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Abstract
The distribution of shortest path lengths (DSPL) of random networks provides
useful information on their large scale structure. In the special case of ran-
dom regular graphs (RRGs), which consist of N nodes of degree c � 3, the
DSPL, denoted by P(L = �), follows a discrete Gompertz distribution. Using
the discrete Laplace transform we derive a closed-form (CF) expression for the
moment generating function of the DSPL of RRGs. From the moment gen-
erating function we obtain CF expressions for the mean and variance of the
DSPL. More specifically, we find that the mean distance between pairs of dis-
tinct nodes is given by 〈L〉 = ln N

ln(c−1) +
1
2 − ln c−ln(c−2)+γ

ln(c−1) +O
(

ln N
N

)
, where γ

is the Euler–Mascheroni constant. While the leading term is known, this result
includes a novel correction term, which yields very good agreement with the
results obtained from direct numerical evaluation of 〈L〉 via the tail-sum for-
mula and with the results obtained from computer simulations. However, it does
not account for an oscillatory behavior of 〈L〉 as a function of c or N. These
oscillations are negligible in sparse networks but detectable in dense networks.
We also derive an expression for the variance Var(L) of the DSPL, which cap-
tures the overall dependence of the variance on c but does not account for the
oscillations. The oscillations are due to the discrete nature of the shell struc-
ture around a random node. They reflect the profile of the filling of new shells
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as N is increased. The results for the mean and variance are compared to the
corresponding results obtained in other types of random networks. The relation
between the mean distance and the diameter is discussed.

Keywords: random network, random regular graph, distribution of shortest path
lengths, moments, mean, variance

(Some figures may appear in colour only in the online journal)

1. Introduction

Random networks (or graphs) consist of a set of N nodes that are connected by edges in a
way that is determined by some random process. They provide a useful conceptual framework
for the study of a large variety of systems and processes in science, technology and society
[1–5]. The local structure of a random network can be characterized by the degree distribution
P(k) and its moments 〈Kn〉, n � 1. In particular, the mean degree 〈K〉 provides the expected
number of neighbors of a random node, while the variance Var(K) = 〈K2〉 − 〈K〉2 accounts for
the width of the degree distribution.

The large scale structure of a random network is captured by the distribution of shortest path
lengths (DSPL), or the distance distribution, between pairs of distinct nodes. Properties of the
DSPL, which is denoted by P(L = �), have been studied in random networks with different
degree distributions [6–26]. It was shown that in random networks whose degree distribution
has a finite variance, the mean distance between pairs of distinct nodes scales like 〈L〉 ∼ ln N
[6, 7, 12]. This implies that random networks are small-world networks [27–31]. Moreover, it
was shown that scale-free networks, which exhibit a power-law degree distribution of the form
P(k) ∼ k−γ , may be ultrasmall depending on the value of the exponent γ. In particular, for
2 < γ < 3, where the variance of P(k) diverges in the infinite system limit, the mean distance
scales like 〈L〉 ∼ ln ln N [7, 9, 32]. The variance Var(L) of the DSPL was also studied. It was
shown that the DSPL of random networks is typically a narrow distribution, whose width does
not grow as the network size is increased [7].

In the study of the DSPL it is convenient to use the tail distribution P(L > �), which is the
probability that the distance between a random pair of distinct nodes i and j is larger than �.
In networks that consist of more than one connected component, the distance between nodes
that reside on different network components is � = ∞. In this case the DSPL is restricted to
pairs of nodes that reside on the same connected component [15, 16, 23, 24]. In the analysis
below we focus on networks that consist of a single connected component. In this case, the
mean distance can be obtained from the tail-sum formula [33]

〈L〉 =
∞∑
�=0

P(L > �). (1)

In configuration model networks the degree of each node is drawn independently from a
given degree distribution P(k) and the connections are random and uncorrelated [6, 34, 35]. The
configuration model generates maximum entropy ensembles in which the degree distribution
P(k) is fixed [6, 31, 34, 35]. Therefore, the configuration model provides a general and highly
powerful platform for the analysis of statistical properties of networks. In configuration model
networks, the DSPL is completely determined by the degree distribution P(k) and the network
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size N. In particular, in the large network limit the mean distance can be approximated by
[6, 29–31]

〈L〉 � ln N
ln μ

, (2)

where

μ =
〈K2〉 − 〈K〉

〈K〉 (3)

is the mean of the excess degree distribution of nodes selected via a random edge. The excess
degree distribution, given by [36]

Pexcess(k) =
(k + 1)
〈K〉 P(k + 1), (4)

is obtained by selecting random edges and choosing randomly one of the two end-nodes of the
selected edge. The excess degree of such end-node is obtained by extracting the edge that led
to that node, reducing its degree by 1.

The random regular graph (RRG) is a special case of a configuration model network, in
which the degree distribution is a degenerate distribution of the form P(k) = δk,c, namely all
the nodes are of the same degree c, where c � 3. In the special case of an RRG, the second
moment of the degree distribution satisfies 〈K2〉 = c2 and the excess degree is μ = c − 1. As
a result, equation (2) is reduced to

〈L〉 � ln N
ln(c − 1)

. (5)

Recently, the DSPL of the Erdös–Rényi (ER) network [37–39] and other configuration
model networks was calculated using an approach called the random path approach (RPA),
which is based on recursion equations [15, 16, 20]. In general, the recursion equations are
iterated step by step and the resulting distribution is evaluated numerically. The DSPL obtained
from the recursion equations was found to be in very good agreement with the results obtained
from computer simulations for configuration model networks with a broad range of degree
distributions [16]. In the special case of RRGs of degree c � 3, the recursion equations yield
a closed-form (CF) expression for the DSPL, whose tail distribution takes the form [16]

P(L > �) = exp

{
− c

(c − 2)N

[
(c − 1)� − 1

]}
. (6)

The distribution shown in equation (6) is a discrete form of the Gompertz distribution [40, 41].
Equation (6) coincides with an earlier calculation of the DSPL of RRGs [8]. The existence of a
CF expression for P(L > �) opens the way to the derivation of compact formulae for the mean
distance 〈L〉 and the variance Var(L) of the DSPL of RRGs. The mean distance 〈L〉 provides
the typical length scale in the network, as well as its scaling with respect to the network size
N and the degree c. The variance Var(L) provides the width of the peak in the probability mass
function P(L = �).

In this paper we derive a CF expression for the moment generating function of the DSPL of
RRGs. The moment generating function is expressed in terms of a discrete Laplace transform.
The discrete sum is then evaluated using the Euler–Maclaurin formula that applies for suffi-
ciently large networks. Using the moment generating function we obtain CF expressions for
the mean distance 〈L〉 and for the second moment 〈L2〉 of the DSPL. Using these results we also
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obtain, for the first time, a closed form expression for the variance Var(L). In previous studies
[6, 8, 29, 42] it was found that in the large N limit the mean distance 〈L〉 can be approximated
by equation (5). On top of this result, we obtain a novel correction term, which is of order 1,
namely independent of N. Since the mean distance 〈L〉 is logarithmic in N, such correction of
order 1 is often not negligible. Taking this correction into account yields a very good agree-
ment with the results obtained from computer simulations. However, it does not account for
an apparent oscillatory behavior of 〈L〉 as a function of c and as a function of N. These oscil-
lations are negligible in the sparse-network limit but detectable in the dense-network limit.
The CF expression obtained for Var(L) captures the overall dependence of the variance on the
degree c. However, it does not account for the oscillatory behavior of Var(L) as a function of
c, which becomes significant in the dense-network limit. The oscillations of 〈L〉 and Var(L) as
a function of c and N are analyzed and discussed. In particular, it is shown that the oscillations
become regular when plotted as a function of ln N/ln(c − 1), when c is kept fixed and N is
varied. The results for the mean and variance of the DSPL are compared to the correspond-
ing results obtained in other types of random networks. The relation to the diameter is also
discussed.

The paper is organized as follows. In section 2 we describe the RRG. In section 3 we review
the calculation of the DSPLs. In section 4 we derive a CF expression for the moment gener-
ating function of the DSPL. In section 5 we calculate the mean distance 〈L〉. In section 6 we
calculate the variance of the DSPL. The results are discussed in section 7 and summarized in
section 8.

2. The random regular graph

The RRG is a special case of a configuration model network, in which the degree distribution
is a degenerate distribution of the form P(k) = δk,c, namely all the nodes are of the same degree
c. Here we focus on the case of 3 � c � N − 1, in which for a sufficiently large value of N the
RRG consists of a single connected component [34, 35, 43]. RRGs of any finite size exhibit
a local tree-like structure, while at larger scales there is a broad spectrum of cycle lengths. In
that sense RRGs differ from Cayley trees, which maintain their tree structure by reducing the
most peripheral nodes to leaf nodes of degree 1. They also differ from Bethe lattices which
exhibit a tree structure of an infinite size.

The neighborhood of a given node i can be described by a shell structure, in which the first
shell consists of the c neighbors of i and the second shell consists of the neighbors of the nodes
of the first shell, which are at distance � = 2 from i. In general, the �th shell around i consists
of all the nodes that are at a distance � from i [13, 14]. In the infinite network limit, the �th shell
around each node consists of n(�) = c(c − 1)�−1 nodes.

A convenient way to construct an RRG of size N and degree c (Nc must be an even number)
is to prepare the N nodes such that each node is connected to c half edges or stubs [3, 44]. At
each step of the construction, one connects a pair of random stubs that belong to two different
nodes i and j that are not already connected, forming an edge between them. This procedure
is repeated until all the stubs are exhausted. The process may get stuck before completion in
case that all the remaining stubs belong to the same node or to pairs of nodes that are already
connected. In such case one needs to perform some random reconnections in order to complete
the construction.
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3. The distribution of shortest path lengths

Consider an RRG consisting of N nodes of degree c. The distance �i j between a pair of nodes
i and j is given by the length of the shortest path between i and j. The tail DSPL between
pairs of random nodes is denoted by P(L > �). In computer simulations this distribution is
obtained by generating a large number of network instances from an ensemble of RRGs of
a given size N and degree c. In each network instance one repeatedly selects pairs of random
nodes, finds the shortest paths between them and measures their lengths. These results yield the
distribution P(L > �).

Another useful way to sample nodes is via a random edge. In this case one selects a random
edge e and picks randomly one of the end-nodes ĩ of the selected edge. The edge e is then
deleted, giving rise to a reduced network that includes all the nodes and edges, apart from e,
also called the cavity graph [45]. The tail DSPL between pairs of distinct nodes consisting of a
node ĩ, selected via a random edge e, and a random node j, on the reduced network from which
e is removed, is denoted by P̃(L > �).

Apart from the tail distributions P(L > �) and P̃(L > �), it is also useful to consider vari-
ous conditional distributions. Consider a pair of random nodes i and j, such that the distance
between them is known to be larger than �− 1. The conditional probability P(L > �|L > �− 1)
provides the probability that the length of the shortest path between i and j is larger than �, given
that it is larger than �− 1. Similarly, for a pair of nodes consisting of a node ĩ, which is selected
via a random edge e, and a random node j, the conditional probability P̃(L > �|L > �− 1) is
the probability that the distance between ĩ and j is larger than �, given that it is larger than
�− 1, in the reduced network from which e is removed.

Below we evaluate the conditional probability P(L > �|L > �− 1), namely the probability
that the shortest path length between a pair of random nodes i and j is larger than �, given that
it is larger than �− 1, using the RPA [15, 16, 20]. Since each node in the network (e.g. node i)
has c neighbors, the boundary condition at � = 1 is given by

P(L > 1|L > 0) = 1 − c
N − 1

. (7)

For � � 2 the conditional probability can be expressed in the form

P(L > �|L > �− 1) = P̃(L > �− 1|L > �− 2)c, (8)

where P̃(L > �− 1|L > �− 2) is the conditional DSPL between a node ĩ′ selected via a random
edge e and a random node j in the reduced network in which the edge e is removed. The
conditional distribution P̃(L > �− 1|L > � − 2) can be further expressed in the form

P̃(L > �− 1|L > �− 2) = P̃(L > �− 2|L > �− 3)c−1, (9)

where the power of c − 1 reflects the fact that in the reduced network the node ĩ′ is of degree
c − 1. In general, the conditional distribution P̃(L > �− m|L > �− m − 1) is given by

P̃(L > �− m|L > �− m − 1) = P̃(L > �− m − 1|L > �− m − 2)c−1, (10)

where m = 1, 2, . . . , �− 2. This cascade of recursion equations eventually leads to
P̃(L > 1|L > 0), which can be evaluated directly and is given by
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P̃(L > 1|L > 0) = 1 − c − 1
N − 1

. (11)

For sufficiently large N and for c/N 	 1, equation (11) can be replaced by

P̃(L > 1|L > 0) = exp

(
− c − 1

N − 1

)
. (12)

Inserting P̃(L > �− 1|L > �− 2) from equation (9) into (8), we obtain

P(L > �|L > �− 1) = P̃(L > �− 2|L > �− 3)c(c−1). (13)

By repeatedly inserting P̃(L > �− m|L > �− m − 1) from equation (10) into the right-hand
side of equation (13), we obtain

P(L > �|L > �− 1) = P̃(L > �− m − 1|L > �− m − 2)c(c−1)m
. (14)

Finally, for m = �− 2 we obtain

P(L > �|L > �− 1) = exp

[
−c(c − 1)�−1

N − 1

]
. (15)

Similarly, the conditional distribution P̃(L > �|L > �− 1) is given by

P̃(L > �|L > �− 1) = exp

[
− (c − 1)�

N − 1

]
. (16)

The tail distribution P(L > �) is obtained from

P(L > �) =
�∏

�′=1

P(L > �′|L > �′ − 1). (17)

Inserting P(L > �′|L > �′ − 1) from equation (15) into (17) and replacing N − 1 by N, we
obtain

P(L > �) = exp

[
− c

N

�∑
�′=1

(c − 1)�
′−1

]
. (18)

Carrying out the summation, we obtain

P(L > �) =

{
exp

[
−η

(
eb� − 1

)]
� � 0

1 � < 0,
(19)

where

η =
c

(c − 2)N
, (20)

and

b = ln(c − 1). (21)

The tail distribution P(L > �), given by equation (19), is a discrete version of the Gompertz
distribution [40, 41]. It is in agreement with the DSPL of RRGs obtained in reference [8].
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Figure 1. Analytical results for the tail distribution of shortest path lengths P(L > �) for
ensembles of RRGs of size N = 1000 and degrees c = 3 (solid line), c = 4 (dashed line)
and c = 10 (dotted line), obtained from equations (19)–(21). The analytical results are
in very good agreement with the results obtained from computer simulations (circles).
As c is increased, the sigmoid function shifts to the left, which implies that distances
in the network become shorter. It also becomes steeper, which implies that the DSPL
becomes narrower.

In figure 1 we present analytical results for the tail distribution P(L > �) of shortest path
lengths for ensembles of RRGs of size N = 1000 and degrees c = 3 (solid line), c = 4 (dashed
line) and c = 10 (dotted line). The analytical results, obtained from equations (19)–(21), are
in very good agreement with the results obtained from computer simulations (circles). The tail
distribution, which follows a discrete Gompertz distribution, exhibits a monotonically decreas-
ing sigmoid-like shape, or a smoothed Heaviside step function. As c is increased, the sigmoid
function shifts to the left, which implies that distances in the network become shorter. The
sigmoid function also becomes steeper, which implies that the DSPL becomes narrower. This
means that for sufficiently large values of c the majority of pairs of nodes are at equal distance
from each other.

The probability mass function of the DSPL can be recovered from the tail distribution by

P(L = �) = P(L > �− 1) − P(L > �). (22)

As mentioned in the introduction, it reflects the shell structure around a random node i, where
the �th shell consists of the nodes that reside at a distance � from i. The expected number of
nodes in the �th shell is given by

n(�) = (N − 1)P(L = �). (23)

The Gompertz distribution frequently appears in the analysis of life spans and survival. It
describes situations in which the mortality rate grows exponentially with time. The shell struc-
ture around a random node can be interpreted in terms of survival probabilities. To explain this
property we express equation (17) in the form

P(L > �) = P(L > �|L > �− 1)P(L > �− 1). (24)

This implies that the probability of a random node to remain outside the first � shells is given by
the probability to be outside the first �− 1 shells times a survival probability, which is given by
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equation (15). The complementary probability P(L = �|L > �− 1) = 1 − P(L > �|L > �− 1)
is the probability that such random node ends up in the �th shell. In the context of survival
analysis this probability corresponds to the hazard function or the mortality rate.

4. The moment generating function of the DSPL

In this section we apply a systematic method for the calculation of moments of the DSPL,
which is based on the discrete Laplace transform of the tail distribution P(L > �). The discrete
Laplace transform of some function f (�) is given by

L{ f }(s) =
∞∑
�=0

e−s� f (�), (25)

which is related to the one-sided Z-transform and to the starred transform [46]. Inserting
f (�) = P(L > �) we obtain

L{P(L > �)}(s) =
N−2∑
�=0

e−s�P(L > �), (26)

where the summation is truncated above N − 2. This reflects the fact that in a network that
consists of N nodes, P(L > �) = 0 for � � N − 1. In spite of this fact, note that equation (19)
yields non-zero results for the probabilities P(L > �) even for � � N − 1. However, these prob-
abilities are vanishingly small. Therefore, the upper limit of the sum in equation (26) can be
changed from N − 2 to ∞ without affecting the results. We also note that the tail distribution
P(L > �) is defined as the distribution of distances between pairs of distinct nodes. Thus, it
satisfies P(L > 0) = 1. Using these observations, equation (26) can be written in the form

L{P(L > �)}(s) = 1 +

∞∑
�=1

e−s�P(L > �). (27)

The sum on the right-hand side of equation (27) can be approximated by the corresponding
integral. However, a more accurate result can be obtained using the Euler–Maclaurin formula,
in which the difference between the sum and the integral is systematically approximated in
terms of derivatives of the integrand, which are evaluated at the end-points of the interval
[47, 48]. Applying the Euler–Maclaurin formula (equation (2.10.1) in reference [49]), we
obtain

L{P(L > �)}(s) = 1 +

∫ ∞

0
e−s�P(L > �)d�− 1

2

−
∞∑

k=1

B2k

(2k)!
d2k−1

d�2k−1

[
e−s�P(L > �)

]∣∣∣∣
�=0

, (28)

where B2k is the Bernoulli number of order 2k [49]. Carrying out the integration, we obtain∫ ∞

0
e−s�P(L > �)d� =

exp
[(

c
c−2

)
1
N

]
ln(c − 1)

E1+ s
ln(c−1)

[(
c

c − 2

)
1
N

]
, (29)

where En(x) is the generalized exponential integral (equation (8.19.3) in reference [49]). In
order to evaluate the sum in equation (28), we expand the summand up to first order in 1/N.
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Inserting P(L > �) from equation (19), we obtain

e−s�P(L > �) = e−s� −
(

c
c − 2

)
1
N

[
e−(s−b)� − e−s�

]
+O

(
1

N2

)
, (30)

where b = ln(c − 1). Expanding equation (30) in powers of �, we obtain

e−s�P(L > �) = 1 +

[
1 +

(
c

c − 2

)
1
N

] ∞∑
r=1

(−s)r

r!
�r

−
(

c
c − 2

)
1
N

∞∑
r=1

(b − s)r

r!
�r +O

(
1

N2

)
. (31)

Differentiating equation (31) (2k − 1) times with respect to � and evaluating the result at � = 0,
we obtain

d2k−1

d�2k−1

[
e−s�P(L > �)

]∣∣∣∣
�=0

= −
[

1 +

(
c

c − 2

)
1
N

]
s2k−1

+

(
c

c − 2

)
1
N

(s − b)2k−1 +O
(

1
N2

)
. (32)

Inserting the right-hand side of equation (32) into (28) and using the identity (equation (4.19.6)
in reference [49])

∞∑
k=1

B2kx2k−1

(2k)!
=

1
2

coth
( x

2

)
− 1

x
, (33)

we obtain

L{P(L > �)}(s) =
exp

[(
c

c−2

)
1
N

]
ln(c − 1)

E1+ s
ln(c−1)

[(
c

c − 2

)
1
N

]
+

1
2

+

[
1
2

coth
( s

2

)
− 1

s

] [
1 +

(
c

c − 2

)
1
N

]
−
(

c
c − 2

)
1
N

[
1
2

coth

(
s − b

2

)
− 1

s − b

]
+O

(
1

N2

)
. (34)

In the large network limit equation (34) can be reduced to

L{P(L > �)}(s) =
1

ln(c − 1)
E1+ s

ln(c−1)

[(
c

c − 2

)
1
N

]
+

1
2
+

[
1
2

coth
( s

2

)
− 1

s

]
+O

(
1
N

)
. (35)

The moment generating function of the DSPL is denoted by

M(s) =
∞∑
�=0

es�P(L = �). (36)
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Inserting P(L = �) from equation (22) into (36), we can rewrite M(s) in terms of the tail
distribution in the form

M(s) = 1 + (es − 1)
∞∑
�=0

es�P(L > �). (37)

Using equation (26) we express the moment generating function in terms of the Laplace
transform, namely

M(s) = 1 + (es − 1)L{P(L > �)}(−s). (38)

In the sections below we use the moment generating function to obtain closed form expressions
for the mean and variance of the DSPL.

5. The mean distance

The mean distance 〈L〉 between pairs of distinct nodes in an RRG can be calculated using the
tail-sum formula [33]

〈L〉 =
N−2∑
�=0

P(L > �), (39)

where P(L > �) is given by equation (19). Since equation (19) is highly accurate for c 	 N,
equation (39) is expected to yield accurate results for the mean distance except for the limit
of very dense networks. However, this expression provides little insight on the behavior of 〈L〉
and its dependence on c and N. Since P(L > �), given by equation (19), is vanishingly small
for � � N − 1, equation (39) can be replaced by

〈L〉 =
∞∑
�=0

P(L > �). (40)

Below we use the moment generating function M(s) to obtain a CF expression for 〈L〉, which
is valid for sufficiently large networks. It is given by

〈L〉 = dM(s)
ds

∣∣∣∣
s=0

. (41)

Inserting M(s) from equations (34) and (38) into equation (41) and carrying out the differenti-
ation, we obtain

〈L〉 =
exp

[(
c

c−2

)
1
N

]
ln(c − 1)

E1

[(
c

c − 2

)
1
N

]
+

1
2

+
1
2

(
c

c − 2

)
1
N

{
coth

[
ln(c − 1)

2

]
− 2

ln(c − 1)

}
+O

(
1

N2

)
, (42)

where E1(x) is the exponential integral, also denoted as Ei(x) [49]. Expanding the right-hand
side of equation (42) in powers of 1/N, we obtain
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〈L〉 = ln N
ln(c − 1)

+
1
2
−

ln
(

c
c−2

)
+ γ

ln(c − 1)
+

1
ln(c − 1)

(
c

c − 2

)
ln N

N

+
c

c − 2

{
ln
(

c−2
c

)
− γ

ln(c − 1)
+

1
2

coth

[
ln(c − 1)

2

]}
1
N

+O
(

ln N
N2

)
,

(43)

where γ = 0.577 . . . is the Euler–Mascheroni constant [49, 50]. For sufficiently large values
of N, the corrections of orders ln N/N and 1/N can be neglected, leading to

〈L〉 = ln N
ln(c − 1)

+
1
2
−

ln
(

c
c−2

)
+ γ

ln(c − 1)
+O

(
ln N

N

)
. (44)

In figure 2 we present analytical results (solid line) for the mean distance 〈L〉 between pairs
of nodes in an RRG of size N = 1000 as a function of the degree c, obtained from the CF expres-
sion of equation (44). We also present the results (× symbols) obtained from a direct numerical
evaluation (DE) of the sum in equation (40), where P(L > �) is taken from equation (19).
Since the discrete Gompertz distribution provides highly accurate results for the DSPL, the
results obtained from the DE of equation (40) are expected to be accurate. Indeed, they are
found to be in very good agreement with the results obtained from computer simulations (cir-
cles). The analytical results obtained from equation (44) are in very good agreement with the
results obtained from direct evaluation and computer simulations. The widely known result
of 〈L〉 = ln N/ln(c − 1), given by equation (5), is also shown (+ symbols), indicating that the
subleading correction presented in equation (44) is important. However, close inspection of
figure 2 reveals that on top of the overall trend, the mean distance 〈L〉 exhibits an oscilla-
tory behavior as a function of c, which is not captured by equation (44). The amplitude of
these oscillations is negligible in the sparse-network limit and becomes detectable for dense
networks. Moreover, the period of the oscillations increases as c is increased.

Interestingly, in the dense-network limit the DE of the mean distance 〈L〉 can be done using
an approximate form of the tail-sum formula of equation (40). It is given by

〈L〉 � (r − 1) + P(L > r − 1) + P(L > r) + P(L > r + 1), (45)

where

r =

⌊
ln N

ln(c − 1)

⌋
, (46)

and 
x� is the integer part of x. The first term on the right-hand side of equation (45) accounts
for the sum over the probabilities P(L > �) for � = 0, 1, . . . , r − 2, which in the dense-network
limit can be approximated by 1. The next three terms account for the range of distances in
which the tail distribution decreases sharply. In the dense-network limit this range is narrow,
while the probabilities P(L > �) for � � r + 2 are negligible.

To analyze the oscillations, it is convenient to consider the difference 〈L〉DE − 〈L〉CF, where
〈L〉DE is the mean distance obtained from DE of the mean of the discrete Gompertz distribu-
tion by equation (40), while 〈L〉CF is the mean distance obtained from the CF expression of
equation (44).

In figure 3 we present (× symbols) the difference 〈L〉DE − 〈L〉CF as a function of
ln N/ln(c − 1) where the network size N is fixed at N = 106 and the mean degree c is
varied. The mean distance 〈L〉DE is obtained from equation (40) and 〈L〉CF is obtained

11
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Figure 2. Analytical results (solid line) for the mean distance 〈L〉 between pairs of ran-
dom nodes in RRGs of size N = 1000 as a function of the degree c, obtained from
equation (44). The results obtained from DE of the sum in equation (40) are also shown
(× symbols), where P(L > �) is taken from equation (19). The direct evaluation results
are found to be in very good agreement with the results obtained from computer simula-
tions (circles). The analytical results are in very good agreement with the results obtained
from direct evaluation and computer simulations, except for small oscillatory discrep-
ancies discussed in the text. The widely known result of 〈L〉 = ln N/ln(c − 1) is also
shown (+ symbols), indicating that the subleading term presented in equation (44) is
important. The subleading correction is found to be negative for c � 7 and positive for
c > 7.

from equation (44). It is found that this difference exhibits oscillations as a function of
ln N/ln(c − 1), whose wavelength is equal to 1. The amplitude of the oscillations decreases as
ln N/ln(c − 1) is increased. The difference 〈L〉DE − 〈L〉CF vanishes at integer and half-integer
values of ln N/ln(c − 1). It is found that the maxima of the oscillations take place when the
fractional part of ln N/ln(c − 1) is approximately 1/4, while the minima take place when the
fractional part is approximately 3/4. We also present approximated results (solid line) in which
〈L〉DE is evaluated using equation (45). The two curves are found to be in very good agreement
except for the limit of sparse networks in which equation (45) is not expected to provide accu-
rate results. It is important to note that the amplitude of the oscillations is very small compared
to the mean distance 〈L〉. Thus, equation (44) provides a very good approximation for 〈L〉.

In figure 4 we present (× symbols) the difference 〈L〉DE − 〈L〉CF as a function of
ln N/ln(c − 1), where the degree c is fixed at c = 30 and the network size N is varied. The
mean distance 〈L〉DE is obtained from equation (40) and 〈L〉CF is obtained from equation (44).
It is found that this difference exhibits oscillations as a function of ln N/ln(c − 1), whose
wavelength is equal to 1. For sufficiently large values of N the amplitude of the oscillations
is a constant. The difference 〈L〉DE − 〈L〉CF vanishes at integer and half-integer values of
ln N/ln(c − 1). It is found that the maxima of the oscillations take place when the fractional
part of ln N/ln(c − 1) is approximately 1/4, while the minima take place when the fractional
part is approximately 3/4. We also present approximated results (solid line) in which 〈L〉DE is
evaluated using equation (45). The two curves are found to be in very good agreement.

The oscillatory behavior presented in figure 4 and specifically the fact that the wavelength
is 1 and the amplitude is constant, implies that the difference 〈L〉DE − 〈L〉CF depends on N only
via the fractional part
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Figure 3. The difference 〈L〉DE − 〈L〉CF (× symbols) as a function of ln N/ln(c − 1)
where the network size is fixed at N = 106 and the mean degree c is varied. The mean
distance 〈L〉DE is obtained from equation (40) and 〈L〉CF is obtained from equation (44).
This difference exhibits oscillations as a function of ln N/ln(c − 1), whose wavelength
is equal to 1. The amplitude of the oscillations decreases as ln N/ln(c − 1) is increased.
This implies that the oscillations are negligible in the sparse-network limit and become
detectable as the network becomes more dense. We also present approximated results
(solid line) in which 〈L〉DE is evaluated using equation (45). The two curves are found to
be in very good agreement except for the limit of sparse networks in which equation (45)
is not expected to apply. In general, the amplitude of the oscillations is very small com-
pared to the mean distance 〈L〉. Thus, equation (44) provides a very good approximation
for 〈L〉.

φ =
ln N

ln(c − 1)
−
⌊

ln N
ln(c − 1)

⌋
, (47)

which can be considered as a phase and takes values in the range 0 � φ < 1. Below we show
that for sufficiently large N this can be rigorously justified. In the large N limit, where η 	 1,
equation (19) can be reduced to

P(L > �) = exp
(
−ηeb�

)
, (48)

which can also be written in the form

P(L > �) = exp
(
−eb�+ln η

)
. (49)

Using this expression, one can show that

P(L > �+ r) =

⎧⎨⎩exp

[
−
(

c
c − 2

)
eln(c−1)(�−φ)

]
� � 0

1 � < 0.
(50)

This implies that the dependence of P(L > �+ r) on the network size N is only via the
phase φ.
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Figure 4. The difference 〈L〉DE − 〈L〉CF (× symbols) as a function of ln N/ln(c − 1)
where the mean degree c is fixed at c = 30 and the network size N is varied. The mean
distance 〈L〉DE is obtained from equation (40) and 〈L〉CF is obtained from equation (44).
This difference exhibits oscillations as a function of ln N/ln(c − 1), whose wavelength
is equal to 1 and the amplitude is a constant. We also present approximated results (solid
line) in which 〈L〉DE is evaluated using equation (45). The two curves are found to be
in very good agreement except for the limit of sparse networks in which equation (45)
is not expected to apply. In general, the amplitude of the oscillations is very small com-
pared to the mean distance 〈L〉. Thus, equation (44) provides a very good approximation
for 〈L〉.

The mean distance can be expressed by

〈L〉 =
∞∑

�=−∞
�P(L = �), (51)

which is justified because P(L = �) = 0 for � � 0. Shifting the summation variable by r to the
left, we obtain the equivalent expression

〈L〉 =
∞∑

�=−∞
(�+ r)P(L = �+ r). (52)

Summing up separately the two terms on the right-hand side, we obtain

〈L〉 = r +
∞∑

�=−∞
�P(L = �+ r). (53)

Expressing the probability P(L = �+ r) in terms of the tail distribution, we obtain

〈L〉 = r +
∞∑

�=−∞
� [P(L > �+ r − 1) − P(L > �+ r)] . (54)

Subtracting 〈L〉CF, given by equation (44) from (54), we obtain
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〈L〉DE − 〈L〉CF = −φ− 1
2
+

ln
(

c
c−2

)
+ γ

ln(c − 1)

+

∞∑
�=−∞

� [P(L > �+ r − 1) − P(L > �+ r)] . (55)

Inserting the probabilities P(L > �+ r) from equation (50) into (55), one finds that
〈L〉DE − 〈L〉CF is only a function of the degree c and the phase φ. This implies that its depen-
dence on the network size N is only via the phase φ. Note that the argument above holds when
the network size N is sufficiently large, such that equation (50) is a good approximation for
equation (19).

6. The variance of the DSPL

Using the tail-sum formula, the second moment of the DSPL can be expressed in the form [33]

〈L2〉 =
N−2∑
�=0

(2�+ 1)P(L > �). (56)

Since the probability P(L > �), given by equation (19), is vanishingly small for � � N − 1, the
upper limit of the summation can be changed from N − 2 to ∞, without any noticeable change
in the result. Therefore,

〈L2〉 = 1 +

∞∑
�=1

(2�+ 1)P(L > �). (57)

The variance of the DSPL is given by

Var(L) = 〈L2〉 − 〈L〉2. (58)

Inserting 〈L〉 from equation (40) and inserting 〈L2〉 from equation (57) into (58) yields highly
accurate results for the variance of the DSPL. However, this expression provides little insight
on the behavior of the variance and its dependence on c and N.

Below we use the moment generating function M(s) to obtain a CF expression for 〈L2〉,
which is valid for large networks. It is given by

〈L2〉 = d2M(s)
ds2

∣∣∣∣
s=0

. (59)

Inserting M(s) from equations (34) and (38) into equation (59) and carrying out the differenti-
ations, we obtain

〈L2〉 =
exp

[
c

(c−2)N

]
6[ln(c − 1)]2

{
6

(
ln

[
c

(c − 2)N

])2

+ 12γ ln

[
c

(c − 2)N

]

+ π2 + 6γ2 − 12c
(c − 2)N 3F3

[
1, 1, 1
2, 2, 2

∣∣∣∣− c
(c − 2)N

]}

+
exp

[
c

(c−2)N

]
ln(c − 1)

E1

[(
c

c − 2

)
1
N

]
+

1
3
+O

(
1

N2

)
, (60)
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Figure 5. Closed form analytical results (solid line) for the variance Var(L) of the distri-
bution of shortest path lengths for an RRG of size N = 1000 as a function of the degree
c, obtained from equation (58), where 〈L〉 is given by equation (42) and 〈L2〉 is given by
equation (60). The results obtained from DE of the sums in equations (40) and (57) for
〈L〉 and 〈L2〉, respectively are also shown (× symbols). The direct evaluation results are
found to be in very good agreement with the results obtained from computer simulations
(circles). In the regime of sparse networks the analytical results obtained from the closed
form expressions of equations (42) and (60) are in very good agreement with the results
obtained from direct evaluation and computer simulations. However, for dense networks
the results obtained from direct evaluation and computer simulations exhibit oscilla-
tions that are not captured by the CF expression. Instead, the CF expression captures the
overall trend of Var(L) vs c as if the oscillations are averaged out. We also present the
results obtained from the simpler expression of equation (62) (+ symbols). These results
are found to be in good agreement with the results obtained from the more complete
expressions of equations (42) and (60), except for a small discrepancy for very small
values of c.

where E1(x) is the exponential integral and 3F3[ ] is the generalized hypergeometric function
[49]. Performing an asymptotic expansion for large N, we obtain

〈L2〉 = 1
[ln(c − 1)]2

(
ln

[
(c − 2)N

c

])2

+
ln(c − 1) − 2γ

[ln(c − 1)]2
ln

[
(c − 2)N

c

]

+
π2 + 6γ2 − 6γ ln(c − 1)

6[ln(c − 1)]2
+

1
3
+O

[(
ln N

N

)2
]
. (61)

To obtain the variance of the DSPL we insert 〈L2〉 from equation (60) and 〈L〉 from
equation (42) into (58). While this result is expected to be relatively precise the resulting
expression is complicated. A simpler expression for the variance can be obtained by insert-
ing 〈L2〉 from equation (61) and 〈L〉 from equation (44) into (58). In this case the resulting
expression can be simplified to the form

Var(L) =
π2

6[ln(c − 1)]2
+

1
12

+O
(

ln N
N

)
. (62)

This result implies that except for the limit of very small networks, the variance Var(L)
does not depend on the network size N but only on the degree c. Moreover Var(L) is a
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Figure 6. The difference VarDE(L) − VarCF(L) (× symbols) between the variance
obtained from DE of equations (40) and (57) and from the closed form expressions given
by equations (42) and (60), as a function of ln N/ln(c − 1) for N = 106. This difference
exhibits oscillations as a function of ln N/ln(c − 1), whose wavelength is equal to 1. The
amplitude of the oscillations decreases as ln N/ln(c − 1) is increased. This implies that
the oscillations are negligible in the sparse-network limit and become more pronounced
as the network becomes more dense. We also present approximated results (solid line)
in which VarDE(L) is evaluated using equation (64). The two curves are found to be in
very good agreement except for the limit of sparse networks in which equation (64) is
not expected to provide accurate results.

monotonically decreasing function of c, whose largest value, obtained at c = 3 is
Var(L) � 3.51. We thus conclude that the DSPL of RRGs is a narrow distribution, whose width
decreases as c is increased.

In figure 5 we present analytical results (solid line) for the variance Var(L) for RRGs of
size N = 1000 as a function of the degree c obtained from equation (58), where 〈L〉 is given by
equation (42) and 〈L2〉 is given by equation (60). We also present the results obtained from a DE
(× symbols) of the sums in equations (40) and (57) for 〈L〉 and 〈L2〉, respectively. These results
are found to be in very good agreement with the results obtained from computer simulations
(circles). In the regime of sparse networks the analytical results obtained from the closed form
expressions of equations (42) and (60) are in very good agreement with the results obtained
from direct evaluation and computer simulations. For dense networks the results obtained from
direct evaluation and computer simulations exhibit some oscillations that are not captured by
the closed form expressions. Instead, the CF expressions capture the overall trend of Var(L) vs
c as if the oscillations are averaged out. We also present the results obtained from the simpler
expression of equation (62) (+ symbols). For very small values of c, equation (62) is found
to slightly over-estimate the variance, while for larger values of c it is in very good agreement
with the results obtained from equations (42) and (60).

In the dense-network limit, the tail sum formula (56) can be approximated by

〈L2〉 � (r − 1)2 +
r+1∑

�=r−1

(2�+ 1)P(L > �), (63)

where r is given by equation (46). Inserting 〈L2〉 from equation (63) and 〈L〉 from equation (45)
into (58) and rearranging terms, we obtain
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Figure 7. The difference VarDE(L) − VarCF(L) (× symbols) between the variance
obtained from DE of equations (40) and (57) and from the closed form expressions
given by equations (42) and (60), as a function of ln N/ln(c − 1) where the degree is
fixed at c = 30 and the network size N is varied. This difference exhibits oscillations as
a function of ln N/ln(c − 1), whose wavelength is equal to 1 and the amplitude is a con-
stant. We also present approximated results (solid line) in which VarDE(L) is evaluated
using equation (64). The two curves are found to be in very good agreement except for
the limit of sparse networks in which equation (64) is not expected to provide accurate
results.

Var(L) � P(L > r − 1) + 3P(L > r) + 5P(L > r + 1)

− [P(L > r − 1) + P(L > r) + P(L > r + 1)]2. (64)

To analyze the discrepancy between the results obtained from the CF expressions and
those obtained from the DE of the variance, it is convenient to consider the difference
VarDE(L) − VarCF(L), where VarDE(L) is the variance obtained from the DE of equations (40)
and (57) and VarCF(L) is the variance obtained from the closed form expressions of
equations (42) and (60). It turns out that this difference exhibits oscillations similar to those
obtained for 〈L〉DE − 〈L〉CF, between positive and negative values as a function of c. Moreover,
the period and the amplitude of these oscillations increase as c is increased.

In figure 6 we present (× symbols) the difference VarDE(L) − VarCF(L) as a function of
ln N/ln(c − 1) for N = 106. It is found that this difference exhibits oscillations as a function of
ln N/ln(c − 1), whose wavelength is equal to 1. The amplitude of the oscillations decreases as
ln N/ln(c − 1) is increased. It is found that the maxima of the oscillations take place at integer
values of ln N/ln(c − 1), while the minima take place at half-integer values. This means that
around integer values of ln N/ln(c − 1) the CF expression provides an under-estimated value
for Var(L), while around half-integer values of ln N/ln(c − 1) the CF expressions provide an
over-estimated value for Var(L). We also present approximated results (solid line) in which
VarDE(L) is evaluated using equation (64). The two curves are found to be in very good agree-
ment except for the limit of sparse networks in which equation (64) is not expected to provide
accurate results.

In figure 7 we present (× symbols) the difference VarDE(L) − VarCF(L) as a function of
ln N/ln(c − 1) where the degree c is fixed at c = 30 and the network size N is varied. It is found
that this difference exhibits oscillations as a function of ln N/ln(c − 1), whose wavelength is
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equal to 1 and the amplitude is a constant. It is found that the maxima of the oscillations
take place at integer values of ln N/ln(c − 1), while the minima take place at half-integer val-
ues. This means that around integer values of ln N/ln(c − 1) the CF expression provides an
under-estimated value for Var(L), while around half-integer values of ln N/ln(c − 1) the CF
expressions provide an over-estimated value for Var(L). We also present approximated results
(solid line) in which VarDE(L) is evaluated using equation (64). The two curves are found to be
in very good agreement except for the limit of sparse networks in which equation (64) is not
expected to provide accurate results. The oscillatory behavior presented in figure 7 implies that
the difference VarDE(L) − VarCF(L) depends on N only via the phase φ. This can be justified
using an argument similar to the one presented for the mean distance at the end of section 5.

7. Discussion

In configuration model networks, in the large network limit, the mean distance can be approx-
imated by equation (2). It is interesting to compare this result to the corresponding results in
models of growing networks. Here we focus on a model of random networks that grow by
node duplication (ND), introduced in reference [51]. In this model, at each time step a random
(mother) node is duplicated. The daughter node is connected to the mother node and is also
connected to each one of the neighbors of the mother node with probability p. This model
exhibits a phase transition at p = 1/2 between the sparse-network regime at p < 1/2 and the
dense-network regime at p > 1/2. In the sparse-network regime, the mean distance is given
by [21]

〈LND〉 = 2(1 − η) ln N +O(1), (65)

where η = p+ 2p3 +O(p4). Thus, the mean distance of a ND network scales logarithmically
with N as in the case of configuration model networks. However, it was found that for a given
network size N, the mean distance 〈LND〉 is significantly larger than the mean distance of a
configuration model network with the same degree distribution [21]. The variance of the DSPL
of ND networks is given by [21]

Var(LND) = 2(1 − η) ln N +O(1). (66)

Comparing equations (65) and (66), one observes that the mean and variance are the same,
which is typical to Poisson-like distributions. This implies that the DSPL of ND networks is a
broad distribution whose width scales like (ln N)1/2. This is in contrast to the case of RRGs, in
which the variance is very small and does not scale with the network size.

In directed ND networks not all the pairs of nodes are connected by directed paths. Condi-
tioning on pairs of nodes that are connected by directed paths, it was found that E[L|L < ∞] ∼
ln N, which is similar to the result for undirected ND networks. However, the variance scales
like Var(L) ∼ (ln N)2, which means that the distribution is much broader [22].

Another quantity which is closely related to the mean distance is the mean diameter 〈D〉
[52–54]. Unlike the mean distance 〈L〉which is averaged over all pairs of nodes in each network
instance as well as over the ensemble, the mean diameter is averaged only over the ensemble
(each network instance provides a single value of the diameter). It was shown that the mean
diameter of an ensemble of RRGs is given by [55]

〈D〉 = ln N
ln(c − 1)

+
ln ln N

ln(c − 1)
+O(1). (67)
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It thus turns out that the expressions for the mean distance 〈L〉 and the mean diameter 〈D〉 share
the same leading term. This is not an obvious result. It appears to reflect the fact that in the
shell structure around a random node, most nodes are concentrated in the last few shells. Such
networks, in which most of the distances are almost the same, are called idemetric networks
[56]. Having said that, the subleading term for the mean diameter scales like ln ln N, unlike the
case of 〈L〉 in which it does not depend on N. This reflects the fact that the diameter of an RRG
of size N is the maximal distance between all pairs of nodes. As N is increased the number of
such pairs increases, making it more probable to find a pair of nodes that are farther away from
each other.

8. Summary

The DSPL of RRGs follows a discrete Gompertz distribution. Using the discrete Laplace trans-
form and the Euler–Maclaurin formula we derived a closed-form expression for the moment
generating function of the DSPL. From the moment generating function we obtained expres-
sions for the mean distance 〈L〉 and for the variance Var(L) of the DSPL. More specifically, it
was found that the mean distance is given by

〈L〉 � ln N
ln(c − 1)

+
1
2
−

ln
(

c
c−2

)
+ γ

ln(c − 1)
, (68)

and the variance of the DSPL is given by

Var(L) � π2

6[ln(c − 1)]2
+

1
12

. (69)

The result for 〈L〉 extends known results by adding a correction term, which yields very good
agreement with the results obtained from DE of 〈L〉 via the tail-sum formula and with the
results obtained from computer simulations. The expression obtained for the variance captures
the overall dependence of the variance on the degree c. However, it turns out that on top of
the overall trend, the mean distance 〈L〉 and the variance Var(L) also exhibit some oscillatory
behavior, which is not captured by the CF expressions. The oscillations of the mean and vari-
ance are due to the discrete nature of the shell structure around a random node. They reflect the
profile of the filling of new shells as N is increased, or as c is decreased. It was shown that these
oscillations depend on N only via the phase φ, defined in equation (47). This implies regular
oscillations with wavelength 1 as a function of ln N/ln(c − 1), when N is varied and c is kept
fixed. The results for the mean and variance of the DSPL were compared to the corresponding
results obtained in other types of random networks. The relation between the mean distance
and the diameter was also discussed.
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[5] Barrat A, Barthélemy M and Vespignani A 2012 Dynamical Processes on Complex Networks

(Cambridge: Cambridge University Press)
[6] Newman M E J, Strogatz S H and Watts D J 2001 Random graphs with arbitrary degree distributions

and their applications Phys. Rev. E 64 026118
[7] Dorogovtsev S N, Mendes J F F and Samukhin A N 2003 Metric structure of random networks Nucl.

Phys. B 653 307
[8] van der Hofstad R, Hooghiemstra G and Van Mieghem P 2005 Distances in random graphs with

finite variance degrees Random Struct. Alg. 27 76
[9] van der Hofstad R, Hooghiemstra G and Znamenski D 2007 Distances in random graphs with finite

mean and infinite variance degrees Electron. J. Probab. 12 703
[10] Blondel V D, Guillaume J-L, Hendrickx J M and Jungers R M 2007 Distance distribution in random

graphs and application to network exploration Phys. Rev. E 76 066101
[11] van der Hofstad R and Hooghiemstra G 2008 Universality for distances in power-law random graphs

J. Math. Phys. 49 125209
[12] van der Esker H, van der Hofstad R and Hooghiemstra G 2008 Universality for the distance in finite

variance random graphs J. Stat. Phys. 133 169
[13] Shao J, Buldyrev S V, Cohen R, Kitsak M, Havlin S and Stanley H E 2008 Fractal boundaries of

complex networks Europhys. Lett. 84 48004
[14] Shao J, Buldyrev S V, Braunstein L A, Havlin S and Stanley H E 2009 Structure of shells in complex

networks Phys. Rev. E 80 036105
[15] Katzav E, Nitzan M, ben-Avraham D, Krapivsky P L, Kühn R, Ross N and Biham O 2015 Analytical

results for the distribution of shortest path lengths in random networks Europhys. Lett. 111 26006
[16] Nitzan M, Katzav E, Kühn R and Biham O 2016 Distance distribution in configuration-model

networks Phys. Rev. E 93 062309
[17] Melnik S and Gleeson J P 2016 Simple and accurate analytical calculation of shortest path lengths

(arXiv:1604.05521)
[18] Goldental A, Vardi R, Sardi S, Sabo P and Kanter I 2015 Broadband macroscopic cortical

oscillations emerge from intrinsic neuronal response failures Front. Neural Circuits 9 65
[19] Goldental A, Uzan H, Sardi S and Kanter I 2017 Oscillations in networks of networks stem from

adaptive nodes with memory Sci. Rep. 7 2700
[20] Bonneau H, Hassid A, Biham O, Kühn R and Katzav E 2017 Distribution of shortest cycle lengths

in random networks Phys. Rev. E 96 062307

21

https://orcid.org/0000-0001-9251-812X
https://orcid.org/0000-0001-9251-812X
https://orcid.org/0000-0001-8030-1951
https://orcid.org/0000-0001-8030-1951
https://orcid.org/0000-0001-7555-7717
https://orcid.org/0000-0001-7555-7717
https://doi.org/10.1103/physreve.64.026118
https://doi.org/10.1103/physreve.64.026118
https://doi.org/10.1016/s0550-3213(02)01119-7
https://doi.org/10.1016/s0550-3213(02)01119-7
https://doi.org/10.1002/rsa.20063
https://doi.org/10.1002/rsa.20063
https://doi.org/10.1214/ejp.v12-420
https://doi.org/10.1214/ejp.v12-420
https://doi.org/10.1103/physreve.76.066101
https://doi.org/10.1103/physreve.76.066101
https://doi.org/10.1063/1.2982927
https://doi.org/10.1063/1.2982927
https://doi.org/10.1007/s10955-008-9594-z
https://doi.org/10.1007/s10955-008-9594-z
https://doi.org/10.1209/0295-5075/84/48004
https://doi.org/10.1209/0295-5075/84/48004
https://doi.org/10.1103/physreve.80.036105
https://doi.org/10.1103/physreve.80.036105
https://doi.org/10.1209/0295-5075/111/26006
https://doi.org/10.1209/0295-5075/111/26006
https://doi.org/10.1103/physreve.93.062309
https://doi.org/10.1103/physreve.93.062309
https://arxiv.org/abs/1604.05521
https://doi.org/10.3389/fncir.2015.00065
https://doi.org/10.3389/fncir.2015.00065
https://doi.org/10.1038/s41598-017-02814-w
https://doi.org/10.1038/s41598-017-02814-w
https://doi.org/10.1103/physreve.96.062307
https://doi.org/10.1103/physreve.96.062307


J. Phys. A: Math. Theor. 55 (2022) 265005 I Tishby et al

[21] Steinbock C, Biham O and Katzav E 2017 Distribution of shortest path lengths in a class of node
duplication network models Phys. Rev. E 96 032301

[22] Steinbock C, Biham O and Katzav E 2019 Analytical results for the distribution of shortest path
lengths in directed random networks that grow by node duplication Eur. Phys. J. B 92 130

[23] Tishby I, Biham O, Katzav E and Kühn R 2018 Revealing the microstructure of the giant component
in random graph ensembles Phys. Rev. E 97 042318

[24] Katzav E, Biham O and Hartmann A 2018 Metric properties of subcritical Erdös–Rényi networks
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