network belongs to the random regular graph class with
kin = kout = 3. Simulations are obtained through an average of over 500 trajectories.
Parameters are N = 10 000, T/J = 1, and ϑ = 0, ts = 104 steps.

We compare the different OTA closure conditions in equation (B.11), which we
denote:

• C.1 corresponding to the assumption P
(i)
j (nt−2

j |ϑ(i),t−3
j ) ≈ P

(i)
j (nt−2

j |ϑ(i),t−1
j ), from [35],

• C.2 corresponding to the assumption P
(i)
j (nt−2

j |ϑ(i),t−3
j ) ≈ Pj(n

t−2
j |ϑj), from [34],

• C.3 corresponding to the assumption P
(i)
j (nt−2

j |ϑ(i),t−3
j ) ≈ P

(i)
j (nt−2

j |ϑj) using the
definition in equation (B.15).

We evaluate the distribution of the stationary single-node activation probability for
the OTA expressions corresponding to closures C.1, C.2, and C.3. We benchmark the
theory with MC simulations for symmetric and antisymmetric networks, and we show in
figure B1 the distribution of the distance between theory and simulation for the single-
site activation probabilities. Our results indicate that in the symmetric case closure C.1
outperforms both C.2 and C.3, which is expected since the expression associated with
C.1 admits the equilibrium solution of belief propagation, as discussed in [39]. In the
antisymmetric case instead, the relative performances of the methods are changed, with
closure C.1 providing the worst result roughly by a factor of two compared to closures
C.2 and C.3. We use the mean square distance between OTA closures and simulation
to quantify the error in table B1. Our results indicate that closures C.2 and C.3 are less
dependent on the network symmetry, while C.1 presents important variations between
the two cases examined. From a computational point of view, closures C.1 and C.2 are
comparable and they are simpler to perform compared to C.3, since in closure C.3, the
equation (B.15) needs to be performed for every link and for every time-step of interest.
Hence we adopt closure C.2 since it is simpler to implement than C.3, and our results
suggest it gives the same performances as closure C.3.
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Table B1. Error, as defined in equation (46), of different closure schemes for sym-
metric, antisymmetric and uncorrelated interactions. Same parameters as in figure
B1.

C.1 C.2 C.3

Symmetric 2.30 × 10−4 6.0 × 10−4 6.2 × 10−4

Antisymmetric 8.6 × 10−4 5.5 × 10−4 5.3 × 10−4

Uncorrelated 3.8 × 10−4 3.4 × 10−4 3.4 × 10−4
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