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Abstract
We develop a formalism to compute the statistics of the second largest eigen-
pair of weighted sparse graphs with N � 1 nodes, finite mean connectivity and
bounded maximal degree, in cases where the top eigenpair statistics is known.
The problem can be cast in terms of optimisation of a quadratic form on the
sphere with a fictitious temperature, after a suitable deflation of the original
matrix model. We use the cavity and replica methods to find the solution in
terms of self-consistent equations for auxiliary probability density functions,
which can be solved by an improved population dynamics algorithm enforcing
eigenvector orthogonality on-the-fly. The analytical results are in perfect agree-
ment with numerical diagonalisation of large (weighted) adjacency matrices,
focussing on the cases of random regular and Erdős–Rényi (ER) graphs. We
further analyse the case of sparse Markov transition matrices for unbiased ran-
dom walks, whose second largest eigenpair describes the non-equilibrium mode
with the largest relaxation time. We also show that the population dynamics
algorithm with population size NP does not actually capture the thermodynamic
limit N →∞ as commonly assumed: the accuracy of the population dynamics
algorithm has a strongly non-monotonic behaviour as a function of NP, thus
implying that an optimal size N�

P = N�
P(N) must be chosen to best reproduce

the results from numerical diagonalisation of graphs of finite size N.
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1. Introduction

The second largest eigenvalue and the associated second eigenvector of a N × N matrix J is of
great significance in many areas of science, with plenty of applications. In coding theory, the
Hamming distance of a binary linear code can be expressed as a function of the second largest
eigenvalue of the coset graph associated to the code [1]. In biology, it has been shown in [2]
that the second largest eigenvalue of cancer metabolic networks describes the speed of cancer
processes. In the context of clustering methods based on the adjacency matrix of a graph,
the second eigenvector encodes inter-cluster connectivity, complementing the information
about intra-cluster connectivity included in the top eigenvector [3, 4]. Moreover, in princi-
pal component analysis, the second eigenvector of the covariance matrix of standardised data
represents the direction that accounts for the second largest source of variability within the
dataset [5, 6].

The second largest eigenvalue plays a pivotal role in the study of complex systems and
graph theory, representing topological features of the graphs [7]. If the spectral gap, i.e. the
distance between the largest and second largest eigenvalue, is large, then the graph has good
connectivity and expansion properties [8]. Therefore, many results have been derived about
bounds for the second largest eigenvalue (see e.g. [9, 10]). In particular, bipartite regular graphs
with very wide spectral gaps are called expanders (magnifiers if not bipartite) and have been
widely studied since the seminal work of Alon [11]. To shed light on the expansion properties
of regular graphs, specific bounds have been derived for their second largest eigenvalue (see
e.g. [1, 12]).

The knowledge of the spectral gap is essential for random walks on undirected graphs,
which are substantially equivalent to finite time-reversible Markov chains, as pointed out by
Lovasz in his survey [13]. Indeed, up to log-factors, the inverse spectral gap of the transition
matrix represents the mixing rate of the Markov chain, i.e. how fast the state probability vec-
tor of a Markov chain approaches the limiting stationary distribution [14], given by the top
right eigenvector of the transition matrix. The inverse of absolute value of second largest
eigenvalue of the transition matrix denotes the largest relaxation time or mixing time, and the
corresponding eigenvector describes the non-equilibrium mode with the slowest decay rate.
The second largest eigenpair of Markov transition matrices also plays an important role in all
processes that are described by means of random walks on graphs, such as out of equilibrium
dynamics of glassy systems (see e.g. [15, 16]) and search algorithms such as Google PageRank
[17].

In our analysis, we will be dealing with sparse symmetric random matrices, i.e. weighted
adjacency matrices of undirected graphs. We focus on the case of high sparsity, i.e. when the
probability of two nodes being connected is p = c/N, with c being the constant mean degree
of nodes. In this sparse limit, numerical studies have shown that most of the eigenvectors of a
random regular graph (RRG), as well as almost-eigenvectors1 [18], follow a Gaussian distri-
bution [19], whereas Erdős–Rényi (ER) eigenvectors are localised especially for low values of
c. The statistics of the first eigenvector components for very sparse symmetric random matri-
ces has been first considered in the seminal work by Kabashima and collaborators [20] and
subsequently in a more systematic way in our previous work [21]. Localisation properties of
eigenvectors of sparse non-Hermitian random matrices have been investigated in [44].

1 An almost-eigenvector of a matrix A with eigenvalue λ is a normalised vector v that satisfies the eigenvector equation
(A − λI)v = 0 within some small tolerance ε, i.e. ‖Av − λv‖2 � ε.

2



J. Phys. A: Math. Theor. 54 (2021) 015004 V A R Susca et al

Following the framework developed in [21], we look at the second largest eigenpair problem
as the top eigenpair problem for a deflated version of the original sparse matrix (see discussion
in section 2). We will be implementing a statistical mechanics formulation of the top eigenpair
problem of the deflated matrix, using both the cavity (section 3) and replica (appendix A)
methods in a unified way.

Both the replica and cavity methods from the physics of disordered systems have been
employed in the realm of random matrix theory for a long time. The replica method, tradi-
tionally used in the physics of spin glasses [22], was first introduced in the context of random
matrices by Edwards and Jones [23] to compute the average spectral density of random matri-
ces defined in terms of the joint probability density function of their entries. Later on, the
same approach proved useful to derive the spectral density of ER adjacency matrices as the
solution of an intractable integral equation in the seminal paper of Bray and Rodgers [24].
Later, approximation schemes such as the single defect approximation (SDA) and the effec-
tive medium approximation (EMA) [25, 26] were developed. An exact alternative approach
was introduced in [27]: starting from Bray–Rodgers replica-symmetric setup [24], the func-
tional order parameters of the theory are expressed as continuous superpositions of Gaussians
with fluctuating variances, as suggested by earlier solutions of models for finitely coordinated
harmonically coupled systems [28]. This formulation gives rise to non-linear integral equations
for the probability densities of such variances, which can be efficiently solved by a population
dynamics algorithm. We will follow a similar approach in appendix A.

The cavity method [29] has been employed in the study of disordered systems and sparse
random matrices as a more direct alternative to replicas. It is exact for highly sparse tree struc-
tures [30]. As shown in [31], one of the advantages of the cavity method is that it provides
the spectral density for very large single instances of sparse random graphs. Both methods,
known to lead to the same results for the spectral density [32], recover the Kesten–McKay
law for the spectra of RRGs [33, 34], the Marčenko–Pastur law and the Wigner’s semicircle
law respectively for sparse covariance matrices, and for ER adjacency matrices in the large
c limit [27, 31]. Likewise, the spectral density of sparse Markov matrices [35, 36], graphs
with modular [37] and small-world [38] structure, and with topological constraints [39] have
been obtained. Also, the spectral density in the complex plane of sparse non-Hermitian matrices
has been considered in [40–43].

As in [21], we will provide a cavity single-instance derivation for our problem. General-
ising the single-instance results in the thermodynamic limit, we will show that even for the
second eigenpair problem the cavity method leads to the same stochastic recursions obtained
from the replica treatment. The crucial difference between the present work and [21] is the
presence of the orthogonality condition between the top and second eigenvectors in the set of
final recursion equations. The population dynamics algorithm employed to solve these recur-
sions, complemented by a wise implementation of the orthogonality constraint, allows us to
characterise the distributions of the cavity fields in the thermodynamic limit, and to disentangle
the individual contributions of different degrees to the second eigenvector’s entries.

The plan of the paper is as follows. In section 2, we will formulate the problem in terms
of deflation and provide the main starting point. In section 3, we will describe the cavity
approach to the problem, first for the single instance case, and then in the thermodynamic
limit, highlighting the role of the orthogonality constraint (in section 3.2.1). To complement
the cavity results, we offer an equivalent replica treatment in appendix A. In section 4 we focus
on the case of the RRG: we analytically show how the solution for the top eigenpair of the
deflated adjacency matrix gets modified as the deflation parameter is changed. In section 5, we
specialise our results to the case of Markov transition matrices representing random walks on
graphs. In section 6, we provide the details of the population dynamics algorithm, focussing on
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how the extra orthogonality constraint is implemented. We also provide convincing evidence
that—at odds with what is commonly believed—the algorithm with finite population size NP

does not actually capture the thermodynamic limit N →∞, in that there is a non-trivial rela-
tion between the size N of the adjacency matrix being diagonalised, and the size NP of the
population one should ideally use to numerically compute its spectral properties. More pre-
cisely, the accuracy—measured with different metrics—with which the population dynamics
algorithm reproduces numerical diagonalisation of matrices (graphs) of size N has a strongly
non-monotonic behaviour as a function of NP, thus implying that an optimal size N�

P = N�
P(N)

must be chosen to best reproduce the diagonalisation results. Finally, in section 7 we offer a
summary of results.

2. Formulation of the problem

Given a real symmetric matrix J =
(
Ji j

)
and its top eigenpair (λ1, u), we define a deflated

matrix J̃(x) = (J̃i j(x)) by

J̃i j(x) = Ji j −
x
N

uiu j. (1)

In the present paper we will be mostly concerned with sparse matrices, where Ji j = ci jKi j are
the i.i.d. entries of the sparse symmetric matrix J. The top eigenvector u of J is normalised such
that |u|2 = N.2 The dense matrix uuT/N represents the projector onto the top eigenspace of the
original matrix J. The entries of the original matrix J are defined in terms of the connectivity
matrix ci j ∈ {0, 1}, i.e. the adjacency matrix of the underlying graph, and the random variables
Ki j encoding bond weights. Within our formalism, we are able to handle any kind of highly
sparse degree connectivity—where the mean node degree 〈k〉 = c is a finite constant that does
not scale with N (entailing c/N → 0 as N →∞). We will typically consider bounded degree
distributions: a candidate of interest can be represented by a bounded Poisson distribution

P(ki = k) = N−1 e−c̄c̄k/k!, k = 0, . . . , kmax, (2)

with the mean degree c ≡ 〈k〉 and N =
∑kmax

k=0 e−c̄c̄k/k! for normalisation. The bond weights
Ki j will be i.i.d. random variables drawn from a parent pdf pK(K) with bounded support. This
setting is sufficient to ensure that the largest eigenvalue λ1 of J will remain of ∼ O(1) for
N →∞.

The spectral theorem ensures that J̃(x) can be diagonalised via an orthonormal basis of
eigenvectors vα(x) with corresponding real eigenvalues λ̃α(x) (α = 1, . . . , N),

J̃vα = λ̃αvα, (3)

for each eigenpairα = 1, . . . , N, where to simplify notation we have omitted the x-dependence.
Assume that there is no eigenvalue degeneracy, and that they are sorted λ̃1 > λ̃2 > . . . > λ̃N ,
and the same holds for the eigenvalues λα (α = 1, . . . , N) of the original matrix J.

For any value of x, the matrices J and J̃(x) share the same set of eigenvectors (see
section 3.3.2 in [45]). The range of the deflation parameter x is [0,λ1], where the boundaries of
this range correspond respectively to no deflation (x = 0 ⇒ J = J̃) and full deflation (x = λ1).

2 The same normalisation convention applies to all the other eigenvectors of J, vα with α = 2, . . . , N.
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• When the value of x is smaller than the spectral gap g = λ1 − λ2, the top eigenvalue of
J̃(x) is given by λ1 − x with corresponding eigenvector u. Indeed:

J̃u =
(

J − x
N

uuT
)

u = (λ1 − x)u, (4)

with λ1 − x > λ2. We recall that uTu = N.
• Conversely, when x > g then the second largest eigenvalue of J, λ2, and the corresponding

eigenvector v2 become the top eigenpair of the matrix J̃. Indeed, following (4), the top
eigenvector of J, u, is still an eigenvector of J̃ related to the eigenvalue λ1 − x but now
λ2 > λ1 − x. Clearly,

J̃v2 =
(

J − x
N

uuT
)
v2 = λ2v2, (5)

in view of the orthogonality between u = v1 and v2.
• In particular, when x = λ1, i.e. the largest eigenvalue of the original matrix J 3, the top

eigenvector of J, u, is still an eigenvector of J̃, but corresponding to a zero eigenvalue.
Indeed,

J̃u =

(
J − λ1

N
uuT

)
u = (λ1 − λ1)u = 0u. (6)

• All other eigenpairs are unchanged.

By setting up a formalism based on the statistical mechanics of disordered systems, we
aim to find the average (or typical) value 〈λ2〉J of the second largest eigenvalue λ2 of J, and

the density ρJ,2(v) =
〈

1
N

∑N
i=1 δ(v − v(i)

2 )
〉

J
of the corresponding second largest eigenvector’s

components, v2 = (v(1)
2 , . . . , v(N)

2 ). The second eigenpair statistics of the matrix J is obtained
by finding the top eigenpair of the deflated matrix J̃(x) when x = λ1. Thus, in order to
obtain the desired quantities, we analyse the average largest eigenvalue 〈λ̃1〉J̃ and the den-

sity ρJ̃(v) =
〈

1
N

∑N
i=1 δ(v − v(i)

1 )
〉

J̃
of the top eigenvector’s components, v1 = (v(1)

1 , . . . , v(N)
1 )

of the deflated matrix J̃, where the average 〈·〉J̃ is taken over the distribution of the matrix J̃.
We provide:

• The second largest eigenpair statistics 〈λ2〉J and ρJ,2(v) of the matrix J, i.e. the solution
corresponding to the maximum deflation for J̃, in the case of a generic connectivity p(k)
with bounded maximum degree, found via the cavity method (section 3). We also offer an
equivalent replica derivation for the same problem (appendix A). In this general case, the
solution is available via population dynamics simulations (section 6);

• An explicit analytical solution for 〈λ̃1〉J̃ and ρJ̃(v) in the specific case of the adjacency
matrix of a RRG, showing that the solution requires that the deflation parameter x exceed
the spectral gap (section 4);

• The second largest eigenpair statistics of the unbiased random walk Markov transition
matrix. In this case, the deflation parameter x is set precisely to 1, i.e. equal to the largest
eigenvalue of the Markov transition matrix. Also in this case, an analytical description is
provided for the RRG connectivity case (section 5).

3 In the thermodynamic limit, the value such that full deflation is achieved is actually the average largest eigenvalue
〈λ1〉J of the matrix J.
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The equations (43)–(46) found below within the cavity framework (see section 3.2.1) rep-
resent the solution of the second largest eigenpair problem in the thermodynamic limit, and
constitute the main result of this paper. We notice that they are completely equivalent to the
equations (A.66)–(A.69) found within the replica framework (see A.2).

We will follow the same protocol used in [21]. Focussing on the matrix J̃, the problem can
be formulated as the optimisation of a quadratic function Ĥ(v), according to which v1 is the
vector normalised to N that realises the condition

Nλ̃1 = min
|v|2=N

[
Ĥ(v)

]
= min

|v|2=N

[
−1

2

(
v, J̃v

)]
, (7)

as dictated by the Courant–Fischer definition of eigenvectors. The round brackets (·, ·) indicate
the dot product between vectors in R

N . It is easy to show that Ĥ (v) is bounded

−1
2
λ̃1N � Ĥ (v) � −1

2
λ̃NN, (8)

and attains its minimum when computed on the top eigenvector.
For a fixed matrix J̃, the minimum in (7) can be computed by introducing a fictitious canon-

ical ensemble of N-dimensional vectors v at inverse temperature β, whose Gibbs–Boltzmann
distribution reads

Pβ ,̃J(v) =
1
Z

exp

[
β

2
(v, J̃v)

]
δ(|v|2 − N), (9)

where the delta function enforces normalisation. Clearly, in the low temperature limit β →∞,
only one ‘state’ remains populated, which corresponds to v = v1, the top eigenvector of the
matrix J̃.

3. Full deflation: cavity method

In this section, we present the cavity derivation of the single instance equation for the sec-
ond largest eigenpair problem. The formalism shown here differs from that presented in [21]:
here we analyse the partition function of the Boltzmann distribution (9), rather than a soft-
constrained version of it. This allows us to include hard constraints within the cavity frame-
work. The equations expressing the solution can be easily generalised to the thermodynamic
limit case, reproducing the same equations that will be found by the replica formalism in
appendix A, which constitute the main results of this work.

We consider a random N × N symmetric matrix J̃ =
(
J̃i j

)
, with real entries. The matrix

entries are defined as

J̃i j = Ji j −
λ1

N
uiu j, (10)

where Ji j = ci jKi j are the entries of the sparse symmetric random matrix J, λ1 is its largest
eigenvalue and u its top eigenvector, normalised such that |u|2 = N, which we assume to be
known. The vector u will be also referred to as the probe eigenvector. The entries of the original
matrix J are defined in terms of the ci j ∈ {0, 1}, which is the connectivity matrix, i.e. the
adjacency matrix of the underlying graph, and the Ki j, which encode bond weights. The dense
matrix 1

N uuT represents the projector onto the first eigenspace of the original matrix J. The
matrix J̃ is also said to be a fully-deflated matrix.

6
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3.1. Cavity single-instance derivation for the largest eigenvalue of J̃

In the full deflation setting, given a single instance matrix J̃, its largest eigenvalue λ̃1 is the
second largest eigenvalue λ2 of the original matrix J. It can be defined as

λ̃1 = λ2 = lim
β→∞

2
βN

ln ZN , ZN =

∫
dv exp

[
β

2

(
v, J̃v

)]
δ
(
|v|2 − N

)
.

(11)

The partition function explicitly reads

ZN =

∫
dv exp

[
β

2
(v, Jv) − βλ1

2N
(u, v)2

]
δ
(
|v|2 − N

)
. (12)

The square in the exponent can be written as

1
N

(u, v)2 = N

[
1
N

(u, v)

]2

= Nq2, (13)

with the identification

q =
1
N

(u, v) . (14)

The definition of the order parameter q is enforced via the integral identity

1 =

∫
Nβ

dq dq̂
2π

exp (iNβqq̂ − iβq̂(u, v)) . (15)

By also employing a Fourier representation of the Dirac delta enforcing the normalisation
constraint, the partition function then becomes

ZN =

(
β

4π

)(
Nβ

2π

)∫
dq dq̂dλ exp

[
βN

(
iqq̂ − λ1

2
q2 + i

λ

2

)]
Z̃N (q̂,λ)

= C
∫

dq dq̂dλ exp

[
βN

(
iqq̂ − λ1

2
q2 + i

λ

2
+

1
Nβ

LogZ̃N (q̂,λ)

)]

= C
∫

dq dq̂ dλ exp [βNS (q, q̂,λ)] , (16)

where

Z̃N (q̂,λ) =
∫ N∏

i=1

dvi exp

(
−iλ

β

2

∑
i

v2
i − iq̂β (u, v) +

β

2
(v, Jv)

)
, (17)

and C includes all the pre-factors.
The stationarity of the action S(q, q̂,λ) w.r.t. q, q̂ and λ entails that the following conditions

hold,

iq̂� = λ1q� (18)

q� =
1
N

N∑
i=1

ui 〈vi〉 (19)

7
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1 =
1
N

N∑
i=1

〈
v2

i

〉
, (20)

where the starred quantities indicate the saddle-point values of the parameters. The angular
brackets indicate averaging w.r.t. the distribution

Pβ(v|q̂�,λ�) =
1

Z̃N(q̂�,λ�)
exp

(
−iλ� β

2

∑
i

v2
i − iq̂�β (u, v) +

β

2
(v, Jv)

)
.

(21)

By looking at the saddle point condition (18), in what follows we can identify iq̂� = λ1q� =
λ1q (omitting the star for brevity) and define iλ� ≡ λ, such that (21) becomes

Pβ(v|λ1q,λ) =
1

Z̃N(λ1q,λ)
exp

(
−λ

β

2

∑
i

v2
i − λ1qβ (u, v) +

β

2
(v, Jv)

)
.

(22)

The components vi are found in the β →∞ limit by the cavity method applied to the dis-
tribution (22) 4. Here we will follow the protocol detailed in section 3.1 of [21], reporting the
key steps to make this paper self-contained.

By making a tree-like assumption on the structure of the highly sparse graph encoded in the
original matrix J that we deflate, the marginal pdf w.r.t. a certain component i is given by

Pi(vi|λ1q,λ) =
1
Zi

exp

(
−β

2
λv2

i − βλ1quivi

)

×
∏
j∈∂i

∫
dv j exp

(
βviJi jv j

)
P(i)

j (v j|λ1q,λ), (23)

where ∂i denotes the immediate neighbourhood of i. The factorisation over the neighbouring
nodes of i is due to the fact that in a tree-like structure the nodes j ∈ ∂i are connected with each
other only through i. The distribution P(i)

j (v j|λ1q,λ) is called marginal cavity distribution: it is
the distribution of the components v j defined on the neighbouring nodes of i, in the network
in which i has been removed.

In the same way (see for instance equation (11) in [21]), for any j ∈ ∂i the cavity marginal
pdf satisfies the self-consistent equation

P(i)
j (v j|λ1q,λ) =

1

Z(i)
j

exp

(
−β

2
λv2

j − βλ1qu jv j

)

×
∏
�∈∂ j\i

∫
dv� exp

(
βv jJ j�v�

)
P( j)
� (v�|λ1q,λ), (24)

where ∂ j\i indicates the set of neighbours of the node j with the exclusion of i.

4 It can be noticed that the distribution (22) is substantially equivalent to the grand-canonical distribution (equation (7)
in [21]) which we adopt as the starting point of the cavity treatment in [21].
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A Gaussian ansatz provides the solution to the self consistent equation, viz

P(i)
j (v j|λ1q,λ) =

√
βω(i)

j

2π
exp

(
−
βh(i)

j

2ω(i)
j

)
exp

(
−β

2
ω(i)

j v
2
j + βh(i)

j v j

)
, (25)

where the parameters ω(i)
j and h(i)

j are called cavity fields. By inserting the ansatz in (24) and
performing the Gaussian integrals, the set of self-consistent equations represented by (24)
translates into a set of recursions for the cavity fields,

ω(i)
j = λ−

∑
�∈∂ j\i

J2
j�

ω( j)
�

, (26)

h(i)
j = −λ1qu j +

∑
�∈∂ j\i

J j�h
( j)
�

ω( j)
�

. (27)

Likewise, by means of (25), the marginal distribution Pi(vi|λ1q,λ) can be written as

Pi(vi|λ1q,λ) =
1
Zi

exp

(
−β

2
ωiv

2
i + βhivi

)
, (28)

where

ωi = λ−
∑
j∈∂i

J2
i j

ω(i)
j

, (29)

hi = −λ1qui +
∑
j∈∂i

Ji jh
(i)
j

ω(i)
j

. (30)

Using the cavity factorisation in (28) to express (22), we eventually obtain

Pβ(v|λ1q,λ) =
N∏

i=1

1
Zi

exp

(
−β

2
ωiv

2
i + βhivi

)
. (31)

In the β →∞ limit,

Pβ(v|λ1q,λ) →
N∏

i=1

δ

(
vi −

hi

ωi

)
, (32)

entailing that the components vi of the second largest eigenvector, representing the ground
state of the system with Boltzmann distribution (9), are given by the ratios hi/ωi. Therefore
(19) and (20) become

q =
1
N

N∑
i=1

ui
hi

ωi
, (33)

1 =
1
N

N∑
i=1

(
hi

ωi

)2

. (34)

9
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Considering (11) and (16), the largest eigenvalue of J̃ (corresponding to the second largest
eigenvalue of J) is then given by

λ̃1 = λ2 = λ+ λ1q2. (35)

Equation (32) defines the components of the top eigenvector v of the fully-deflated matrix
J̃ in terms of (29) and (30). Because of the full deflation, v also represents the second largest
eigenvector of the original matrix J. In view of the orthogonality between u and v, it follows
that q = 0, viz

0 =
1
N

N∑
i=1

ui
hi

ωi
, (36)

where the components ui and vi are naturally referring to the same node i with degree ki of
the network represented by J. To summarise, in the single instance case the solution is given
by the cavity recursions (26) and (27) along with the normalisation condition (34) and the
orthogonality constraint (36). The value λ = λ2 represents the second largest eigenvalue of the
matrix J (i.e. the top eigenvalue of the deflated matrix J̃), and according to the same mechanism
explained in appendix A of [21], it is the only value that satisfies the normalisation condition
(34). The fact that the value λ represents the top eigenvalue of the deflated matrix J̃ is totally
general and applies for any value of deflation parameter x (see for instance section 4).

3.2. Cavity method: thermodynamic limit

Following the reasoning of section 3.2 in [21], in the limit N →∞ we can consider the joint
probability density of the cavity fields ω(i)

j and h(i)
j taking values around respectively ω and h,

π (ω, h) =
kmax∑
k=1

k
c

p (k)
∫

duρJ(u|k)
∫ [k−1∏

�=1

dπ (ω�, h�)

]

×
〈
δ

(
ω − λ+

k−1∑
�=1

K2
�

ω�

)
δ

(
h −
(
−qu〈λ1〉J

+

k−1∑
�=1

h�K�

ω�

))〉
{K}k−1

, (37)

where dπ (ω�, h�) ≡ dω� dh�π (ω�, h�), and the average 〈·〉{K}k−1
is taken over k − 1 independent

realisations of the bond weights K. Here, ρJ(u|k) is the distribution of the top eigenvector’s
component of J conditioned to the degree k. The distribution k

c p(k) represents the probability
that a randomly chosen link points to a node of degree k and c = 〈k〉, and appears in (37)
as cavity fields are related to links. Equation (37) generalises in the thermodynamic limit the
recursions (26) and (27) in the case of full deflation (x = λ1).

By using the law of large numbers, in the thermodynamic limit the normalisation condition
(34) reads

1 =

kmax∑
k=0

p(k)
∫

duρJ(u|k)
∫ [ k∏

�=1

dπ (ω�, h�)

]〈⎛⎝−qu〈λ1〉J +
∑k

�=1
h�K�
ω�

λ−
∑k

�=1
K2
�

ω�

⎞
⎠

2〉
{K}k

,

(38)

10
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whereas the orthogonality constraint (33) becomes

q =

kmax∑
k=0

p(k)
∫

duρJ(u|k)u
∫ [ k∏

�=1

dπ (ω�, h�)

]〈
−qu〈λ1〉J +

∑k
�=1

h�K�
ω�

λ−
∑k

�=1
K2
�

ω�

〉
{K}k

. (39)

Similarly, the distribution of the top eigenvector’s components of the fully deflated matrix J̃,
i.e. the second largest eigenvector of J, is obtained in terms of averages w.r.t. the distribution
π(ω, h) as

ρJ̃(v) = ρJ,2(v)

=

kmax∑
k=0

p(k)
∫

duρJ(u|k)
∫ [ k∏

�=1

dπ (ω�, h�)

]〈
δ

⎛
⎝v − −qu〈λ1〉J +

∑k
�=1

h�K�
ω�

λ−
∑k

�=1
K2
�

ω�

⎞
⎠〉

{K}k

.

(40)

We notice that in the equations (38)–(40), the degree distribution p(k) naturally crops up, as
they encode properties related to nodes, rather than links. Moreover, equation (35) generalises
to the thermodynamic limit case, as

〈λ̃1〉J̃ = 〈λ2〉J = λ+ 〈λ1〉Jq2. (41)

We anticipate that the latter result is equivalent to the average second largest eigenvalue
explicitly found by the replica approach in equation (A.54) in appendix A.

3.2.1. Cavity method: the orthogonality condition. At this point, recalling section 2 we notice
that for x > g and in particular when x = 〈λ1〉J (full deflation) the top eigenvector of the
deflated matrix J̃, v, corresponds to the second largest eigenvector of the original matrix J.
We then show that equation (39) encodes the orthogonality-on-average condition between v
and the probe eigenvector u. Indeed, the orthogonality condition reads

0 =

∫
du dvPJ(u, v)uv

=

kmax∑
k=0

p(k)
∫

duρJ(u|k)dvρJ,2(v|u, k)uv

=

kmax∑
k=0

p(k)
∫

duρJ(u|k)u
∫ [ k∏

�=1

dπ (ω�, h�)

]

×
〈⎛⎝−qu〈λ1〉J +

∑k
�=1

h�K�
ω�

λ−
∑k

�=1
K2
�

ω�

⎞
⎠〉

{K}k

, (42)

where PJ(u, v) indicates the joint probability density of the first and second largest
eigenvector’s components of J, and the conditional pdf ρJ,2(v|u, k) is obtained from (40) eras-
ing the u-integration and the k-sum. The conditional pdf ρJ(u|k) is given by omitting the k-sum
in the expression for the density of the top eigenvector components ρJ(u) (48). The compari-
son between (42) and (39) implies that q = 0. Taking into account the average orthogonality

11
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condition q = 0, the equations (37)–(41) simplify to

π(ω, h) =
kmax∑
k=1

p(k)
k
c

∫
{dπ}k−1

〈
δ

(
ω −
(
λ−

k−1∑
�=1

K2
�

ω�

))

× δ

(
h −
(

k−1∑
�=1

h�K�

ω�

))〉
{K}k−1

, (43)

1 =

kmax∑
k=0

p(k)
∫

{dπ}k

〈⎛⎝ ∑k
�=1

h�K�
ω�

λ−
∑k

�=1
K2
�

ω�

⎞
⎠

2〉
{K}k

, (44)

0 =

kmax∑
k=0

p(k)
∫

duρJ(u|k)u
∫

{dπ}k

〈⎛
⎝ ∑k

�=1
h�K�
ω�

λ−
∑k

�=1
K2
�

ω�

⎞
⎠
〉

{K}k

, (45)

ρJ̃(v) ≡ ρJ,2(v) =
kmax∑
k=0

p(k)
∫

{dπ}k

〈
δ

⎛
⎝v −

∑k
�=1

h�K�
ω�

λ−
∑k

�=1
K2
�

ω�

⎞
⎠
〉

{K}k

, (46)

〈
λ̃1

〉
J̃
≡ 〈λ2〉J = λ, (47)

where we have used the shorthand {dπ}k =
∏k

�=1 dω� dh�π(ω�, h�).
Enforcing the orthogonality condition given by (45) is crucial to find the correct solution.

The conditional pdf ρJ(u|k) appearing in (45) is given by omitting the k-sum in the expression
for the density of the top eigenvector components ρJ(u) (see equation (111) in [21]), reported
here

ρJ(u) =
kmax∑
k=0

p(k)
∫

{dπ1}k

〈
δ

⎛
⎝u −

∑k
�=1

b�K�
a�

〈λ1〉J −
∑k

�=1
K2
�

a�

⎞
⎠〉

{K}k

, (48)

where π1(a, b) indicates the distribution of cavity fields of type a and b for the top eigenpair
problem5. The integration w.r.t. the conditional distribution ρJ(u|k) in (45) generalises to the
thermodynamic limit the fact that both the components ui and vi =

hi
ωi

in (36) refer to the same
node i with degree ki. Indeed, by comparing (48) with (46) and (45), we notice that the compo-
nents of u are still coupled to those of v in (45) through their structure, as they both refer to the
same degree k (see section 6 for more details). The replica derivation in appendix A provides
an independent proof of this result.

Therefore, in order to enforce the constraint (45) correctly, we need to impose strict orthog-
onality on-the-fly, i.e. while the components of the top eigenvector u and the components of the
second largest eigenvector v are being evaluated at the same time by averaging w.r.t. respec-
tively π1 and π, as prescribed by (48) and (43). The way strict orthogonality is imposed is
via a correction to the components of v: the details of this procedure and the corresponding

5 In the context of the top eigenpair problem, the cavity field of type a has the role of an inverse cavity variance
(similarly to ω for the second largest eigenpair problem), whereas b represents a cavity bias (similarly to h here). See
section 3 in [21].
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Figure 1. Second largest eigenpair of the ER adjacency matrix. Top left panel: marginal
distribution of the inverse single site variances ω. The thick dashed line represents the
full pdf, the thinner curves underneath stand for the single degree contributions, from
k = 1 to k = 12. The rightmost peak at ω = λ corresponds to k = 1: the peaks are cen-
tered at lower ω as the degree k increases. Top right panel: marginal pdf of the single-site
bias fields h. Again, the thick dashed line represents the full pdf, the thinner solid curves
stand for the degree contributions from k = 1 to k = 12. Each curve corresponding to
a degree k is symmetric around h = 0. As k grows, their variance broadens and the
curves flatten. Bottom left panel: pdf of the second largest eigenvector’s components
(see (46)), obtained by population dynamics (solid blue) and by direct diagonalisation
of 2000 matrices of size N = 5000 (red circles) showing excellent agreement. The popu-
lation size is NP = 105. The inset shows the right tail of the pdf in log scale. Bottom right
panel: pdf of the second largest eigenvector’s components in the case of ER weighted
adjacency matrices, obtained by population dynamics (solid blue) and by direct diago-
nalisation of 2000 matrices of size N = 5000 (red circles) showing excellent agreement.
Also in this case, the population size is NP = 105 and the inset shows the right tail of
the pdf in log scale.

algorithm are given in section 6. We remark that the condition q = 0 holds whenever x exceeds
the spectral gap.

To summarise, the equations (43)–(47) represent the solution of the second largest eigen-
pair problem in the thermodynamic limit and constitute the main result of this paper. This
set of equations must be generally solved by a population dynamics algorithm, as detailed
in section 6. It is completely equivalent to the equations (A.66)–(A.70), respectively, found
within the replica framework (see A.2).

Figure 1 shows the numerical results in the case of an Erdős–Rényi (ER) adjacency
matrix with c = 4 and kmax = 12. We find 〈λ2〉J = 4.463, within a 2% error w.r.t. the value
λ2,∞ = 4.565 obtained by extrapolation from the direct diagonalisation data. The bottom right

13
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Figure 2. Pdf of second largest eigenvector’s components in the ER adjacency matrix
case, with c = 10 and kmax = 22. Top left panel: results from population dynamics (blue
thick curve) are compared with diagonalisation of matrices of size N = 500 (light pur-
ple), N = 1000 (green), N = 2000 (red) and N = 5000 (yellow). As N increases, we
notice that the direct diagonalisation curves approach the pdf generated by population
dynamics with a fairly large population size, NP = 105. Top right panel: the (right) tails
of the distributions shown in the top left panel, shown in log scale. Bottom panel: the
average second largest eigenvalue 〈λ2〉 as a function of N, obtained with direct diago-
nalisation. The power law fit is superimposed in red. As discussed in the main text, the
inset shows the plot of λ2,∞ − 〈λ2〉 vs N in log scale.

panel of figure 1 refers instead to the case of ER weighted adjacency matrix with c = 4 and
kmax = 12. We consider the case of uniform distribution of bond weights, pK(K) = 1/2 for
K ∈ [1, 3]. In this case, we find 〈λ2〉J = 9.5016, within a 2.5% error w.r.t. the reference value
λ2,∞ = 9.7452 obtained by extrapolation from the direct diagonalisation data. In the plot, we
compare the pdf of second largest eigenvector’s components obtained via population dynamics
with results from the direct diagonalisation of 2000 matrices of size N = 5000.

Figure 2 compares the theoretical results for the pdf of the second largest eigenvector’s com-
ponents with results of direct numerical diagonalisation for adjacency matrices of ER graphs
with c = 10 and kmax = 22. In this case, we find 〈λ2〉J = 6.656, within a 0.4% error w.r.t. the
value λ2,∞ = 6.658 obtained by extrapolation from the direct diagonalisation data. We observe
that there are finite size effects in the distribution of eigenvector components that are signifi-
cantly stronger than those observed in the eigenvalue problem. The bottom panel of figure 2
shows the average second largest eigenvalue 〈λ2〉 as a function of the matrix size N, obtained
via direct diagonalisation of adjacency matrices of ER graphs with c = 10 and kmax = 22. The
data are fitted by a power law curve 〈λ2〉 = aN−b + λ2,∞, with b  0.8115 for this type of
network. The inset shows the plot of λ2,∞ − 〈λ2〉 against N in log scale, confirming that the
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power law exponent b is positive. The power law convergence is a common behaviour found
in all ensembles analysed in this paper, though the value of the exponent b depends on details
of the systems.

4. Random regular graphs

For non-weighted adjacency matrices of RRGs, the degree distribution is simply p(s) = δs,c,
and the bond weights distribution is trivially pK(K) = δ(K − 1), resulting in a constant probe
top eigenvector u, i.e. ρJ(u) = ρJ(u|c) = δ(u − 1). The largest eigenvalue λ1 is non-random
and pinned to the valueλ1 = c. The spectral density is given by the Kesten–McKay distribution
(see figure 3),

ρKM(λ) =
c
√

4(c − 1) − λ2

2π(c2 − λ2)
, |λ| � 2

√
c − 1. (49)

In this section we look at the behaviour of the solution for a generic value of the deflation
parameter x in the range [0, c]. Therefore, the value of q is in principle non-zero. We remark that
q = 0 holds surely in the case of full deflation, as in section 3 (and appendix A). For a general
value of the deflation parameter x, the equation (37) for π(ω, h), along with the conditions (38)
and (39) become respectively

π(ω, h) =
∫

{dπ}c−1δ

(
ω −
(
λ−

c−1∑
�=1

1
ω�

))
δ

(
h −
(
−qx +

c−1∑
�=1

h�

ω�

))
,

(50)

1 =

∫
{dπ}c

(
−qx +

∑c
�=1

h�
ω�

λ−
∑c

�=1
1
ω�

)2

, (51)

q =

∫
{dπ}c

(
−qx +

∑c
�=1

h�
ω�

λ−
∑c

�=1
1
ω�

)
, (52)

and the density of the top eigenvector’s components of the deflated matrix J̃ (40) is given for
general x by

ρJ̃(v) =
∫

{dπ}c δ

(
v −

−qx +
∑c

�=1
h�
ω�

λ−
∑c

�=1
1
ω�

)
. (53)

We will show that the solution of the self-consistency equation (50) along with (51)–(53) cru-
cially depends on the value of the deflation parameter x. We recall here that the range of x is
[0, c], where the boundaries of this range correspond respectively to no deflation (x = 0) and
full deflation (x = c).

We anticipate that in the outer regime 0 � x < c − 2
√

c − 1 (see figure 3), the probe eigen-
vector u = {1, 1, . . . , 1}, i.e. the top eigenvector of the original matrix J, is also the top eigen-
vector of the deflated matrix J̃, with corresponding largest eigenvalue c − x lying outside
the bulk of the Kesten–McKay spectrum [33, 34]. Conversely, in the bulk regime i.e. when
x > c − 2

√
c − 1, the top eigenvector’s components density is a standard normal distribution,

with corresponding largest eigenvalue 2
√

c − 1. The probe all-one eigenvector u is still an
eigenvector of J̃ but refers to an eigenvalue c − x < 2

√
c − 1. In other words, we show that
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Figure 3. The positive branch of the Kesten–McKay distribution (49) in solid red for
c = 4. The red dot at λ = 4 represents the top eigenvalue λ1 = c, which is an outlier. The
dashed blue vertical line at λ = 2

√
(c − 1) or equivalently x = c − 2

√
(c − 1) separates

the outer regime (light green) from the bulk regime (light yellow).

the second largest eigenpair of the RRG adjacency matrix is given by 〈λ2〉J = 2
√

c − 1 and
ρJ,2(v) = N (0, 1). Figure 3 explains graphically the outer and bulk regimes.

The abrupt change of the solution (from constant u to normally distributed when x hits
the value c − 2

√
c − 1) reflects the fact that the usual peaked ansatz for the RRG case (see

[21]) is not valid in the bulk regime c − 2
√

c − 1 < x � c. Therefore, in order to solve the
self-consistency equation (50), we choose a ‘mixed’ ansatz of the form

π(ω, h) = δ(ω − ω̄)

√
1

2πσ2
exp

[
− (h − h̄)2

2σ2

]
, (54)

for real ω̄ and h̄.
We further show that in the range 0 � x < c − 2

√
c − 1, the solution reduces to a peaked

ansatz, i.e. σ2 = 0—just like in the case of the largest eigenpair of the original matrix
J—whereas in the range c − 2

√
c − 1 � x < c, the variance σ2 must be finite.

Indeed, by inserting (54) into (50) and performing the rhs integrals, we find

π(ω, h) = δ

(
ω −
(
λ− c − 1

ω̄

))√
ω̄2

2πσ2(c − 1)

× exp

⎡
⎢⎣−
(

h − (−qx + h̄
ω̄

(c − 1))
)2

2σ2(c − 1)/ω̄

⎤
⎥⎦ . (55)

Comparing (55) with the ansatz (54), we find that the following relations must be satisfied

ω̄ = λ− c − 1
ω̄

, (56)

h̄ = −qx +
h̄
ω̄

(c − 1), (57)
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σ2 = σ2 c − 1
ω̄2

. (58)

From the last condition (58), we can infer that if σ2 > 0, then ω̄ =
√

c − 1, i.e. a finite variance
of the distribution of components pins ω̄ to a specific value. Only if σ2 = 0, then ω̄ can assume
values other than

√
c − 1, according to equation (56).

Inserting the ansatz (54) in the normalisation condition (51) and in the condition (52), we
find two extra conditions to fix respectively σ2 and q,

σ2 =
ω̄2

c

[(
λ− c

ω̄

)2
−
(

c
c
ω̄
− qx

)2
]

, (59)

q
(
λ− c

ω̄

)
=

(
c

h̄
ω̄
− qx

)
. (60)

By combining (56), (57) and (60), we find an expression for q in terms of ω̄ and h̄,

q =
h̄

ω̄ − 1
, (61)

which in turn can be inserted into equation (57) to give

h̄

(
1 +

x
ω̄ − 1

− c − 1
ω̄

)
= 0. (62)

Comparing equation (56) rewritten as

ω̄2 − λω̄ + c − 1 = 0, (63)

with a slight rewriting of the condition that the expression in the round brackets of (62) be zero,
viz

ω̄2 − (c − x)ω̄ + c − 1 = 0, (64)

we notice that (63) and (64) can be compatible only if the coefficient of ω̄ is the same, entailing
λ = c − x. Moreover, by solving (64) for ω̄ we also find the explicit dependence of ω̄ on x.
Indeed, we get

ω̄(x)1,2 =
c − x ±

√
(c − x)2 − 4(c − 1)

2
. (65)

By imposing that the radicand be positive in order to get a real solution, we find that
equation (65) yields a x-dependent real solution only for 0 � x < c − 2

√
c − 1. Only in this

regime, ω̄ = ω̄(x) can assume values other than
√

c − 1, entailing from (58) a peaked solution
for π.6

Conversely, for any x > c − 2
√

c − 1, equation (65) would produce a x-dependent complex
solution ω̄(x), which is not acceptable for this problem (recall that ω and h must be real), thus
implying

σ2 > 0 ⇔ ω̄(x) =
√

c − 1 ∀ x ∈ [c − 2
√

c − 1, c]. (66)

6 We remark that in this regime a finite variance solution for π that pins ω̄ to
√

c − 1 is still possible, but yields a higher
ground state free energy 〈F〉J̃ than the peaked solution. Indeed, 〈F〉J̃ = − N

2 〈λ1〉J̃ . See sections 4.1 and 4.3.
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4.1. RRG-deflated top eigenvalue: outer regime

From (66), it follows that σ2 = 0 in the outer regime. From (59) and (60), we thus find

⎧⎪⎪⎨
⎪⎪⎩
(
λ− c

ω

)2
=

(
c

h̄
ω̄
− qx

)2

q
(
λ− c

ω

)
=

(
c

h̄
ω̄
− qx

) ⇒ q = ±1. (67)

When solving (67), we must discard the other possible solution q = 0, since it would not satisfy
the normalisation constraint (51).

Equipped with this information and also taking into account (54), (64) and the identity
h̄ = ω̄ − 1, which follows from (61), we find for the average of the largest eigenvalue of J̃ the
formula 〈

λ̃1

〉
J̃
= c − x. (68)

Details of the computation that leads to this result are in appendix B.
Therefore, the deflation with a parameter x in the regime 0 � x < c − 2

√
c − 1 has the

effect of decreasing the top eigenvalue c of the original RRG adjacency matrix J by a quantity
x, as long as it lies outside the spectral bulk of the Kesten–McKay distribution. This confirms
the mechanism explained in section 2. In the next subsection, we will show that the corre-
sponding eigenvector is still the top eigenvector of J.

4.2. RRG-deflated density of top eigenvector components: outer regime

As found at the beginning of this section, within the range 0 � x < c − 2
√

c − 1, the ansatz
for π is delta-peaked, since σ2 = 0. We show that a peaked ansatz of this sort corresponds to
the top eigenvector of the matrix J̃ being all-ones: this means that for 0 � x < c − 2

√
c − 1

the top eigenvector of J̃ is exactly the probe eigenvector u.
Indeed, by inserting the ansatz (54) in (53) and taking into account (64) and (67), we find

ρJ̃(v) = δ

(
v − c h̄

ω̄ − qx
λ− c

ω̄

)
, (69)

but, from (67),

∣∣∣∣c h̄
ω̄
− qx

∣∣∣∣ = ∣∣∣λ− c
ω̄

∣∣∣ , (70)

implying

ρJ̃(v) = δ (v − 1) ⇒ v = u, (71)

where the choice of the ‘+’ sign solution is not restrictive.
In conclusion, as long as the largest eigenvalue c − x of the deflated matrix J̃ lies outside

the spectral bulk (i.e. for 0 � x < c − 2
√

c − 1), the corresponding top eigenvector v is equal
to the probe eigenvector u = (1, . . . , 1)T, i.e. the top eigenvector of J.
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4.3. RRG top eigenvalue: bulk regime

In this range, we have shown in (66) that the variance σ2 is positive, giving rise to a mixed
‘delta-Gaussian’ ansatz for π. The parameter σ2 being positive implies that ω̄ must be pinned
to the value

√
c − 1. From (56), it follows that λ = 2

√
c − 1. The values of q and h̄ are deter-

mined by the normalisation (51) and orthogonality (52) conditions. Indeed, the change in the
ansatz corresponds to a change in the structure of the largest eigenvector v of J̃. As shown in
section 3.2, the orthogonality condition reads

0 =

∫
du dvρJ̃(u|c)ρJ̃(v|u, c)uv

=

∫
{dπ}c

∑c
�=1

h�
ω�

− qx

λ−
∑c

�=1
1
ω�

, (72)

where ρJ̃(u|c) = δ(u − 1) is the conditional distribution of the probe eigenvector’s entries and
(53) has been used. Comparing (72) with (52) we infer that q = 0. Moreover, inserting q = 0
in (59) and (60), we can respectively infer that

σ2 =
ω̄2

c

(
λ− c

ω̄

)2
=

(c − 2)2

c
, (73)

h̄ = 0. (74)

Equipped with this information and also by taking into account (54), we find that the average
of the largest eigenvalue of J̃ is〈

λ̃1

〉
J̃
= 2

√
c − 1, (75)

corresponding to the upper edge of the Kesten–McKay distribution. Also in this case, the
details of this calculation are in appendix B.

As expected, the eigenvalue does not depend on the normalisation of the corresponding
eigenvector, encoded in σ2. Since this result holds for any x in c − 2

√
c − 1 < x � c, including

the case of full deflation when x = 〈λ1〉J = c and the first eigenmode u of the original matrix
J is associated to a zero eigenvalue, we conclude that the average second largest eigenvalue of
the matrix J is

〈λ2〉J =
〈
λ̃1

〉
J̃(x=c)

= 2
√

c − 1. (76)

Also in this case, we find agreement with the general deflation framework described in
section 2.

4.4. RRG density of top eigenvector components: bulk regime

In this range of values for x, we show that the ‘delta-Gaussian’ ansatz for π(ω, h) leads to a
Gaussian-distributed top eigenvector of the matrix J̃. Since this result is valid also in case of
full deflation, i.e. x = c, we can conclude that the eigenvector corresponding to the second
largest eigenvalue of a RRG adjacency matrix J is normally distributed7. We then identify in

7 We remark that our method cannot provide the eigenvector statistic for x = c − 2
√

c − 1. Indeed, for this specific
value of x, the probe eigenvector u is forced to correspond to the eigenvalue 2

√
c − 1, which retains its own eigenvector,

thus artificially creating a degeneracy. Our method is based on the assumption of non-degeneracy of eigenvalues, so
we are not able to give a result about eigenvectors in this marginal case.
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Figure 4. In green, the profile of the distribution of the second largest eigenvector’s
components (77) obtained via population dynamics, with population size NP = 106.
As a reference, we plot the standard normal distribution (red circles), showing perfect
matching.

x = c − 2
√

c − 1 ⇐⇒ λ = 2
√

c − 1 a transition point for the structure of the distribution of
the top eigenvector’s components of J̃(x), at which the parameter q changes discontinuously
from q = ±1 to 0.

We now evaluate the density of the top eigenvector components in the range c − 2
√

c − 1 <
x � c. Inserting the ansatz (54) in (53) and taking into account (66), (72)–(74), we find

ρJ̃(v) ≡ ρJ,2(v) =
exp(−v2/2)√

2π
. (77)

We remark that this analytical result is in excellent agreement with the statistics of the second
largest eigenvector components of the RRG adjacency matrices found by population dynamics,
as shown in figure 4. Moreover, it is compatible with previous known results about eigenvectors
of RRGs [18, 19].

5. Sparse random Markov transition matrices

In this section, we apply the deflation formalism to an ensemble of transition matrices W for
discrete Markov chains in a N-dimensional state space, in order to characterise the statistics
of the second largest eigenpair. This kind of Markov chain represents a random walk on a
graph. We remark here that the second largest eigenpair encodes non-equilibrium properties of
a Markov process. Indeed, the inverse of the (absolute value) of the second largest eigenvalue
represents the slowest relaxation time, whereas the associated second eigenvector is the non-
equilibrium mode with the largest relaxation time.

We will then employ a full deflation, by setting x = λ1(W ) = 1. The evolution equation for
the Markov chain states probability vector at time t, p(t), is given in terms of the matrix W by

p(t + 1) = W p(t). (78)

The transition matrix W is such that Wi j � 0 ∀(i, j) and
∑

i Wi j = 1∀ j. For an irreducible chain,
the top right eigenvector of the matrix W corresponding to the Perron–Frobenius eigenvalue
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λ1 = 1 represents the unique equilibrium distribution, i.e. v(1) = peq. The matrix W is in gen-
eral not symmetric. However, if the Markov process satisfies a detailed balance condition, i.e.
Wi jp

eq
j = W ji p

eq
i ∀ (i, j), it can be symmetrised via a similarity transformation, yielding

WS
i j = (peq

i )−1/2Wi j(peq
j )1/2. (79)

The symmetrised matrix WS and its deflated version W̃S will be the target of our analysis:
even though WS is not itself a Markov matrix since the columns normalisation constraint is
lost, in view of the detailed balance condition WS has the same (real) spectrum as W, and its
top eigenvector u is given in terms of the top right eigenvector of W, peq, as

ui = (N peq
i )1/2. (80)

It is actually well-known that the relation between the eigenvectors of W and those of WS holds
in general and is not limited to the case of the top one.

We will consider the case of an unbiased random walk: the matrix W is then defined as

Wi j =

⎧⎨
⎩

ci j

k j
, i �= j

1, i = j and k j = 0,
(81)

where ci j represents the connectivity matrix and k j =
∑

i ci j is the degree of node j. In this case,
the top right eigenvector of W is proportional to the vector expressing the degree sequence:
for our purposes, we choose the inverse of the mean degree as proportionality constant, i.e.
peq

i = ki/(Nc). The symmetrised matrix WS is expressed as

WS
i j =

⎧⎨
⎩

ci j√
kik j

, i �= j

1, i = j and k j = 0,

with its top eigenvector being u(1)
i =

√
ki/c. Thus, we have

ρWS (u) =
∑

k�kmin

p(k)δ

(
u −
√

k
c

)
, (82)

where p(k) is the degree distribution of the connectivity matrix {ci j}.
In order to avoid isolated nodes and isolated clusters of nodes, we consider degree dis-

tributions with kmin � 2 and finite mean degree8. We will provide a treatment for a generic
distribution p(k) with the aforementioned properties and the analytical solution for the random
regular connectivity case with degree distribution p(k) = δk,c.

8 A suitable candidate could be a shifted Poissonian degree distribution with kmin = 2, i.e.

p(k) =
e−c̄c̄k−2

(k − 2)!
𝟙k�2, (83)

with mean degree c = c̄ + 2.
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5.1. Second largest eigenpair of Markov transition matrices

We focus on the fully deflated symmetrised version of the Markov matrix W , that is

W̃S
i j = WS

i j −
1
N

uiu j, (84)

where WS
i j =

ci j√
kik j

and u represents the top eigenvector of WS, normalised to N, i.e. ui =
√

ki
c .

Here, c represents the mean degree, c = 〈k〉. Our aim is to find the typical largest eigenvalue of
W̃S, which corresponds to the typical second largest eigenvalue of WS. In the next subsection,
we will characterise the distribution of the top eigenvector of W̃S, equivalent to the second
eigenvector of WS.

We follow the same formalism illustrated in section 3.2. An alternative replica derivation
can be found in appendix C. Here, we will just report the final equations, corresponding to (43)
along with (44), (45) and (47). By taking into account (82) and the existence of kmin = 2, we
find

π(ω, h) =
kmax∑

k=kmin

p(k)
k
c

∫
{dπ}k−1δ

(
ω −
(
λk −

k−1∑
�=1

1
ω�

))

× δ

(
h −
(

k−1∑
�=1

h�

ω�

))
, (85)

1 =

kmax∑
k=kmin

p(k)k
∫

{dπ}k

( ∑k
�=1

h�
ω�

λk −
∑k

�=1
1
ω�

)2

, (86)

0 =

kmax∑
k=kmin

p(k)
k√
c

∫
{dπ}k

( ∑k
�=1

h�
ω�

λk −
∑k

�=1
1
ω�

)
, (87)

〈
λ̃1

〉
J̃
≡ 〈λ2〉WS = λ. (88)

We remark that in the Markov case a bounded largest degree is not strictly necessary as
the spectrum is always bounded. However, we will consider a kmax for practical purposes. The
self-consistency equation (85) along with the normalisation condition (86) and the orthogo-
nality constraint (87) is solved by a population dynamics algorithm (see section 6). The RRG
connectivity case is analytically tractable, as shown in section 5.2.

In analogy to equation (46), the density of the top eigenvector’s component of the matrix
W̃S, corresponding to the second largest eigenvector of WS, is given by

ρW̃S (v) ≡ ρWS,2(v) =
kmax∑

k=kmin

p(k)
∫

{dπ}kδ

⎛
⎝v −

∑k
j=1

h j
ω j

λk −
∑k

j=1
1
ω j

√
k

⎞
⎠ , (89)

where π(ω, h) satisfies the self-consistency equation (85), supplemented by the normalisation
condition (86) and the ortogonality condition (87).

Figure 5 compares the pdf of the second largest eigenvector’s components obtained via
population dynamics with results obtained via direct diagonalisation, for the unbiased ran-
dom walk Markov matrix case with shifted Poisson degree distribution (kmin = 2). We study
both a low (c  6, left panel) and a high (c  12, right panel) connectivity case. In the
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Figure 5. Pdf of the components of the second largest eigenvector for the unbiased
random walk Markov matrix case (see (89)), with shifted Poisson degree distribution
(kmin = 2). Left panel: mean degree c  6 and kmax = 12. Results from population
dynamics with NP = 5000 (solid blue) compared with the direct diagonalisation of 4000
matrices of size N = 1000 (red circles) finding a good agreement. Right panel: mean
degree c  12 and kmax = 22. Results from population dynamics with NP = 1500 (solid
blue) compared with the direct diagonalisation of 2000 matrices of size N = 1000 (red
circles), with excellent agreement. In both cases, the size of the population used is N�

P,
the optimal value corresponding to the finite size N of the matrices being diagonalised
(see section 6.4).

c  6 case with kmax = 12, we find 〈λ2〉WS = 0.7456, within a 0.7% error w.r.t. the value
λ2,∞ = 0.7504 obtained by extrapolation from the direct diagonalisation data. In the
c  12 case with kmax = 22, we find 〈λ2〉WS = 0.5530, within a 0.1% error w.r.t. the value
λ2,∞ = 0.5524 obtained by extrapolation from the direct diagonalisation data. As a reference
point, the average value of the second largest eigenvalue in the RRG case with the same c is
λ2(WS)RRG = 0.5528. We notice that the agreement near the peak of the distribution is slightly
worse for the low connectivity case: this is in agreement with the finding that finite-size effects
are generally more pronounced for lower c (see also discussion in section 6.4).

5.2. Unbiased random walk on a RRG: second largest eigenpair statistics

For a random regular graph, for which p(k) = δk,c, we note that the matrix WS reduces to

WS
i j =

ci j

c
, (90)

implying that all results about the RRG adjacency matrix case stated in sections 4.3 and
4.4 carry over to this case too, but with all eigenvalues rescaled by 1/c. As expected,
λ1(WS)RRG = 1, and the second largest eigenvalue corresponding to a N (0, 1)-distributed
eigenvector is λ2(WS)RRG = 2

√
c−1
c . The spectral gap for this kind of Markov matrices as a

function of c is then g(c) = 1 − 2
√

c−1
c .

6. Population dynamics

6.1. The orthogonality challenge

With the exception of the unweighted adjacency matrix of a RRG, equation (43)—
supplemented with the conditions (44) and (45)—must be generally solved via a population
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dynamics algorithm, a Monte Carlo technique deeply rooted in the statistical mechanics of spin
glasses [47, 48].

The algorithm we use bears some similarity with the one employed in [21]. Here, we will
highlight the main differences that stem from the presence of the orthogonality condition (45).
We recall that the equations (43)–(45) refer to the case of full deflation, where we look at the
top eigenpair of the deflated matrix J̃ (the second largest eigenpair of the matrix J).

Some observations are in order before sketching the algorithm. As we stated in [21], within
the population dynamics algorithm the definition of the h variables in equation (43) is effec-
tively converted into a stochastic linear update of h values. Its stability can only be achieved for
λ = 〈λ1〉J . For anyλ > 〈λ1〉J , the variables of type h will shrink to zero, whereas forλ < 〈λ1〉J
they will explode in norm. In our scenario, where we consider λ < 〈λ1〉J , the recursion is thus
a priori unstable, unless it is otherwise constrained. Therefore, if unconstrained, the population
will never spontaneously evolve towards a stable regime, which would at the same time satisfy
the conditions (44) and (45).

As anticipated in section 3.2, this observation entails that the orthogonality condition (45)
must be strictly enforced on-the-fly—by imposing a correction to the fields h, which once again
have no fixed scale given by their update equation. Enforcing the constraint (45) is equivalent
to looking for a self-consistent solution of (43) in a smaller, constrained space. Only once the
condition (45) has been enforced, a new stable non-trivial fixed point arises, and the behaviour
of the h-variables is similar to that in the top eigenvector case: for any valueλ > 〈λ2〉J , the vari-
ables h under iteration of the modified population dynamics algorithm shrink to zero, whereas
for λ < 〈λ2〉J they will explode in norm. Hence, equation (43)—taken together with the con-
dition (45)—admits a stable, hence normalisable solution, such that equation (44) is naturally
satisfied only forλ = 〈λ2〉J: after the orthogonality correction has been enforced, the procedure
we follow is then exactly identical to that used in [21].

6.2. The algorithm

Taking into account the observations made in section 6.1, we briefly sketch the algorithm in
the case of full deflation.

Two pairs of (coupled) populations with NP members each {(ai, bi)}1�i�NP
and

{(ωi, hi)}1�i�NP
are randomly initialised, taking into account that both ai and ωi must be larger

than ζ, the upper edge of the support of the bond pdf pK(K). We typically choose NP = 105

or larger. In what follows, the parameter λ is the candidate second largest eigenvalue of J,
whereas 〈λ1〉J is the average top largest eigenvalue of J. The first population is employed to
solve the top eigenpair problem, and the other to solve the second eigenpair problem; the latter
is constrained by results of the former due to the orthogonality constraint.

We therefore first run a short population dynamics simulation following section 6 in [21]
involving only the population{(ai, bi)}1�i�NP

to find the solution for the first eigenpair problem
and the value 〈λ1〉J . This first simulation acts as an equilibration phase for the fields contribut-
ing to the largest eigenpair. Then, for any suitable value of λ ∈ R < 〈λ1〉J , the following steps
are iterated until stable populations are obtained:

(a) Generate a random s ∼ s
c pc (s), where c = 〈s〉.

(b) Generate s − 1 i.i.d. random variables K� from the bond weights pdf pK(K).
(c) Select s − 1 pairs (a�, b�) and (ω�, h�) from both populations at random, where the set

of s − 1 population indices for the two randomly selected samples is the same for both
samples; compute

24



J. Phys. A: Math. Theor. 54 (2021) 015004 V A R Susca et al

a(new) = 〈λ1〉J −
s−1∑
�=1

K2
�

a�
, (91)

b(new) =
s−1∑
�=1

b�K�

a�
, (92)

ω(new) = λ−
s−1∑
�=1

K2
�

ω�
, (93)

h(new) =

s−1∑
�=1

h�K�

ω�
, (94)

and replace two randomly selected pairs (ai, bi) and (ωi, hi) where i ∈ {1, . . . , NP} with
the pairs

(
a(new), b(new)

)
and
(
ω(new), h(new)

)
.

(d) Compute the components of the top eigenvector u and the candidate second largest eigen-
vectorv. In order to create a sample estimate of the eigenvectors statistics corresponding to
the two top eigenvalues, we initialise two empty vectors, respectively u = {u j}1� j�M and
v = {v j}1� j�M of size M, where M = [NP/c] (typically M = O(104) if NP = O(105)).
The square brackets indicate the integer part. Then for any j = 1, . . . , M:

1 Generate s ∼ p(s).
2 Generate s i.i.d. random variables K� from the weights pdf pK(K).
3 Randomly select a subset of s indices from the population indices between 1 and NP. This

subset is denoted by S j(s). Then, for any � ∈ S j(s) select s pairs (a�, b�) and (ω�, h�) from
both populations; compute

u j =

∑
�∈S j(s)

b�K�
a�

〈λ1〉J −
∑

�∈S j(s)
K2
�

a�

, (95)

v j =

∑
�∈S j(s)

h�K�
ω�

λ−
∑

�∈S j(s)
K2
�

ω�

. (96)

Each set S j(s) of s population indices labelled by � contributes uniquely to a single
component j of the vectors u and v. There is a unique matching between each set of s
population indices and each component j (see scheme in figure 6): in other words, each
group of s pairs (a�, b�) and (ω�, h�) takes part in the definition of just one component j,
respectively u j and v j. Each set S j(s) of s population indices corresponding to a specific
component j is then saved, along with the set of s weights {K�}.

(e) Compute q = (u,v)
|u|2 , where (·, ·) indicates the dot product. In order to enforce the condition

q = 0, for any component j = 1, . . . , M apply the correction

v j ← v j − qu j . (97)

In view of the rigid connection between the population indices labelling the fields and
every specific component of u and v, the orthogonalisation in (97) is practically achieved
by correcting each field h� participating in the definition of every specific component
v j. The values of the indices � here are those saved in each subset S j(s) in step (d)(3),
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Figure 6. A schematic representation of the rigid matching between each set of s pop-
ulation indices and each component j as illustrated in step (d)(3) of the population
dynamics algorithm in section 6.2. The labels s j with j = 1, . . . , M denote the number of
population indices contributing to each component j, i.e. the size of each set S j(s = s j).

along with the corresponding weights K�. For any j = 1, . . . , M and for any � ∈ S j(s)
contributing to the single component j of both u and v we have

h� ← h� − qu j

(
λω�

K�s
− K�

)
, (98)

where s = k j is exactly the ‘degree’ drawn from p(s) in step (d)(1) and used to build each
component v j in step (d)(3).

(f ) Return to (a).

A sweep is completed when all the NP pairs (ai, bi) and (ωi, hi) have been updated at least
once according to the steps above. The update of the pairs (a, b) is stable, thanks to the prior
equilibration phase. The convergence is assessed by looking only at the first moments of the
two vectors formed by the NP samples of the pairs (ω, h). The parameterλ is varied according to
the behaviour illustrated in section 6.1: starting from an initial ‘large’ valueλ < 〈λ1〉J , it is then
progressively decreased until a non trivial distribution for the h is achieved, in correspondence
of the valueλ = 〈λ2〉J . Indeed, we observe that for anyλ > 〈λ2〉J , the h shrink to zero, whereas
for any λ < 〈λ2〉J , they blow up in norm.

Some comments are in order:

• The condition expressed in (97) is a Gram–Schmidt orthogonalisation, taking place after
every microscopic update of the fields;
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• The correction does not take place for components v j related to s = 0, as both v j and uj

are zero;
• In step (d)(3), we can clearly see that the components u j and v j are coupled through their

degree and the set of bond weights, as anticipated in section 3.2. Indeed, for any j, the s
i.i.d. realisations of the weights {K}s and the ‘local neighbourhood’ S j(s) that we dynam-
ically create at every step (3) must be exactly the same for both uj and v j. In other words,
both uj and v j must have the same update history.

6.3. Potential for simplifications in special cases

The steps (d) and (e) of the algorithm are computationally heavy. We are able in some cases to
simplify them.

• For adjacency matrices of RRGs, where the variables a, b andω are constant, the correction
(97) translates to forcing the mean of the h to be zero after every update. Both steps (d)
and (e) are then replaced by

hi ← hi − h̄ ∀i = 1, . . . , NP, (99)

where h̄ indicates the sample mean of the h population.
• In the ER case (both weighted and non-weighted), we take advantage of the fact that in

the thermodynamic limit there is no statistical distinction between the cavity fields ω and
h (respectively a and b) and the denominator and numerator in (96), (respectively in (95)),
even in presence of the truncation of the Poissonian degree distribution9. Hence, we can
consider just one couple of fields per species to represent a component, so we identify
M = NP. Steps (d) and (e) are then replaced by

∗ Compute eigenvectors u and v as

ui =
bi

ai
, (100)

vi =
hi

ωi
∀i = 1, . . . , NP. (101)

∗ Compute the correction as

hi ← hi − ui
(u, v)
|u|2 ωi ∀i = 1, . . . , NP. (102)

6.4. Population dynamics algorithm describes finite-size systems

When no simplification can be used, as in the case of Markov matrices, the population dynamics
algorithm can be relatively slow, due to the number of nested updates it requires. In these cases,
we have therefore been often forced to consider a population size NP smaller than the values
we would have typically wished (NP = O(105) or more).

However, what may appear as a limitation at first sight turned out to be a blessing, in that
it made us aware of an interesting interplay between the size NP of the population dynamics,
and the size N of the graph whose spectral properties were to be reproduced.

9 Provided that the largest degree is reasonably large. The only difference between the distribution π(ω, h) and the
distribution of the denominator and numerator of (46) can be observed because of the contribution coming from the
largest degree, whose probability to occur is negligible.
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Figure 7. Top panels: low mean degree case, c  6, reference matrix size N = 1000.
The left panel shows the base-10 logarithm of the p-value of the KS two-sample test
comparing the two empirical cdfs corresponding to different population sizes. We notice
that the p-values are all rather low, yet there is a clear maximum value at N�

P  5000,
and the non-monotonic behaviour is quite pronounced. The right panel shows the slope
m of the best-fit regression line of the Q–Q plot between the 25% and 75% quantiles, for
various population sizes. The closer m is to 1, the better the agreement. The plot confirms
again that the best agreement with our reference distribution is obtained with N�

P  5000.
Bottom panels: high mean degree case, c  12, reference matrix size N = 1000. On the
left, we show the p-value of the KS two-sample test against NP in linear y-scale. The
curve is much flatter than the low-c case, and the p-values are all significant, suggesting
a high level of similarity between the two distributions throughout the full range of NP.
On the right, we plot the slope m of the best fit regression line of the Q–Q plot between
the 25% and 75% quantiles, for various population sizes. For this figure of merit, we
again observe a rather flat value of the slope between NP  2000 and NP  6000, where
m  1 (within a 0.2% error). At high c, we indeed observe negligible finite size effects
in the direct diagonalisation samples at different sizes N, and this phenomenon seems to
be present also in the population dynamics simulations.

Indeed, we have collected convincing evidence that population dynamics at finite NP does
not really capture the thermodynamic limit N →∞: for a given graph size N � 1, there is
an optimal size of the population N�

P = N�
P(N) that best captures the spectral properties of

that finite-size graph, and the degree of agreement between ‘theory’ and numerical diagonal-
isation has a strongly non-monotonic behaviour as a function of NP. Similarly, a population
of given size NP reproduces well spectral properties of graphs around a certain optimal size
N�, but its accuracy rapidly deteriorates if the graph size N is markedly different from N�. Of
course, the higher NP (e.g. in cases where it is possible to employ NP = O(105) or larger), the
better the large N limit is captured (see e.g. the case in figure 2).

This intriguing phenomenon may be related to the existence of loops, which seem to be
more relevant in the eigenvector problem than the spectral problem. Indeed, whatever NP is,
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the cavity fields of type ω and h will have common predecessors within their own species
after ∼ ln(NP)/ ln(c − 1) updates. This implies the presence of loops in the population dynam-
ics update history, which lead to correlations between different members of the population.
Therefore, the assumption of population elements independently drawn from an ensemble,
which underlies (43) (or equivalently (A.66)) is violated. That assumption in turn imple-
ments the notion that loops in the underlying graph that is being described will diverge in
the thermodynamic limit.

To quantify this effect, we compare the cumulative distribution function of the second
eigenvector’s components of Markov matrices with Poissonian shifted degree distribution,
obtained via population dynamics at various NP, with the result from direct diagonalisation
of matrices from the same ensemble at a given size N = 1000—for both low and high mean
degree.

In figure 7, we assess the similarity of the two distributions using two figures of merit.
The first (left) is the p-value of a two-sample Kolmogorov–Smirnoff (KS) test: the larger the
p-value, the strongest the evidence in favor of the hypothesis that the two distributions are
the same. The second (right) is based on the analysis of a so-called quantile–quantile plot
(Q–Q plot), which is the scatter plot of the quantiles of the two sets of data. Precisely, we
focus on the slope m of the best fit regression line y = mx + b of the Q–Q plot, considered
between the first and third quartile (respectively, the 0.25 and 0.75 quantiles), to limit spuri-
ous effects coming from the under-sampling of the tails. The slope m is directly proportional
to the correlation coefficient between the quantiles of the two distributions, and m = 1 for
identical distributions.

The existence of an optimal population size N�
P for a given graph size N—and the non-

monotonic behaviour of the accuracy with NP —is quite evident in the left panels. The optimal
value of N�

P(N) is consistently identified by both figures of merit. However, the effect is more
pronounced in the case of low connectivity (top row of figure 7)—where finite size effects are
indeed stronger—than in the case of high connectivity (bottom row of figure 7).

7. Conclusions

In summary, we have developed a formalism to compute the statistics of the second largest
eigenvalue and of the components of the corresponding eigenvector for some ensembles of
sparse symmetric matrices, i.e. weighted adjacency matrices of graphs with finite mean connec-
tivity. By assuming that the top eigenpair is known, we show that for a given matrix, computing
the second largest eigenpair is equivalent to computing the top eigenpair of a deflated matrix,
obtained by subtracting from the original matrix the dense matrix representing a rank-one per-
turbation proportional to the projector onto its first eigenstate. As in [21], the search for the
top eigenpair of the deflated matrix is then transformed into the optimisation of a quadratic
Hamiltonian on a sphere: introducing the associated Gibbs–Boltzmann distribution and a fic-
titious inverse temperature β, the top eigenvector represents the ground state of the system,
reached in the limit β →∞. In order to extract this limit, we have employed two statistical
mechanics methods, cavity and replicas. We started analysing the case of a single-instance
matrix within the cavity framework, introducing a new cavity formulation that allows for the
inclusion of hard constraints.

The single-instance cavity method easily leads to recursion equations, which represent the
essential ingredient to obtain the solution of the problem in the thermodynamic limit. We
also obtain the exact same equations using replicas as an alternative approach, confirming the
equivalence of the two methods in the thermodynamic limit. We employed an improved popula-
tion dynamics algorithm to solve the stochastic recursion (43) complemented by the conditions
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(44) and (45), (or equivalently (A.66) along with (A.67) and (A.68)) that enforce normalisa-
tion and orthogonality of eigenvectors corresponding to different eigenvalues. We found that
the convergence of the algorithm is driven not only by the largest eigenvalue of the deflated
matrix (i.e. the second largest eigenvalue of the original matrix) but, most essentially, by the
fact that the orthogonality condition (45) (or equivalently (A.68)) be correctly enforced. Some
ensembles permit simplifications of the algorithm used to enforce orthogonality, which we
exploited to speed up convergence.

We remark that from the theoretical point of view our method is applicable no matter the
size of the spectral gap. However, if the gap is very narrow, numerical precision limit may not
allow for a sufficiently accurate determination of λ = 〈λ2〉J .

The simulations show excellent agreement between the theory and the direct diagonalisation
of large matrices, and allow us to unpack the contributions to the average density of the second
eigenvector’s components coming from nodes of different degrees.

Our study clearly demonstrates that—in contrast to beliefs commonly held in the com-
munity—population dynamics at finite NP is fundamentally incapable of analysing proper-
ties representing the thermodynamic limit behaviour. This discovery is in some sense due
to the fact that finite size effects are much stronger for eigenvectors than for eigenvalues (in
particular for matrices without random edge weights). That finite population size effects are
quantitatively related to finite size effects is, in retrospect, not really surprising, given the clear
analogy existing between the emergence of correlations in population values—through loops
of common ancestors of population updates—and common ancestors created through loops in
random graphs of finite size, in which the scaling of loop lengths with population and graph
size follows basically the same logarithmic law.

In the case of the RRG adjacency matrix, we also analytically studied the pdf of the com-
ponents of the top eigenvector of the deflated matrix as the deflation parameter is continuously
changed, showing the abrupt change of the solution as soon as the deflation parameter becomes
larger than the spectral gap of the Kesten–McKay distribution.

Lastly, we applied our formalism to sparse Markov matrices representing unbiased random
walks on a network, for which the second largest eigenpair plays an important role encoding
non-equilibrium properties.
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Appendix A. Full deflation: replica derivation

In this section, we evaluate the average (or typical) value of the largest eigenvalue and the
density of top eigenvectors’ components of the matrix J̃ within the replica framework. Our
derivation applies to any graph with degree distribution p(k) having finite mean. For weighted
adjacency matrices with a Poissonian distribution, we also ask that its support be bounded to
ensure that their average largest eigenvalue is finite in the thermodynamic limit.
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A.1. Typical largest eigenvalue

Consider a N × N deflated symmetric matrix J̃i j(x) = ci jKi j − x
N uiu j. The ui represents the ith

component of u, the top eigenvector of the original matrix J (normalised such that |u|2 = N)
which we assume to be known. We recall that u will be also referred to as the probe eigenvec-
tor. Within the framework of the configuration model [38], the joint distribution of the matrix
entries Ji j is

P
(
{Ji j} | {ki}

)
= P
(
{ci j} | {ki}

)∏
i< j

δKi j,K ji p
(
Ki j

)
, (A.1)

where the distribution P
(
{ci j} | {ki}

)
of connectivities {ci j} compatible with a given degree

sequence {ki} is given by

P
(
{ci j} | {ki}

)
=

1
M
∏
i< j

δci j,c ji

( c
N
δci j,1 +

(
1 − c

N

)
δci j,0

) N∏
i=1

δ∑
j

ci j,ki , (A.2)

and the pdf pK

(
Ki j

)
of bond weights (over a compact support whose upper edge is denoted by

ζ) can be kept unspecified until the very end. Our derivation will follow the procedure presented
in appendix B in [21].

Here we fix x = 〈λ1〉J : in this setting, the second largest eigenvalue of J is given in terms
of the largest eigenvalue of J̃. This can be computed as the formal limit

〈λ2〉J =
〈
λ̃1

〉
J̃
= lim

β→∞

2
βN

〈 ln Z〉J̃ , Z =

∫
dv exp

[
β

2

(
v, J̃v

)]
δ
(
|v|2 − N

)
, (A.3)

in terms of the quenched free energy of the model defined in (9). We recall that the round
brackets (·, ·) indicate the dot product between vectors in R

N .
The partition function explicitly reads

Z =

∫
dv exp

[
β

2
(v, Jv) − β〈λ1〉J

2N
(u, v)2

]
δ
(
|v|2 − N

)
. (A.4)

By calling q = 1
N (u, v), we can linearise the square in the exponent of (A.4) by means of a

Hubbard–Stratonovich identity as follows,

exp

(
−β〈λ1〉JNq2

2

)
=

√
β〈λ1〉JN

2π

∫
dz exp

(
−β〈λ1〉JN

2
z2 + βiz〈λ1〉JNq

)
, (A.5)

and therefore the partition function reads

Z =

√
β〈λ1〉JN

2π

∫
dv dz exp

(
−β〈λ1〉JN

2
z2 + iβ〈λ1〉Jz (u, v)+

β

2
(v, Jv)

)
δ
(
|v|2 − N

)
.

(A.6)

The average over J̃ then reduces to computing the average over J. It is computed using the
replica trick as follows

〈
λ̃1

〉
J̃
= lim

β→∞

2
βN

lim
n→0

1
n

ln 〈Zn〉J , (A.7)
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where n is initially taken as an integer, and then analytically continued to real values in the
vicinity of n = 0. The replicated partition function is

〈Zn〉J =

(
β〈λ1〉JN

2π

) n
2
∫ ( n∏

a=1

dva

)〈
exp

(
β

2

n∑
a=1

N∑
i, j

viaJi jv ja

)〉
J

×
n∏

a=1

δ
(
|va|2 − N

) ∫ ( n∏
a=1

dza

)

× exp

(
−β〈λ1〉JN

2

n∑
a=1

z2
a + iβ〈λ1〉J

n∑
a=1

N∑
i=1

zaviaui

)
. (A.8)

Since the components of u are assumed to be known and fixed, they are not affected by the
ensemble average. Taking the average w.r.t. the joint distribution (A.2) of matrix entries yields
[21, 38] 〈

exp

(
β

2

n∑
a=1

N∑
i, j

viaJi jv ja

)〉
J

=
1
M

∫ π

−π

(
N∏

i=1

dφi

2π

)
exp

(
−i
∑

i

φiki

)

× exp

⎡
⎣ c

2N

N∑
i, j=1

(〈
e
βK

∑

a
viav ja+i(φi+φ j)

〉
K

− 1

)⎤⎦ , (A.9)

where the average 〈·〉K is taken w.r.t. the pdf of the bond weights pK(K). A Fourier represen-
tation of the Kronecker deltas expressing the degree constraints in (A.2) has been employed.
Employing a Fourier representation of the Dirac delta enforcing the normalisation constraint,
the replicated partition function thus becomes

〈Zn〉J ∝
1
M

∫ ( n∏
a=1

dva dλa dza

)
exp

(
−β〈λ1〉JN

2

n∑
a=1

z2
a

+ iβ〈λ1〉J

n∑
a=1

N∑
i=1

zaviaui

)
exp

(
i
β

2
N

n∑
a=1

λa

)

× exp

(
−i

β

2

n∑
a=1

N∑
i=1

λav
2
ia

)∫ π

−π

(
N∏

i=1

dφi

2π

)
exp

(
−i

N∑
i=1

φiki

)

× exp

⎡
⎣ c

2N

N∑
i, j=1

(〈
e
βK

∑

a
viav ja+i(φi+φ j)

〉
K

− 1

)⎤⎦ , (A.10)

where we omit irrelevant proportionality constants.
In order to decouple sites, we introduce the functional order parameter

ψ (�v,φ) =
1
N

N∑
i=1

δ (φ− φi)
n∏

a=1

δ (va − via) , (A.11)
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where the symbol �v denotes a n-dimensional vector in replica space. We then consider its
integrated version [21, 38]

ψ (�v) =
∫

dφ eiφψ (�v,φ) =
1
N

N∑
i=1

eiφi

n∏
a=1

δ (va − via) , (A.12)

and enforce the latter definition using the integral identity

1 =

∫
NDψDψ̂ exp

{
−i
∫

d�v ψ̂ (�v)

[
Nψ (�v) −

N∑
i=1

eiφi

n∏
a=1

δ (va − via)

]}
. (A.13)

In terms of the integrated order parameter (A.12) and its conjugate, the replicated partition
function can be written as

〈Zn〉J ∝
1
M

∫
DψDψ̂d�λ d�z exp

(
−iN
∫

d�vψ̂ (�v)ψ (�v)

)

× exp

[
Nc
2

(∫
d�v d�v′ψ(�v)ψ(�v′)

〈
e
βK

∑

a
vav

′
a
〉

K

− 1

)]

× exp

(
i
β

2
N

n∑
a=1

λa −
β〈λ1〉JN

2

n∑
a=1

z2
a

)

×
∫ π

−π

(
N∏

i=1

dφi

2π

)
exp

(
−i

N∑
i=1

φiki

)∫ n∏
a=1

dva

× exp

(
−i

β

2

n∑
a=1

N∑
i=1

λav
2
ia + iβ〈λ1〉J

n∑
a=1

N∑
i=1

zaviaui

+ i
N∑

i=1

eiφi

∫
d�vψ̂ (�v)

n∏
a=1

δ (va − via)

)
. (A.14)

The multiple integral in the last three lines is the product of N n-dimensional integrals, each
related to both ki and ui, i.e. the degree and the eigenvector component of the node i. It can be
expressed by means of the law of large numbers in the following way:

I =
N∏

i=1

∫ π

−π

dφi

2π

∫
d�vi exp

(
−iφiki − i

β

2

n∑
a=1

λav
2
ia+ iβ〈λ1〉J

n∑
a=1

zaviaui + iψ̂(�vi)eiφi

)

= exp

[
N∑

i=1

Log
∫

d�vi exp

(
−i

β

2

n∑
a=1

λav
2
ia + iβ〈λ1〉J

n∑
a=1

zaviaui

)
I[ki,�vi]

]
, (A.15)

where Log denotes the principal branch of the complex logarithm, and

I[ki,�vi] =
∫ π

−π

dφi

2π
exp
(
−iφiki + iψ̂(�vi)eiφi

)
. (A.16)
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Each of the φi integrals can be performed by rewriting the last exponential factor as a power
series, viz

I[ki,�vi] =
∫ π

−π

dφi

2π
e−iφiki

∞∑
s=0

(
iψ̂(�vi)

)s

s!
eisφi

=
∞∑

s=0

(
iψ̂(�vi)

)s

s!
δs,ki =

(
iψ̂(�vi)

)ki

ki!
∀ki, (A.17)

with i = 1, . . . , N. Therefore, by invoking the law of large numbers, the single site integral I
(A.15) can be expressed as

I = exp

[
N∑

i=1

Log
∫

d�vi exp

(
−i

β

2

n∑
a=1

λav
2
ia + iβ〈λ1〉J

n∑
a=1

zaviaui

)(
iψ̂(�vi)

)ki

ki!

⎤
⎥⎦

= exp

⎧⎨
⎩N

kmax∑
k=kmin

p(k)

[∫
du ρJ(u|k)Log

∫
d�v exp

(
−i

β

2

n∑
a=1

λav
2
a

+ iβ〈λ1〉Ju
n∑

a=1

zava

)
(iψ̂(�v))k − Log(k!)

]}
, (A.18)

where we have used

1
N

N∑
i=1

Log f (ki, ui) 
kmax∑

k=kmin

p(k)
∫

duρJ(u|k)Log f (k, u). (A.19)

Here, p(k) is the actual degree distribution of the graph and ρJ(u|k) represents the distribution
of the top eigenvector’s components of the original matrix J conditioned on the degree k. As
shown in [21], the variables ui are strongly correlated with the ki so their dependence on the ki

must be taken into account.
Therefore, the replicated partition function takes a form amenable to a saddle point eval-

uation in the large N limit (assuming we can safely exchange the limits n → 0 and N →∞)

〈Zn〉J ∝
∫

DψDψ̂d�λ d�z exp
(

NSn[ψ, ψ̂,�λ,�z]
)

, (A.20)

where

Sn[ψ, ψ̂,�λ,�z] = S1[ψ, ψ̂] + S2 [ψ] + S3(�λ) + S4(�z) + S5[ψ̂,�λ,�z], (A.21)

and

S1[ψ, ψ̂] = −i
∫

d�vψ̂(�v)ψ(�v), (A.22)

S2[ψ] =
c
2

(∫
d�vd�v′ψ(�v)ψ(�v′)

〈
e
βK

∑

a
vav

′
a
〉

K

− 1

)
, (A.23)

S3(�λ) = i
β

2

n∑
a=1

λa, (A.24)
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S4(�z) = −β〈λ1〉J

2

n∑
a=1

z2
a, (A.25)

S5[ψ̂,�λ,�z] =
kmax∑

k=kmin

p(k)

[∫
du ρJ(u|k)Log

∫
d�v exp

(
−i

β

2

n∑
a=1

λav
2
a

+ iβ〈λ1〉Ju
n∑

a=1

zava

)
(iψ̂(�v))k − Log(k!)

]
, (A.26)

where we consider kmin = 0 henceforth.
The stationarity of the action Sn w.r.t. variations of ψ and ψ̂ requires that the order parameter

at the saddle point ψ� and its conjugate ψ̂� satisfy the following coupled equations

iψ̂�(�v) = c
∫

d�v′ψ�(�v′)

〈
e
βK

∑

a
vav

′
a
〉

K

, (A.27)

ψ�(�v) =
kmax∑
k=1

p(k)k
∫

duρJ(u|k)

×
exp
[
−i β2
∑

aλav
2
a + iβ〈λ1〉Ju

∑
azava

] (
iψ̂�(�v)

)k−1

∫
d�v′ exp

[
−iβ2
∑

aλav′2a + iβ〈λ1〉Ju
∑

azav′a
] (

iψ̂�(�v′)
)k ,

(A.28)

which have to be solved together with the stationarity conditions w.r.t. each component λā of
�λ and zā of�z (for ā = 1, . . . , n),

1 =

kmax∑
k=0

p(k)
∫

duρJ(u|k)

×
∫

d�v exp
[
−i β2
∑

aλav
2
a + iβ〈λ1〉Ju

∑
azava

] (
iψ̂�(�v)

)k
v2

ā∫
d�v′ exp

[
−i β2
∑

aλav′2a + iβ〈λ1〉Ju
∑

azav′a
] (

iψ̂�(�v′)
)k , (A.29)

zā = i
kmax∑
k=0

p(k)
∫

duρJ(u|k)u

×

∫
d�v exp

[
−iβ2
∑

aλav
2
a + iβ〈λ1〉Ju

∑
azava

] (
iψ̂�(�v)

)k
vā∫

d�v′ exp
[
−i β2
∑

aλav′2a + iβ〈λ1〉Ju
∑

azav′a
] (

iψ̂�(�v′)
)k . (A.30)

Apart from the extra averages w.r.t. p(k) and ρJ(u|k), the equations (A.27) and (A.28) share
some similarities with the saddle-point equations leading to the spectral density of sparse ran-
dom graphs [24, 27] and to those leading to the top eigenpair statistics of sparse symmetric
matrices [21]: similarly to the latter case, the harmonic ‘Hamiltonian’ of this problem is real-
valued and includes the inverse temperature β. Following [21, 27], we will now search for
replica-symmetric solutions written in the form of uncountably infinite superpositions of Gaus-
sians with a non-zero mean. As in the case for the top eigenvector, our ansatz will be preserving
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permutational symmetry between replicas, but not the rotational invariance in replica space,
since this symmetry would not produce a physically meaningful result for this problem.

λā = λ ∀ ā = 1, . . . , n, (A.31)

zā = z ∀ ā = 1, . . . , n, (A.32)

ψ�(�v) = ψ0

∫
dω dh π (ω, h)

n∏
a=1

1
Zβ(ω, h)

exp

[
−β

2
ωv2

a + βhva

]
, (A.33)

ψ̂�(�v) = ψ̂0

∫
dω̂ dĥ π̂(ω̂, ĥ)

n∏
a=1

exp

[
β

2
ω̂v2

a + βĥva

]
, (A.34)

where

Zβ(x, y) =

√
2π
βx

exp

(
βy2

2x

)
. (A.35)

We remark that our replica symmetry assumption has proved to be generally exact in the
random matrix context and specifically for the spectral problem of sparse random matrices
[23, 24, 27, 46]. Moreover, the representation of the order parameter as a superposition of
Gaussian pdfs leads to the correct solution for harmonically coupled systems [28], such as the
one described in the present work.

The calculation follows the same path traced in appendix B of [21]. In (A.33) and (A.34),
π and π̂ are auxiliary normalised joint pdfs of the parameters appearing in the Gaussian dis-
tributions. The ψ0 and ψ̂0 are determined such that the distributions π(ω, h) and π̂(ω̂, ĥ) are
normalised.

Expressing the order parameter in this form allows us to perform explicitly the �v-integrals
in the action Sn, eventually leading to simpler coupled stationarity equations for π and π̂. The
convergence of the �v-integrals requires ω > ω̂ and ω > ζ (where ζ is the upper edge of the
support of the pdf pK(K) of bond weights).

Rewriting the action in terms of π and π̂, after performing the �v-integrations, and extracting
the leading n → 0 contribution the full action now reads

Sn = S1[π, π̂] + S2[π] + S3(λ) + S4(z) + S5[π̂,λ, z], (A.36)

with

S1[π, π̂] = −iψ0ψ̂0 − iψ0ψ̂0n
∫

dπ(ω, h)dπ̂(ω̂, ĥ) ln
Zβ(ω − ω̂, h + ĥ)

Zβ(ω, h)
,

(A.37)

S2[π] =
c
2

(
ψ2

0 − 1
)
+

c
2
ψ2

0n
∫

dπ(ω, h)dπ(ω′, h′)

×
〈

ln
Z(2)
β

(
ω,ω′, h, h′, K

)
Zβ (ω, h) Zβ (ω′, h′)

〉
K

, (A.38)

S3(λ) = i
β

2
nλ, (A.39)

S4(z) = −n
β

2
〈λ1〉Jz2, (A.40)
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S5[π̂,λ, z] = c Log(iψ̂0) −
kmax∑
k=0

p(k)Log(k!) + n
kmax∑
k=0

p(k)
∫

duρJ(u|k)

×
∫

{dπ̂}k Log Zβ

(
iλ− {ω̂}k, iz〈λ1〉Ju + {ĥ}k

)
, (A.41)

where we have introduced the shorthands

Z(2)
β (ω,ω′, h, h′, K) = Zβ(ω′, h′)Zβ

(
ω − K2

ω′ , h +
h′K
ω′

)
(A.42)

and {dπ̂}k =
∏k

�=1 dω̂� dĥ�π̂(ω̂�, ĥ�), along with {ω̂}s =
∑s

�=1 ω̂� and {ĥ}s =
∑s

�=1 ĥ�.
The action contains O(1) and O(n) terms as n → 0: the O(1) terms are cancelled by the

O(1) terms arising from the evaluation of the normalisation constant M at the saddle-point so
that the action (A.36) is O(n) as expected. We refer to appendix B of [21] for the evaluation of
M.

The stationarity condition w.r.t. λ entails

∂S
∂λ

∣∣∣∣
λ=λ�

= 0 ⇒ 1 =

kmax∑
k=0

p(k)
∫

duρJ(u|k)
∫

{dπ̂}k〈v2〉P̄, (A.43)

where the average 〈·〉P̄ is taken with respect to the Gaussian measure

P̄(v) =

√
β
(
iλ� − {ω̂}k

)
2π

exp

[
−β

2

(
iλ� − {ω̂}k

)

×
(
v − iz�〈λ1〉Ju + {ĥ}k

iλ� − {ω̂}k

)2
⎤
⎦ . (A.44)

More explicitly, (A.43) reads

1 =

kmax∑
k=0

p(k)
∫

duρJ(u|k)
∫

{dπ̂}k

×

⎡
⎣ 1
β(iλ� − {ω̂}k)

+

(
iz�〈λ1〉Ju + {ĥ}k

iλ� − {ω̂}k

)2
⎤
⎦ . (A.45)

We note that the β-dependent term vanishes as β →∞.
The stationarity condition w.r.t. z entails

∂S
∂z

∣∣∣∣
z=z�

= 0 ⇒ z� = i
kmax∑
k=0

p(k)
∫

duρJ(u|k)u
∫

{dπ̂}k〈v〉P̄, (A.46)

where the average 〈·〉P̄ is taken with respect to the Gaussian measure (A.44). More explicitly,

z� = i
kmax∑
k=0

p(k)
∫

duρJ(u|k)u
∫

{dπ̂}k

(
iz�〈λ1〉Ju + {ĥ}k

iλ� − {ω̂}k

)
. (A.47)
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The stationarity condition with respect to variations of π, δS
δπ

= 0, is

π̂(ω̂, ĥ) =
∫

dω dh π(ω, h)

〈
δ

(
ω̂ − K2

ω

)
δ

(
ĥ − hK

ω

)〉
K

. (A.48)

Similarly, the stationarity condition with respect to variations of π̂, δS
δπ̂ = 0, produces the

condition

π(ω, h) =
kmax∑
k=1

p(k)
k
c

∫
duρJ(u|k)

∫
{dπ̂}k−1δ

(
ω − (iλ� − {ω̂}k−1)

)

× δ
(

h −
(

iz�〈λ1〉Ju + {ĥ}k−1

))
. (A.49)

Inserting (A.48) into (A.49) yields

π(ω, h) =
kmax∑
k=1

p(k)
k
c

∫
duρJ(u|k)

〈
δ

(
ω −
(

iλ� −
k−1∑
�=1

K2
�

ω�

))

× δ

(
h −
(

iz�〈λ1〉Ju +

k−1∑
�=1

h�K�

ω�

))〉
{K}k−1

, (A.50)

where the brackets 〈·〉{K}k−1
denote averaging with respect to a collection of k − 1 i.i.d. random

variables K, each drawn from the bond weight pdf pK(K). We recall that p(k) appearing in
(A.50) is already the actual degree distribution of the graph with finite mean c and bounded
maximal degree.

Following [21], we relabel the constant terms λ ≡ iλ� and q ≡ −iz� since they both turn
out to be real-valued. We eventually find

π(ω, h) =
kmax∑
k=1

p(k)
k
c

∫
duρJ(u|k)

∫
{dπ}k−1

〈
δ

(
ω −
(
λ−

k−1∑
�=1

K2
�

ω�

))

× δ

(
h −
(
−qu〈λ1〉J +

k−1∑
�=1

h�K�

ω�

))〉
{K}k−1

. (A.51)

The parameterλ must be tuned as to enforce the supplementary condition (A.45) as β →∞,
which reads

1 =

kmax∑
k=0

p(k)
∫

duρJ(u|k)
∫

{dπ}k

〈⎛⎝−qu〈λ1〉J +
∑k

�=1
h�K�
ω�

λ−
∑k

�=1
K2
�

ω�

⎞
⎠

2〉
{K}k

,

(A.52)

whereas (A.47) gives the following condition for q

q =

kmax∑
k=0

p(k)
∫

duρJ(u|k)u
∫

{dπ}k

〈⎛⎝−qu〈λ1〉J +
∑k

�=1
h�K�
ω�

λ−
∑k

�=1
K2
�

ω�

⎞
⎠〉

{K}k

. (A.53)
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The structure of the action (A.36) is the same as that found in [21] (see for instance
section 4.1.1 there), except for the term S4(z) ≡ S4(q). Therefore, building on the same rea-
soning, the average largest eigenvalue of J̃, i.e. the average second largest eigenvalue of J is
given by

〈
λ̃1

〉
J̃
≡ 〈λ2〉J = λ+ 〈λ1〉Jq2, (A.54)

where λ and q are defined by (A.52) and (A.53).
Equation (A.51), along with the conditions (A.52) and (A.53), are typically solved by pop-

ulation dynamics, as shown in section 6. They represent the generalisation in the large N limit
of the single-instance recursions (26) and (27) along with the conditions (33) and (34).

A.2. Density of top eigenvector’s components using replicas

In this section, we provide the derivation for the density of components of the top eigenvector
of the matrix J̃, in terms of π, λ and q. As in the previous subsection, we consider the deflation
parameter x = 〈λ1〉J , and therefore the top eigenvector of the deflated matrix J̃ corresponds
to the second eigenvector of the original matrix J. We will be following the same approach of
section 4.2 in [21]. We will report here the main steps to keep this paper self-contained. In this
statistical mechanics framework, the quantity

ρ̃β ,̃J (w) =

〈
1
N

N∑
i=1

δ (w − vi)

〉
, (A.55)

is defined such that in the limit β →∞ it gives the density of the top eigenvector components
for a given N × N deflated symmetric random matrix J̃. The simple angle brackets 〈. . .〉 stands
for thermal averaging with respect to the Gibbs–Boltzmann distribution (9) of the system

Pβ ,̃J(v) =
exp
(
β
2

(
v, J̃v

))
δ
(
|v|2 − N

)
∫

dv′ exp
(
β
2 (v′, J̃v′)

)
δ
(
|v′|2 − N

) . (A.56)

Defining an auxiliary partition function as

Z(β)
ε (t, J̃;w) =

∫
dv exp

[
β

2

(
v, J̃v

)
+ βt
∑

i

δε (w − vi)

]
δ
(
|v|2 − N

)
,

(A.57)

where δε is a smooth regulariser of the delta function, the quantity (A.55) can be formally
expressed as

ρ̃β ,̃J(w) = lim
ε→0+

1
βN

∂

∂t
ln Z(β)

ε

(
t, J̃;w

)∣∣∣∣
t=0

. (A.58)

Averaging now over the matrix ensemble

ρβ ,̃J(w) =
〈
ρ̃β ,̃J (w)

〉
J̃

(A.59)
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and sending β →∞ at the very end, the density of the top eigenvector’s components is
eventually given by the formula

ρJ̃(w) = lim
β→∞

lim
ε→0+

1
βN

∂

∂t

〈
ln Z(β)

ε (t, J̃;w)
〉

J̃

∣∣
t=0

, (A.60)

equivalent to equation (95) in [21].
To compute the average of the logarithm of the auxiliary partition function Z(β)

ε (t, J̃;w), we
employ the replica trick

〈
ln Z(β)

ε (t, J̃;w)
〉

J̃
= lim

n→0

1
n

ln
〈
[Z(β)

ε (t, J̃;w)]n
〉

J̃
. (A.61)

The replicated partition function takes the form

〈
[Z(β)

ε (t, J̃;w)]n
〉

J
∝ 1

M

∫
DψDψ̂d�λ d�z exp

[
NS(β)

n

[
ψ, ψ̂,�λ,�z; t, ε;w

]]
, (A.62)

where ψ and ψ̂ are functional order parameters10. For large N, we employ a saddle point
approximation〈

[Z(β)
ε (t, J̃;w)]n

〉
J̃
≈ 1

M exp
[
NS(β)

n

(
ψ�, ψ̂�,�λ�,�z�; t, ε;w

)]
, (A.63)

where the starred objects satisfy self-consistency equations where t can be safely set to zero,
since the partial derivative ∂

∂t in (A.60) only acts on terms containing an explicit dependence
on t. Again, we refer to Appendix B of [21] for the evaluation of the constant M.

The stationarity conditions defining ψ�, ψ̂�, λ� and �z� at the saddle point for
t = 0 are identical to those found in section A.1. The explicit n-dependence of the action

S(β)
n

(
ψ�, ψ̂�,�λ�,�z�; t, ε;w

)
is again extracted by representing the order parameters ψ� and

ψ̂� as infinite superpositions of Gaussians. The explicit t-dependence appears in the so-called
‘single-site’ term of the action, i.e.

S5(ψ̂�,λ�, z�; t, ε;w) = n
kmax∑
k=0

p(k)
∫

duρJ(u|k)
∫

{dπ}k Log
∫

dv exp

×
[
−i

β

2
λ�v2 + βtδε (w − v)

+
β

2
{ω̂}kv

2 + β
(

iz�x + {ĥ}k

)
v

]
. (A.64)

By making the identifications iλ� ≡ λ and q ≡ −iz� as before, taking the t-derivative at
t = 0 and considering the limits ε→ 0 and β →∞ as prescribed by (A.60), we eventually find

ρJ̃(w) ≡ ρJ,2(w) =
kmax∑
k=0

p(k)
∫

duρJ(u|k)
∫

{dπ}k

×
〈
δ

⎛
⎝w −

−qu〈λ1〉J +
∑k

�=1
h�K�
ω�

λ−
∑k

�=1
K2
�

ω�

⎞
⎠〉

{K}k

, (A.65)

10 We use the same symbols ψ and ψ̂ as in A.1.
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where we recall that 〈·〉{K}k
denote averaging w.r.t. a collection of k i.i.d. random variables K,

each drawn from the bond weight distribution pK(K).
Equation (A.65) represents the resulting probability density function of the top eigenvector’s

component of the deflated matrix J̃ in case of full deflation, which in turn corresponds
to the distribution of the second largest eigenvector’s components of J. This equation is
the large N generalisation of the single-instance result (32) found by the cavity method.
The set of equations (A.51)–(A.54) and (A.65) are exactly equivalent to the thermodyna-
mic limit equations (37)–(41) found within the cavity method in section 3.2.

All the observations made in section 3.2.1 about the fact that (A.53) in case of full deflation
encodes the orthogonality condition (hence q = 0) hold here as well. Taking into account the
average orthogonality condition q = 0, we obtain

π(ω, h) =
kmax∑
k=1

p(k)
k
c

∫
{dπ}k−1

〈
δ

(
ω −
(
λ−

k−1∑
�=1

K2
�

ω�

))

× δ

(
h −
(

k−1∑
�=1

h�K�

ω�

))〉
{K}k−1

, (A.66)

1 =

kmax∑
k=0

p(k)
∫

{dπ}k

〈⎛⎝ ∑k
�=1

h�K�
ω�

λ−
∑k

�=1
K2
�

ω�

⎞
⎠

2〉
{K}k

, (A.67)

0 =

kmax∑
k=0

p(k)
∫

duρJ(u|k)u
∫

{dπ}k

〈⎛
⎝ ∑k

�=1
h�K�
ω�

λ−
∑k

�=1
K2
�

ω�

⎞
⎠
〉

{K}k

, (A.68)

ρJ̃(w) ≡ ρJ,2(w) =
kmax∑
k=0

p(k)
∫

{dπ}k

〈
δ

⎛
⎝w −

∑k
�=1

h�K�
ω�

λ−
∑k

�=1
K2
�

ω�

⎞
⎠
〉

{K}k

,

(A.69)〈
λ̃1

〉
J̃
≡ 〈λ2〉J = λ. (A.70)

Equations (A.66)–(A.70) provide the solution of the second largest eigenpair problem in
the large N limit. They are identical to equations (43)–(47) found with the cavity method.

Appendix B. Top eigenvalue evaluation in the RRG case

Here we give details of the calculation of the top eigenvalue of the RRG deflated matrix in both
the outer and bulk regimes, as anticipated in sections 4.1 and 4.3.

In the outer regime, the top eigenvalue is found by taking into account (67), (54), (64)
and the identity h̄ = ω̄ − 1, which follows from (61). The O(n) terms of the action Sn in
(A.36)—keeping only the leading β →∞ terms—are expressed as follows

S1 [π, π̂] = −nc
∫

dπ(ω, h)dπ̂(ω̂, ĥ) ln
Zβ(ω − ω̂, h + ĥ)

Zβ(ω, h)

 −nc
β

2
h̄2

ω̄

(
2

ω̄ − 1

)
, (B.1)
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S2[π] = n
c
2

∫
dπ(ω, h)dπ(ω′, h′) ln

Zβ

(
ω − 1

ω′ , h + h′
ω′

)
Zβ(ω, h)

 nc
β

2
h̄2

ω̄

(
1

ω̄ − 1

)
= −1

2
S1[π, π̂], (B.2)

S3 (λ) =
β

2
nλ =

β

2
n(c − x), (B.3)

S4(z, x) = −n
β

2
xz�2 = n

β

2
xq2 = n

β

2
x, (B.4)

S5[π̂,λ] = n
∫ [ c∏

�=1

dπ̂(ω̂�, ĥ�)

]
Log Zβ

(
λ− {ω̂}c, {ĥ}c − qx

)

 n
β

2

(
λ− c

ω̄

)
. (B.5)

Summing up all terms and recalling from (64) that λ = c − x, the action at the saddle point
reads

Sn = n
β

2
(c − x), (B.6)

which implies from (A.7) for the average of the largest eigenvalue of J̃ the formula〈
λ̃1

〉
J̃
= c − x. (B.7)

In the bulk regime, the top eigenvalue is found by taking into account (73) and (74) and also
that q = 0 and λ = 2

√
c − 1. Then the O(n) terms of the action Sn in (A.36)—keeping only

the leading β →∞ terms—are expressed as

S1 [π, π̂] = −nc
β

2
2σ2

ω̄(ω̄2 − 1)
,

S2[π] = nc
β

2
2σ2

2ω̄(ω̄2 − 1)
= −1

2
S1[π, π̂],

S3 (λ) =
β

2
nλ =

β

2
n
√

c − 1, (B.8)

S4(q, x) = n
β

2
xq2 = 0, (B.9)

S5[π̂,λ] = n
β

2
1
ω̄2

cσ2

λ− c
ω̄

. (B.10)

Summing up all terms and exploiting the identities (56) and (57), the action at the saddle
point reads

Sn = nc
β

2
σ2

ω̄

[
− 1
ω̄2 − 1

+
1
ω̄

1
λ− c

ω̄

]
= n

β

2
λ = nβ

√
c − 1, (B.11)
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which implies from (A.7) that the average of the largest eigenvalue of J̃ is〈
λ̃1

〉
J̃
= 2

√
c − 1, (B.12)

corresponding to the upper edge of the Kesten–McKay distribution.

Appendix C. Replica setup for the second largest eigenpair of sparse random
Markov transition matrices

The partition function reads

Z =

∫
dv exp

⎡
⎣β

2

N∑
i, j=1

vi
ci j√
kik j

v j −
β

2cN

(
N∑

i=1

vi

√
ki

)2
⎤
⎦ δ (|v|2 − N

)
. (C.1)

By expressing the delta function in (C.1) via its Fourier representation and employing the
change of variable ṽi

√
ki ← vi, the partition function becomes

Z =

(
β

4π

)( N∏
i=1

ki

)1/2 ∫
dṽ dλ exp

⎡
⎣β

2

N∑
i, j=1

ṽici jṽ j −
β

2cN

(
N∑

i=1

ṽiki

)2
⎤
⎦

× exp

[
−i

β

2
λ

(
N∑

i=1

ṽi
2ki − N

)]
. (C.2)

The square in the exponent of (C.2) can be linearised by a Hubbard–Stratonovich transform
as in (A.5). The resulting partition function, where we rename the ṽi variables as vi to avoid
cumbersome notation, reads

Z =

(
β

4π

)(
βN
2πc

)1/2
(

N∏
i=1

ki

)1/2 ∫
dv dλ dz exp

⎛
⎝β

2

N∑
i, j=1

vici jv j

⎞
⎠

× exp

[
−i

β

2
λ

(
N∑

i=1

v2
i ki − N

)]
exp

(
−βN

2c
z2 + i

β

c

N∑
i=1

vikiz

)
. (C.3)

The average w.r.t. the matrix ensemble of W̃S reduces to averaging over the connectivity matrix
C = {ci j}. By using the replica trick, we need to compute〈

λ̃1

〉
W̃S

= lim
β→∞

2
βN

lim
n→0

1
n

Log〈Zn〉C. (C.4)

Henceforth, the derivation will exactly match the steps in A.1.
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pp 1–46
[14] Lovász L 2007 Eigenvalues of Graphs (Lecture notes)
[15] Moretti P, Baronchelli A, Barrat A and Pastor-Satorras R 2011 Complex networks and glassy

dynamics: walks in the energy landscape J. Stat. Mech. P03032
[16] Margiotta R G, Kühn R and Sollich P 2019 Glassy dynamics on networks: local spectra and return

probabilities J. Stat. Mech. 093304
[17] Haveliwala T and Kamvar S 2003 The second eigenvalue of the Google matrix Technical Report

Stanford
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