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Abstract
We develop a formalism to compute the statistics of the top eigenpair of 
weighted sparse graphs with finite mean connectivity and bounded maximal 
degree. Framing the problem in terms of optimisation of a quadratic form on 
the sphere and introducing a fictitious temperature, we employ the cavity and 
replica methods to find the solution in terms of self-consistent equations for 
auxiliary probability density functions, which can be solved by population 
dynamics. This derivation allows us to identify and unpack the individual 
contributions to the top eigenvector’s components coming from nodes of 
degree k. The analytical results are in perfect agreement with numerical 
diagonalisation of large (weighted) adjacency matrices, and are further cross-
checked on the cases of random regular graphs and sparse Markov transition 
matrices for unbiased random walks.
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1.  Introduction

The largest eigenvalue and the associated top eigenvector of a N × N  matrix J play a very 
important role in many applications. In multivariate data analysis and Principal Component 
Analysis, the top eigenpair of the covariance matrix provides information about the most 
relevant correlations hidden in the dataset [1, 2]. These extremal questions also arise in con-
nection with synchronisation problems on networks [3], percolation problems [4], linear sta-
bility of coupled ODEs [5], financial stability [6] and several other problems in physics and 
chemistry, connected to the applications of Perron’s theorem [7]. Also in the realm of quantum 
mechanics, the search for the ground state of a complicated Hamiltonian essentially amounts 
to solving the top eigenpair problem for a differential operator [8]. The top eigenpair is also 
relevant in signal reconstruction problems employing algorithms based on the spectral method 
[9]. In the context of graph theory, the eigenvectors of both adjacency and Laplacian matrices 
are employed to solve combinatorial optimisation problems, such as graph 3-colouring [10] 
and to develop clustering and cutting techniques [11–13]. In particular, the top eigenvector of 
graphs is intimately related to the ‘ranking’ of the nodes of the network [14]. Indeed, beyond 
the natural notion of ranking of a node given by its degree, the relevance of a node can be 
estimated from how ‘important’ its neighbours are. The vector expressing the importance of 
each node is exactly the top eigenvector of the network adjacency matrix. Google PageRank 
algorithm works in a similar way [15, 16]: the PageRanks vector is indeed the top eigenvector 
of a large Markov transition matrix between web pages.

When the matrix J is random and symmetric with i.i.d. entries, analytical results on the 
statistics of the top eigenpair date back to the classical work by Füredi and Komlós [17]: the 
largest eigenvalue of such matrices follows a Gaussian distribution with finite variance, pro-
vided that the moments of the distribution of the entries do not scale with the matrix size. This 
result directly relates to the largest eigenvalue of Erdős–Rényi (E–R) [18] adjacency matrices 
in the case when the probability p  for two nodes to be connected does not scale with the matrix 
size N. This result has been then extended by Janson [19] in the case when p  is large. However, 
in our analysis we will be mostly dealing with the sparse case, i.e. when p   =  c/N, with c being 
the constant mean degree of nodes (or equivalently, the mean number of nonzero elements per 
row of the corresponding adjacency matrix). In this sparse regime, Krivelevich and Sudakov 
[20] proved a theorem stating that for any constant c the largest eigenvalue of Erdős–Rényi 
graph diverges slowly with N as 

√
logN/ log logN . To ensure that the largest eigenvalue 

remains ∼ O(1), the nodes with very large degree must be pruned (see [21]).
The characterisation of eigenvectors properties has proved to be much harder and is gen-

erally a less explored area of random matrix theory. Excluding the cases of (i) invariant 
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ensembles, where eigenvector components follow the celebrated Porter-Thomas distribution 
[22, 23], (ii) dense non-Hermitian matrices (see for instance the seminal works of Chalker 
and Mehlig [24] along with results about correlations between eigenvectors [25, 26] and some 
more recent applications [27–30]) and (iii) perturbed matrices [31–35], systematic results 
are scarcer for sparse Hermitian matrices, especially in the limit of high sparsity. Indeed, 
although Gaussian statistics and delocalisation of eigenvectors are known properties of adja-
cency matrices of Erdős–Rényi and random regular graphs in the case where the mean degree 
c = c(N) diverges with N [36–38], very few results are available for the high sparsity regime, 
i.e. with fixed c. In this limit, numerical studies have shown that most of the eigenvectors of a 
random regular graph follow a Gaussian distribution [39], as well as almost-eigenvectors [40], 
whereas Erdős–Rényi eigenvectors are localised especially for low values of c.

The statistics of the first eigenvector components for very sparse symmetric random matri-
ces was first considered in the seminal works by Kabashima and collaborators [41–43], which 
constitute the starting point of our analysis. The focus there is on specific classes of real 
sparse random matrices, i.e. when the matrix connectivity is either a random regular graph or 
a mixture of multiple degrees, and the nonzero elements are drawn from a Bernoulli distribu-
tion. More precisely, in [41] and [43] the cavity method was employed for the top eigenpair 
problem, while in [42] the replica formalism was instead adopted to study the same problem 
in the thermodynamic limit, recovering cavity results. Our aim is to analyse and develop both 
the cavity and replica formalisms they pioneered even further, and to present them in a unified 
way that looks—at least to our eyes—more transparent.

We will be implementing a statistical mechanics formulation of the top eigenpair problem, 
using both the cavity (section 3) and replica (section 4) methods—borrowed from the standard 
arsenal of disordered systems physics—as main solving tools.

The replica method, widely used in the physics of spin glasses [44], was first introduced 
in the context of random matrices by Edwards and Jones [45] to compute the average spectral 
density of random matrices defined in terms of the joint probability density function (pdf) of 
their entries. Building on this approach, Bray and Rodgers in their seminal paper [46] were 
able to express the spectral density of Erdős–Rényi adjacency matrices as the solution of a 
(nearly intractable) integral equation. Therefore, asymptotic analyses for large average con-
nectivities [46], and approximation schemes such as the single defect approximation (SDA) 
and the effective medium approximation (EMA) [47, 48] were first developed as a way around 
this hindrance. An alternative approach was pursued in [49] (see also [50]): starting from 
Bray–Rodgers replica-symmetric setup [46], the functional order parameters of the theory 
are expressed as continuous superpositions of Gaussians with fluctuating variances, as sug-
gested by earlier solutions of models for finitely coordinated harmonically coupled systems 
[51]. This formulation gives rise to non-linear integral equations for the probability densities 
of such variances, which can be efficiently solved by a population dynamics algorithm. Our 
paper will follow a similar approach in section 4.

The cavity method [52], also known as Bethe–Peierls or belief-propagation method, was 
introduced in the context of disordered systems and sparse random matrices as a more intui-
tive and straightforward alternative to replicas: the two methods are known to provide the same 
results for the spectral density of graphs [53], even though a general, first-principle proof of 
their equivalence does not seem to be currently available. A rigorous proof of the correctness of 
cavity method and the tree-like approximation for finitely coordinated graphs is given in [54]. 
One of the advantages of the cavity method is that it allows one to solve the spectral problem for 
very large single instances of sparse random graphs, as done in [55]. Both the replica and cavity 
approaches in [49] and [55] retrieve known results such as the Kesten–McKay law for the spec-
tra of random regular graphs [56, 57], the Marčenko–Pastur law and the Wigner’s semicircle law 
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respectively for sparse covariance matrices and for Erdős–Rényi adjacency matrices in the large 
mean degree limit. Both approaches have also been employed to characterise the spectral density 
of sparse Markov matrices [58, 59] and graphs with modular [60] and small-world [61] structure 
and with topological constraints [62]. The localisation transition for sparse symmetric matrices 
was studied in [63]. The two methods have also been extended to the study of the spectral density 
of sparse non-Hermitian matrices [64, 65], whereas eigenvalue outliers have been considered in 
[66]; for an excellent review, see [67]. The spectral properties of the Hashimoto non-backtrack-
ing operator—arising in the cavity solution (see appendix A for details) have been investigated in 
[68–70]. In this paper, we propose a ‘grand canonical’ cavity derivation that differs in the details 
from [41] (see section 3). We also provide a detailed analysis of the single-instance recursion 
equations, showing that their convergence is strictly related to the spectral properties of a modi-
fied non-backtracking operator associated with the single-instance matrix. At the same time, 
building on the insights coming from the replica treatment, we are able to better understand the 
behaviour of the stochastic recursions that provide the solution of the top eigenpair problem in 
the thermodynamic limit. Furthermore, the population dynamics algorithm employed to solve 
these recursions allows us to characterise the distributions of the cavity fields in the thermody-
namic limit and identify the individual contributions of nodes of different degrees k to the top 
eigenvector’s entries.

The plan of the paper is as follows. In section 2, we will formulate the problem and provide 
the main starting points. In section 3, we will describe the cavity approach to the problem, 
first for the single instance case (in section 3.1), and then in the thermodynamic limit (in sec-
tion 3.2). In section 4, we formulate the replica approach to the same problem, first focussing 
on the largest eigenvalue problem (in section 4.1) and then on the density of top eigenvector’s 
components (in section 4.2). For both problems, we take the weighted Erdős–Rényi and ran-
dom regular graphs as representative examples. In section 5 we build on our previous results to 
complete the picture for Markov transition matrices on a random graph structure. In section 6, 
we provide the details of the population dynamics algorithm, and in section 7 we offer a sum-
mary and outlook for future research. In appendix A, we provide a detailed discussion of the 
single-instance cavity approach and associated non-backtracking operator. In appendix B, we 
offer a detailed replica derivation of the typical location of the largest eigenvalue for sparse 
graphs characterised by a generic degree distribution p(k).

2.  Formulation of the problem

We consider a sparse random N × N  symmetric matrix J = (Jij), with real i.i.d. entries. The 
matrix entries are defined as

Jij = cijKij,� (1)

where the cij ∈ {0, 1} constitute the connectivity matrix, i.e. the adjacency matrix of the 
underlying graph, and the Kij encode bond weights. We will typically consider the case of 
Poissonian highly sparse connectivity—where the node degrees ki (or equivalently the number 
of nonzero elements per row of J) fluctuate according to a bounded Poisson distribution

P(ki = k) = N−1e−c̄c̄k/k!, k = 0, . . . , kmax,� (2)

with the mean degree a finite constant c ≡ 〈k〉 and N =
∑kmax

k=0 e−c̄c̄k/k! to ensure normalisa-
tion. The bond weights Kij will be i.i.d. random variables drawn from a parent pdf p(K) with 
bounded support. This setting is sufficient to ensure that the largest eigenvalue λ1 of J will 
remain of O(1) for N → ∞.

V A R Susca et alJ. Phys. A: Math. Theor. 52 (2019) 485002
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The spectral theorem ensures that J can be diagonalised via an orthonormal basis of eigen-
vectors vα with corresponding real eigenvalues λα (α = 1, . . . , N ),

Jvα = λαvα,� (3)

for each eigenpair α = 1, . . . , N . We assume that there is no eigenvalue degeneracy, and that 
they are sorted λ1 > λ2 > . . . > λN.

The goal of this work is to set up a formalism based on the statistical mechanics of dis
ordered systems to find:

	 •	�The average (or typical value) 〈λ1〉J of the largest eigenvalue λ1.

	 •	�The density �(u) =
〈

1
N

∑N
i=1 δ(u − v(i)

1 )
〉

J
 of the top eigenvector’s components, 

v1 = (v(1)
1 , . . . , v(N)

1 ) ,

where the average 〈·〉J is taken over the distribution of the matrix J.
The problem can be formulated as the optimisation problem of a quadratic function Ĥ(v), 

according to which v1 is the vector normalized to N that realises the condition

Nλ1 = min
|v|2=N

[
Ĥ(v)

]
= min

|v|2=N

[
−1

2
(v, Jv)

]
,� (4)

as dictated by the Courant–Fischer definition of eigenvectors. The round brackets (·, ·) indi-
cate the dot product between vectors in RN . It is easy to show that Ĥ (v) is bounded

−1
2
λ1N � Ĥ (v) � −1

2
λNN,� (5)

and attains its minimum when computed on the top eigenvector.
For a fixed matrix J, the minimum in (4) can be computed by introducing a fictitious canon-

ical ensemble of N-dimensional vectors v at inverse temperature β, whose Gibbs–Boltzmann 
distribution reads

Pβ,J(v) =
1
Z
exp

[
β

2
(v, Jv)

]
δ(|v|2 − N),� (6)

where the delta function enforces normalisation. Clearly, in the low temperature limit β → ∞, 
only one ‘state’ remains populated, which corresponds to v = v1, the top eigenvector of the 
matrix J. The hard normalisation constraint can also be relaxed for our purposes, and replaced 
with a soft, ‘grand canonical’ version

Pβ,J (v) =
1
Z
exp

{
β

[
1
2
(v, Jv)− λ

2
(v, v)

]}
,� (7)

where λ is an auxiliary Lagrange multiplier. The two versions above are expected to provide 
the same physical results in the limits β, N → ∞, as we explicitly demonstrate by using (7) 
for our cavity treatment in section 3, and (6) as a starting point of our replica calculation in 
section 4.

3.  Cavity approach

In what follows, we will use a cavity method formulation for the top eigenpair problem which 
is deeply rooted in the statistical mechanics approach to disordered systems. Our formulation 
provides equations for the statistics of the top eigenpair that are fully equivalent to those found 
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earlier by Kabashima et al in [41]. Our treatment, however, brings more neatly to the surface 
a few subtleties related to the solution of self-consistency equations and their range of appli-
cability, this way providing a more transparent derivation.

The central idea of the cavity method [52] consists in computing observables related to 
a given node, relying on some information concerning its neighbourhood when the node of 
interest is removed from the network. It is useful every time the underlying graph has a finite 
connectivity structure: its predictions become exact for trees and approximately exact for tree-
like structures (where loops are negligible) such as graphs in the high sparsity regime.

3.1.  Single instance

Consider for the time being a single instance of the random matrix J. Starting from the soft-
constraint distribution (7), whose partition function is

Z =

∫
dv exp

{
β

[
1
2
(v, Jv)− λ

2
(v, v)

]}
,� (8)

it is trivial to notice that the condition λ > λ1 is necessary to ensure convergence for all β.
The marginal distribution of the component vi, obtained by integrating out all other comp

onents in (7), and using the sparsity condition Jij  =  0 if j /∈ ∂i (where ∂i denotes the immedi-
ate neighbourhood of i) is

Pi (vi) =
1
Zi

exp

(
−β

λ

2
v2

i

)∫
dv∂i exp


β

∑
j∈∂i

Jijvivj


P(i) (v∂i) ,� (9)

where P(i)(v∂i) is the joint distribution of the components pertaining to the immediate neigh-
bourhood of i, ∂i, when the node i has been removed. Indeed, all the components outside ∂i 
can be integrated out without difficulty, and the resulting constant term can be just reabsorbed 
in the normalisation constant. P(i)(v∂i) is also known as cavity probability distribution.

Adopting now a tree-like approximation, which is accurate for very sparse graphs, all 
nodes j  in ∂i are connected with each other only through i (see figure 1), therefore they get 

Figure 1.  Tree-like structure of a graph. The indexing refers to the labels used in the 
cavity method treatment in section 3.1.

V A R Susca et alJ. Phys. A: Math. Theor. 52 (2019) 485002
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disconnected when the node i is removed from the network: this implies that the integral 
appearing in (9) factorises as

Pi (vi) =
1
Zi

exp

(
−β

λ

2
v2

i

)∏
j∈∂i

∫
dvj exp (βJijvivj)P(i)

j (vj) .� (10)

In the same way, a similar expression can be derived for the marginal cavity distribution 

P(i)
j (vj) now appearing in (10). Iterating the reasoning as before, and further removing the 

node j ∈ ∂i in the network in which the node i had already been removed, one can write

P(i)
j (vj) =

1

Z(i)
j

exp

(
−β

λ

2
v2

j

) ∏
�∈∂j\i

∫
dv� exp (βJj�vjv�)P( j)

� (v�) ,� (11)

where the symbol ∂j\i denotes the neighbourhood of j  excluding i.
Equation (11) has now become a self-consistent equation for the cavity probability distri-

butions, which can be solved by a Gaussian ansatz for P(i)
j (vj)

P(i)
j (vj) =

√
βΩ

(i)
j

2π
exp


−

βH(i)
j

2

2Ω(i)
j


 exp

(
−β

2
Ω

(i)
j v2

j + βH(i)
j vj

)
,� (12)

where the parameters Ω(i)
i  and H(i)

j  are called cavity fields. This ansatz is chosen to obtain 
a solution v whose components are not peaked at zero in the β → ∞ limit. Inserting the 
Gaussian ansatz (12) in (11) and performing the resulting Gaussian integrals, one obtains

P(i)
j (vj) =

1

Z(i)
j

exp

(
−β

2
λv2

j

) ∏
�∈∂j\i

exp


β

2

(
Jj�vj + H( j)

�

)2

Ω
( j)
�


 .� (13)

Comparing the coefficients of the same powers of vj between (12) and (13), we obtain the fol-

lowing two self-consistent relations which define the cavity fields Ω(i)
i  and H(i)

j

Ω
(i)
j = λ−

∑
�∈∂j\i

J2
j�

Ω
( j)
�

,� (14)

H(i)
j =

∑
�∈∂j\i

Jj�

Ω
( j)
�

H( j)
� .� (15)

These equations have been obtained before in [41].
The Gaussian ansatz (12) can then be inserted in (10), resulting in a Gaussian distribution 

for the single-site marginals

Pi (vi) =
1
Zi

exp

(
−β

2
Ωiv2

i + βHivi

)
,� (16)

where the N coefficients Ωi  and Hi are given by the following equations

Ωi = λ−
∑
j∈∂i

J2
ij

Ω
(i)
j

,� (17)

V A R Susca et alJ. Phys. A: Math. Theor. 52 (2019) 485002
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Hi =
∑
j∈∂i

Jij

Ω
(i)
j

H(i)
j .� (18)

Here, Ω(i)
j  and H(i)

j  are the fixed-point solutions of (14) and (15).
In the limit β → ∞, the marginal distribution (16) converges to

Pi(vi) = δ

(
vi −

Hi

Ωi

)
,� (19)

from which one concludes that the components of the top eigenvector of the fixed matrix J 

(a single instance of the ensemble) must be given by v(i)
1 = Hi/Ωi , where Hi and Ωi  are the 

values obtained from (17) and (18), after the fixed-points of the recursions (14) and (15) have 
been obtained.

A detailed discussion on how to solve the above recursions in practice and on the role of the 
(yet unspecified) multiplier λ is deferred to appendix A. Although this derivation only relies 
on the tree-like approximation for the local connectivity and is arguably very easy and intui-
tive, it is not particularly interesting as it stands: the complexity of the cavity algorithm for a 
single instance is actually higher than a high-precision, direct diagonalisation of the matrix J, 
therefore it is of little practical use per se. It is, however, a conceptually necessary ingredient 
to discuss infinite-size matrices, as we do in the next subsection.

3.2. Thermodynamic limit N → ∞

In an infinitely large network, it is no longer possible to keep track of an infinite number of 
cavity fields. Following [41], we consider first the joint probability density that the cavity 

fields of type Ω(i)
j  and H(i)

j  take up values around ω  and h

q (ω, h) = Prob
(
Ω

(i)
j = ω, H(i)

j = h
)

=

(
N∑

i=1

ki

)−1 N∑
i=1

∑
j∈∂i

δ
(
ω − Ω

(i)
j

)
δ
(

h − H(i)
j

)
,

�

(20)

where N is now large but finite. This is a properly normalised pdf: indeed, we can associate 

two cavity fields Ω(i)
j  and H(i)

j  to any link (i, j) of the network. Since every node i is the source 

of ki links, their total number is given by 
∑N

i=1 ki.
Next, one may appeal to the single-instance update rules given by (14) and (15) to char-

acterise the above distribution self-consistently, as is done in [41]. It should be stressed that 
in an infinitely large network links can only be distinguished by the degree of the node they 
are pointing to. Thus, for a given edge (i, j) pointing to a node j  of degree k, the values ω  and 

h of the pair of cavity fields Ω(i)
j  and H(i)

j  living on this edge are determined respectively by 

the k  −  1 values {ω�} and {h�} of the cavity fields Ω( j)
�  and H( j)

�  living on each of the edges 
connecting j  with its neighbours � ∈ ∂j\i. In an infinite system, these values can be thought of 

as k  −  1 independent realisations of the random variables of types Ω(i)
j  and H(i)

j , drawn from 

their joint pdf q(ω, h). The entries of J that appear in the single instance recursions (14) and 
(15) are replaced by a set {K�}k−1 of k  −  1 independent realisations of the random variable 
K, each distributed according to the pdf p(K) of bond weights. The full distribution q(ω, h) 
is then obtained by weighing each edge contribution with the probability r(k) of having a 
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random link pointing to a node of degree k and summing up over all possible degrees up to 
kmax, leading to the self-consistency equation

q (ω, h) =
kmax∑
k=1

r (k)
∫ [

k−1∏
�=1

dq (ω�, h�)

]〈
δ

(
ω − λ+

k−1∑
�=1

K2
�

ω�

)
δ

(
h −

k−1∑
�=1

h�K�

ω�

)〉

{K}k−1

,

� (21)
where dq (ω�, h�) ≡ dω�dh�q (ω�, h�), and the average 〈·〉{K}k−1

 is taken over k  −  1 indepen-
dent realisations of the random variable K. We recall that

r (k) =
kp (k)
〈k〉

,� (22)

where p (k) is the probability of having a node of degree k and 〈k〉 =
∑

k kp (k) [71]. The sum 
in (21) starts from k  =  1 since we should not be concerned with isolated nodes.

Equation (21) is generally solved via a population dynamics algorithm (see section 6 for 
details). In some exceptional cases, such as for adjacency matrices of random regular graphs, 
it can be solved analytically (see discussion in sections 4.1.2 and 4.2.2 below).

In a similar fashion, the joint pdf of the coefficients Ωi  and Hi can be expressed as

Q (Ω, H) =
1
N

N∑
i=1

δ (Ω− Ωi) δ (H − Hi) .� (23)

In this case, there is a pair of marginal coefficients Ωi  and Hi living on each node. Since in the 
infinite size limit the nodes can only be distinguished by their degree, following the same line 
of reasoning that led to (21), the joint pdf of the random variables of the type Ωi  and Hi in the 
thermodynamic limit can be written as

Q (Ω, H) =

kmax∑
k=0

p (k)
∫ [

k∏
�=1

dq (ω�, h�)

]〈
δ

(
Ω− λ+

k∑
�=1

K2
�

ω�

)
δ

(
H −

k∑
�=1

h�K�

ω�

)〉

{K}k

,

� (24)
where p(k) is the degree distribution. Here, q (ω�, h�) is the fixed-point distribution of cavity 
fields, i.e. the solution of the self-consistency equation (21), which should therefore be solved 
beforehand.

The distribution of the top eigenvector’s components in the thermodynamic limit is then 
obtained in terms of the pdf Q (Ω, H) in (24), exploiting the analogy with the single-instance 
case in (19), and reads

�(u) =

〈
1
N

N∑
i=1

δ
(

u − v(i)
1

)〉
=

∫
dΩdH Q (Ω, H) δ

(
u − H

Ω

)
.� (25)

Both equations (21) and (24) still depend on the parameter λ: it must be fixed taking into 
account the normalisation of the top eigenvector. This condition amounts to requiring that

1 = 〈u2〉 =
∫

dΩdH Q (Ω, H)
H2

Ω2 .� (26)

Crucially, the value of λ for which the above normalisation condition is satisfied turns out to 
be exactly equal to the typical largest eigenvalue, λ ≡ 〈λ1〉J . Indeed, for every λ > 〈λ1〉J , the 
distribution of the h’s shrinks to a delta peak located at zero, whereas for λ < 〈λ1〉J , negative 
values of the ω’s start to appear while the h’s grow without bounds in the self-consistency 
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solution of (21). This is not surprising, since λ < 〈λ1〉J  is precisely the range of values for λ 
that makes the Gibbs–Boltzmann distribution (7) not normalisable.

As a final remark on the cavity solution, the equations (21) and (25) will match respectively 
(69) and (111) obtained via the replica method in section 4 below.

The discussion above has the advantage of leading rather quickly to the results (24) and 
(25). It is, however, instructive to reconsider this problem from the point of view of the replica 
approach, which provides a lengthier but rather systematic procedure, and arrives at the very 
same equations  while departing from very different premises. Both approaches (cavity or 
replicas) present different advantages and drawbacks—especially if seen through the prism 
of full mathematical rigour—and it is therefore of interest to compare them back to back. For 
the sake of clarity, we will keep the two pathways (typical largest eigenvalue versus density of 
top eigenvector’s components) clearly separate until the point where we realise that the same 
self-consistency equation governs the statistics of both quantities.

4.  Replica derivation

In this section, we evaluate the average location of the largest eigenvalue and the density of top 
eigenvectors’ components within the replica framework. The starting point of our analysis is the 
formalism pioneered in [42]. However, our derivation is not confined to specific connectivity 
distributions of the matrix entries as in [42], and thus provides a rather general and robust meth-
odology that can be applied to any graph with finite mean connectivity and bounded maximal 
degree. We also make a quite transparent and convincing case for the equivalence between the 
cavity and replica methods in these problems. Moreover, as we did for the cavity approach, we 
thoroughly discuss bounds on the values of parameters that guarantee a converging solution.

4.1. Typical largest eigenvalue

Consider again a N × N  symmetric matrix Jij = cijKij. The joint distribution of the matrix 
entries is

P ({Jij}|{ki}) = P ({cij}|{ki})
∏
i<j

δKij,Kji p (Kij) ,� (27)

where, in the framework of the configuration model [61], the distribution P ({cij}|{ki}) of 
connectivities {cij} compatible with a given degree sequence {ki} is given by

P ({cij}|{ki}) =
1
M

∏
i<j

δcij,cji

( c
N
δcij,1 +

(
1 − c

N

)
δcij,0

) N∏
i=1

δ∑
j cij,ki ,� (28)

and the pdf p (Kij) of bond weights (with compact support and upper edge ζ) can be kept 
unspecified until the very end.

It has been shown in many works [49, 59] that a convenient shortcut for the calculation 
consists in replacing the ‘microcanonical’ equation (28) with the standard Erdős–Rényi con-
nectivity distribution

P ({cij}) =
∏
i<j

δcij,cji

( c
N
δcij,1 +

(
1 − c

N

)
δcij,0

)
.� (29)

Although equation  (29) technically gives rise to an unbounded Poisson degree distribution 
with mean c—and therefore a largest eigenvalue whose location typically grows with N 
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[20]—the final results (e.g. equation (68)) can be easily adjusted and extended to cover any 
degree distribution p(k) with finite mean and bounded largest degree. For simplicity, we will 
therefore consider the distribution of the matrix entries to be simply

P ({Jij}) = P ({cij})
∏
i<j

δKij,Kji p (Kij)� (30)

at the outset, where P ({cij}) is given by (29). Once the Erdős–Rényi Poissonian degree dis-
tribution has appeared in the formulae, it will be straightforward to replace it with the actual 
finite-mean degree distribution of interest (for instance, the truncated Poisson distribution 
(2)). In appendix B, we will however provide a first-principle derivation for sparse graphs with 
a generic degree distribution p(k), without relying on any shortcut.

The average of the largest eigenvalue can be computed as the formal limit

〈λ1〉J = lim
β→∞

2
βN

〈ln Z〉J , Z =

∫
dv exp

[
β

2
(v, Jv)

]
δ
(
|v|2 − N

)
,

� (31)
in terms of the quenched free energy of the model defined in (6).

The average over J is computed using the replica trick as follows

〈λ1〉J = lim
β→∞

2
βN

lim
n→0

1
n
ln 〈Zn〉J ,� (32)

where n is initially taken as an integer, and then analytically continued to real values in the 
vicinity of n  =  0.

The replicated partition function is

〈Zn〉J =

∫ (
n∏

a=1

dva

)〈
exp


β

2

n∑
a=1

N∑
i,j

viaJijvja



〉

J

n∏
a=1

δ
(
|va|2 − N

)
.

� (33)
Taking the average w.r.t the joint distribution (30) of matrix entries yields [49]

〈
exp


β

2

n∑
a=1

N∑
i,j

viaJijvja



〉

J

= exp


 c

2N

∑
i,j

(〈
eβK

∑
a viavja

〉
K
− 1

) ,

� (34)
where 〈·〉K  denotes averaging over the single-variable pdf p (K) characterising the i.i.d. bond 
weights Kij.

We also employ a Fourier representation of the Dirac delta enforcing the normalisation 
constraints

n∏
a=1

δ
(
|va|2 − N

)
=

∫ ∞

−∞

(
n∏

a=1

β

2
dλa

2π

)
n∏

a=1

exp

[
−i

β

2
λa

(
N∑

i=1

v2
ia − N

)]
.

� (35)
The replicated partition function thus becomes

〈Zn〉J =

(
β

4π

)n ∫ (
n∏

a=1

dvadλa

)
exp

(
i
β

2
N
∑

a

λa

)
exp

(
−i

β

2

∑
a

∑
i

λav2
ia

)

× exp


 c

2N

∑
i,j

(〈
eβK

∑
a viavja

〉
K
− 1

)

 .

�

(36)
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In order to decouple sites, we introduce the functional order parameter

ϕ (�v) =
1
N

N∑
i=1

n∏
a=1

δ (va − via) ,� (37)

where the symbol �v  denotes a n-dimensional vector in replica space. We enforce its definition 
using the integral identity

1 =

∫
NDϕDϕ̂ exp

{
−i

∫
d�v ϕ̂ (�v)

[
Nϕ (�v)−

∑
i

n∏
a=1

δ (va − via)

]}
.

� (38)
In terms of this order parameter and its conjugate, the replicated partition function can be 
written as

〈Zn〉J =

(
β

4π

)n

N
∫

DϕDϕ̂d�λ exp
(
−iN

∫
d�vϕ̂ (�v)ϕ (�v)

)

× exp

[
Nc
2

∫
d�vd�v′ϕ(�v)ϕ(�v′)

(〈
eβK

∑
a vav′a

〉
K
− 1

)]
exp

(
i
β

2
N
∑

a

λa

)

×
∫ n∏

a=1

dva exp

(
−i

β

2

∑
a

∑
i

λav2
ia

)
exp

[
i
∑

i

∫
d�vϕ̂ (�v)

n∏
a=1

δ (va − via)

]
.

�

(39)

The multiple integral in the last line above factorises into N identical copies of the same 
n-dimensional integral, and can thus be written as

I = exp

[
NLog

∫
d�v exp

(
−i

β

2

∑
a

λav2
a + iϕ̂(�v)

)]
,� (40)

where Log denotes the principal branch of the complex logarithm.
Therefore, the replicated partition function takes a form amenable to a saddle point evalu-

ation for large N (where we assume we can safely exchange the limits n → 0 and N → ∞)

〈Zn〉J ∝
∫

DϕDϕ̂d�λ exp
(

NSn[ϕ, ϕ̂,�λ]
)

,� (41)

where

Sn[ϕ, ϕ̂,�λ] = S1 [ϕ, ϕ̂] + S2 [ϕ] + S3(�λ) + S4[ϕ̂,�λ],� (42)

and

S1[ϕ, ϕ̂] = −i
∫

d�vϕ̂(�v)ϕ(�v),� (43)

S2[ϕ] =
c
2

∫
d�vd�v′ϕ(�v)ϕ(�v′)

(〈
eβK

∑
a vav′a

〉
K
− 1

)
,� (44)

S3(�λ) = i
β

2

∑
a

λa,� (45)

S4[ϕ̂,�λ] = Log
∫

d�v exp

[
−i

β

2

∑
a

λav2
a + iϕ̂(�v)

]
.� (46)
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The stationarity of the action Sn w.r.t. variations of ϕ and ϕ̂ requires that the order param
eter at the saddle point ϕ� and its conjugate ϕ̂� satisfy the following coupled equations

iϕ̂�(�v) = c
∫

d�v′ϕ�(�v′)

[〈
exp

(
βK

∑
a

vav′a

)〉

K

− 1

]
,� (47)

ϕ�(�v) =
exp

[
−iβ2

∑
a λav2

a + iϕ̂� (�v)
]

∫
d�v′ exp

[
−iβ2

∑
a λav′2a + iϕ̂�(�v′)

] ,� (48)

which have to be solved together with the stationarity conditions w.r.t each component λā of �λ

1 =

∫
d�v exp

[
−iβ2

∑
a λav2

a + iϕ̂�(�v)
]

v2
ā

∫
d�v exp

[
−iβ2

∑
a λav2

a + iϕ̂� (�v)
] ∀ā = 1, . . . , n .� (49)

The equations  (47) and (48) bear a striking resemblance with the saddle-point equa-
tions leading to the spectral density of Erdős–Rényi random graphs [46, 49], except for the 
fact that the ‘Hamiltonian’ of our problem is real-valued and includes the inverse temperature 
β. Following [49], we will now search for replica-symmetric solutions written in the form of 
superpositions of uncountably infinite Gaussians with a non-zero mean. This ansatz will be 
preserving permutational symmetry between replicas, but (at odds with the choice in [49]) not 
the rotational invariance in the space of replicas1:

λā = λ ∀ā = 1, . . . , n,� (50)

ϕ�(�v) =
∫

dωdh π (ω, h)
n∏

a=1

1
Zβ(ω, h)

exp

[
−β

2
ωv2

a + βhva

]
,� (51)

iϕ̂�(�v) = ĉ
∫

dω̂dĥ π̂(ω̂, ĥ)
n∏

a=1

exp

[
β

2
ω̂v2

a + βĥva

]
,� (52)

where

Zβ(x, y) =

√
2π
βx

exp

(
βy2

2x

)
.� (53)

To justify the procedure above, on one hand the replica symmetric ansatz has been known 
for quite a while to lead to the correct results for the spectral problem of sparse random matrices 
[45, 46, 49, 72]. On the other hand, it is known that expressing the order parameter as a super-
position of Gaussian pdfs provides the correct solution for harmonically coupled system [51].

In (51) and (52), π and π̂ are normalised joint pdfs of the parameters appearing in the 
Gaussian distributions, while ĉ is introduced taking into account that iϕ̂(�v) needs not be nor-
malised. The advantage of writing an ansatz in this form is that—once inserted into (47) and 
(48)—it makes it possible to perform explicitly the �v -integrals, eventually leading to simpler 
coupled equations for π and π̂, as detailed below. The convergence of the �v -integrals will also 
impose the following conditions on ω  and ω̂: ω > ω̂ and ω > ζ  (where ζ is the upper edge of 
the support of the pdf p(K) of bond weights).

1 A rotationally invariant ansatz would not produce a physically meaningful result for this problem.
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As a further remark, the different signs in front of ω  and ω̂  in (51) and (52) are picked with 
an eye towards performing the subsequent �v -integrals: since iϕ̂�(�v) is not a pdf, ω̂  being posi-
tive is not problematic.

Rewriting the action in terms of π and π̂, after performing the �v -integrations, and extract-
ing the leading n → 0 contribution yields

S1[π, π̂] = −ĉ − ĉn
∫

dπ(ω, h)dπ̂(ω̂, ĥ) ln
Zβ(ω − ω̂, h + ĥ)

Zβ(ω, h)
,� (54)

S2[π] =
c
2

n
∫

dπ(ω, h)dπ(ω′, h′)

〈
ln

Z(2)
β (ω,ω′, h, h′, K)

Zβ (ω, h) Zβ (ω′, h′)

〉

K

,� (55)

S3(λ) = i
β

2
nλ,� (56)

S4[π̂,λ] = ĉ + n
∞∑

s=0

pĉ (s)
∫
{dπ̂}s Log Zβ

(
iλ− {ω̂}s, {ĥ}s

)
,� (57)

where we have introduced the shorthands

Z(2)
β (ω,ω′, h, h′, K) = Zβ(ω

′, h′)Zβ

(
ω − K2

ω′ , h +
h′K
ω′

)
� (58)

and {dπ̂}s =
∏s

�=1 dω̂�dĥ�π̂(ω̂�, ĥ�), along with {ω̂}s =
∑s

�=1 ω̂� and {ĥ}s =
∑s

�=1 ĥ�. The 
symbol pĉ(s) denotes a Poissonian degree distribution pĉ(s) = ĉse−ĉ/s! with mean ĉ, which 
naturally arises in the calculation. We note that the O(1) terms in S1 and S4 cancel, so that 
Sn = O(n) as expected.

The full action in terms of π and π̂ now reads

Sn = S1[π, π̂] + S2[π] + S3(λ) + S4[π̂,λ] .� (59)

The stationarity condition w.r.t λ entails

∂S
∂λ

∣∣∣
λ=λ�

= 0 ⇒ 1 =

∞∑
s=0

pĉ(s)
∫
{dπ̂}s〈v2〉P̄,� (60)

where the average 〈·〉P̄ is taken with respect to the Gaussian measure

P̄(v) =

√
β (iλ� − {ω̂}s)

2π
exp


−β

2
(iλ� − {ω̂}s)

(
v − {ĥ}s

iλ� − {ω̂}s

)2

 .

� (61)
More explicitly, (60) reads

1 =

∞∑
s=0

pĉ(s)
∫
{dπ̂}s


 1
β(iλ� − {ω̂}s)

+

(
{ĥ}s

iλ� − {ω̂}s

)2

 .� (62)

We note that the β-dependent term vanishes as β → ∞.
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The stationarity condition with respect to variations of π, δS
δπ = 0, entails the condition

ĉ
c

∫
dπ̂(ω̂, ĥ) ln

Zβ(ω − ω̂, h + ĥ)
Zβ(ω, h)

=

∫
dπ(ω′, h′)

〈
ln

Z(2)
β (ω,ω′, h, h′, K)

Zβ(ω, h)

〉

K

+
γ

c
,� (63)

where γ  is a Lagrange multiplier introduced to enforce the normalisation of π. Given the defi-

nition of Z(2)
β , (63) is equivalent to

ĉ
c

∫
dπ̂(ω̂, ĥ) lnZβ(ω − ω̂, h + ĥ) =

∫
dπ(ω′, h′)

〈
ln Zβ

(
ω − K2

ω′ , h +
h′K
ω′

)〉

K
+

γ

c
.� (64)

The condition that (64) must hold for all ω  and h can be translated into

π̂(ω̂, ĥ) =
∫

dωdh π(ω, h)
〈
δ

(
ω̂ − K2

ω

)
δ

(
ĥ − hK

ω

)〉

K
,� (65)

where c = ĉ to enforce normalization of π̂.
Similarly, the stationarity condition with respect to variations of π̂, δS

δπ̂ = 0, produces the 
condition
∫

dπ(ω, h) ln Zβ

(
ω − ω̂, h + ĥ

)
=

∞∑
s=1

s
c

pc(s)
∫

{dπ̂}s−1Log Zβ(iλ� − {ω̂}s−1 − ω̂, {ĥ}s−1 + ĥ)

+
γ̂

c
,

�

(66)

where γ̂  is the Lagrange multiplier enforcing the normalisation of π̂. We can then conclude 
that the saddle-point pdf π must satisfy

π(ω, h) =
∞∑

s=1

s
c

pc(s)
∫
{dπ̂}s−1δ (ω − (iλ� − {ω̂}s−1)) δ(h − {ĥ}s−1) .

� (67)
Inserting (65) into (67) yields, after simple algebra

π(ω, h) =
∞∑

s=1

s
c

pc(s)
∫
{dπ}s−1

〈
δ

(
ω −

(
iλ� −

s−1∑
�=1

K2
�

ω�

))
δ

(
h −

s−1∑
�=1

h�K�

ω�

)〉

{K}s−1

,

� (68)

where the brackets 〈·〉{K}s−1
 denote averaging with respect to a collection of s  −  1 i.i.d. ran-

dom variables K�, each drawn from the bond weight pdf p(K).
We recall at this point that the replica derivation started under the simplifying assumption 

that the connectivity distribution was that of a standard Erdős–Rényi graph (see (30)). This 
implies that the degree distribution p c(s)—naturally appearing in (68)—is a Poisson distribu-
tion with unbounded support. However, equation (68) remains formally valid for any degree 
distribution p c(s) with finite mean c. In our case, it is then necessary to consider (2) and manu-
ally correct2 (68) to account for the existence of a maximal degree, therefore yielding

π(ω, h) =
kmax∑
s=1

r(s)
∫
{dπ}s−1

〈
δ

(
ω −

(
iλ� −

s−1∑
�=1

K2
�

ω�

))
δ

(
h −

s−1∑
�=1

h�K�

ω�

)〉

{K}s−1

,� (69)

2 Obviously, the ‘truncated’ equation (69) would have been obtained anyway without any shortcuts, had we started 
from the exact connectivity distribution (28) at the outset. This is explicitly shown in appendix B.
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where r(s) is the link-degree distribution (22). Note that (69) is formally identical to the self-
consistent equation (21) found for the cavity field pdf, after the identification π(ω, h) ≡ q(ω, h).

The constant term λ ≡ iλ�—which turns out to be real-valued—needs to be tuned so as to 
enforce (62) for β → ∞, which reads (trading π̂ for π)

1 =

kmax∑
s=0

pc(s)
∫
{dπ}s

〈


∑s
�=1

h�K�

ω�

λ−
∑s

�=1
K2
�

ω�




2〉

{K}s

,� (70)

where—to avoid introducing more cumbersome notations—p c(s) now indicates the actual 
bounded degree distribution (2).

Surprisingly, even though the cavity and replica methods depart from completely different 
assumptions, they converge towards the same result: this has been already shown in [53] for 
the spectral problem in the Erdős–Rényi case.

A few remarks are in order:

	 •	�For the action to converge, we have obtained the following conditions ω > ζ , ω > ω̂ and 
λ ≡ iλ� > {ω̂}s, where ζ is the upper bound of the support of the bond weights p(K).

	 •	�Thanks to the structure of π̂ (65), the entire action can be just expressed in term of π (68) 
and λ (70).

	 •	�The value of λ ≡ iλ� is real, and corresponds to the typical value of the largest eigenvalue 
〈λ1〉J, as will be shown in section 4.1.1. This is of course again compatible with the cavity 
results.

	 •	�In equation  (69), the contribution corresponding to s  =  1 in the sum gives rise to the 
term δ(ω − λ) on the right hand side. Therefore, we expect to see a pronounced peak at 
the location of λ = 〈λ1〉J  in the plot of the marginal pdf π(ω) =

∫
dh π(ω, h), once the 

contributions coming from nodes of different degrees are ‘unpacked’. This is confirmed 
in figure 4 below.

	 •	�Both the cavity and replica approaches can be safely extended to non-Poissonian degree 
distributions as well, as long as the mean connectivity c remains finite as N → ∞, thus 
considerably enlarging the class of models for which the equivalence between cavity and 
replicas holds true.

4.1.1.  Erdős–Rényi graph: weighted adjacency matrix.  We proceed here with the case of a 
weighted adjacency matrix of sparse Erdős–Rényi graphs, with bounded maximal degree and 
bond weights drawn from the pdf p(K). The pure {0, 1}-adjacency matrix case is recovered 
considering p(K) = δ(K − 1). Given the distributions (69) and (65) at stationarity and recall-
ing (53), the O(n) terms of the action Sn in (59)—keeping only the leading β → ∞ term—are 
expressed as:

S1 [π, π̂] = −nc
∫

dπ(ω, h)dπ̂(ω̂, ĥ) ln
Zβ(ω − ω̂, h + ĥ)

Zβ(ω, h)

� −nc
β

2

∫
dπ(ω, h)dπ(ω′, h′)

〈(
h + h′K

ω′

)2

ω − K2

ω′

− h2

ω

〉

K

= −nc
β

2
I1,

�

(71)
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S2[π] = n
c
2

∫
dπ(ω, h)dπ(ω′, h′)

〈
ln

Zβ

(
ω − K2

ω′ , h + h′K
ω′

)

Zβ(ω, h)

〉

K

� nc
β

4

∫
dπ(ω, h)dπ(ω′, h′)

〈(
h + h′K

ω′

)2

ω − K2

ω′

− h2

ω

〉

K

= nc
β

4
I1,

�

(72)

S3 (λ) =
β

2
nλ,� (73)

S4[π̂,λ] = n
∞∑

s=0

pc(s)
∫ [

s∏
�=1

dπ̂(ω̂�, ĥ�)

]
Log Zβ

(
λ− {ω̂}s, {ĥ}s

)

� n
β

2

∞∑
s=0

pc(s)
∫ [

s∏
�=1

dπ̂(ω̂�, ĥ�)

]


(∑s
�=1 ĥ�

)2

λ−
∑s

�=1 ω̂�


 .

�

(74)

Multiplying and dividing the integrand of (74) by λ−
∑s

�=1 ω̂�, and using (62) (for β → ∞), 
we get

S4[π̂,λ] = n
β

2
λ− n

β

2

∞∑
s=1

pc(s)s
∫

dπ̂(ω̂, ĥ){dπ̂}s−1

( ∑s−1
�=1 ĥ� + ĥ

λ−
∑s−1

�=1 ω̂� − ω̂

)2

ω̂ .

�

(75)

Multiplying the second term by 1 =
∫

dωdhδ (ω − (λ− {ω̂}s−1)) δ(h − {ĥ}s−1), and using 
(67), we obtain (after some manipulations)

S4[π,λ] = n
β

2
λ− nc

β

2

∫
dπ(ω, h)dπ(ω′, h′)

〈
K2

ω′

(
h + h′K/ω′

ω − K2/ω′

)2
〉

K

= n
β

2
λ− nc

β

2
I2 .� (76)

Summing up all terms, the action at the saddle point reads

Sn =
nβ
2

(
− c

2
I1 − cI2 + 2λ

)
,� (77)

which would imply from (32) for the average of the largest eigenvalue the formula

〈λ1〉J = − c
2

I1 − cI2 + 2λ .� (78)

However, we were able to numerically show that at the saddle point

λ = c
(

I2 +
1
2

I1

)
,� (79)

implying that

〈λ1〉J = λ,� (80)

as expected from the corresponding cavity calculation. The identity (79) can be more easily 
checked numerically once expressed in the alternative way

〈λ1〉J = λ = c
∫

dπ(ω, h)dπ(ω′, h′)

〈(
h + h′K

ω′

ω − K2

ω′

)(
h′ + hK

ω

ω′ − K2

ω

)
K

〉

K

,� (81)
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which has the additional advantage of showing explicitly that λ ≡ iλ� is indeed a real-valued 
quantity.

The bottom panels in figure 2 show the marginal distributions π(ω) =
∫

dh π(ω, h) and 
π(h) =

∫
dω π(ω, h) for the case of a pure Erdős–Rényi {0, 1}-adjacency matrix, for which 

p(K) = δ(K − 1). In figure  3, we plot the behaviour of the typical largest eigenvalue as 
the maximum degree kmax is varied. Figure 4 instead shows π(ω) and π(h) for the case of a 
weighted Erdős–Rényi adjacency matrix, with a uniform bond pdf p(K) = 1/2 for K ∈ (1, 3).

Figure 2.  All panels refer to the Erdős–Rényi adjacency matrix in the limit N → ∞. 
The plots are obtained via the population dynamics algorithm described in section 6. 
In all cases, the mean connectivity is c  =  4, kmax = 16 and the population size is 
NP = 106. The resulting typical top eigenvalue is 〈λ1〉J ≈ 5.254. Top left panel: 
comparison between results for the density of top eigenvector’s components (see 
(25) or equivalently (111)), obtained with population dynamics (red stars) and direct 
diagonalisation (green diamonds). Top right panel: density of the top eigenvector’s 
components in the Erdős–Rényi case: the thick blue line is the full pdf, whereas the 
thinner curves underneath indicate the contributions from nodes of various degree 
from k  =  0 to k  =  16. Only the degree contributions up to k  =  11 are labelled: all the 
other (larger) degree contributions are barely distinguishable as they fall on top of 
each other in the tail of the distribution. Bottom left panel: marginal distribution of the 
inverse single site variances ω . The thick dashed line represents the full pdf, the thinner 
curves underneath stand for the single degree contributions, from k  =  1 to k  =  16. The 
rightmost peak at ω = λ corresponds to k  =  1: the degree decreases as the peaks are 
centered at lower ω . Also in this case, only the degree contributions up to k  =  11 are 
highlighted. Bottom right panel: marginal pdf of the single-site bias fields h. Again, the 
thick dashed line represents the full distribution, the thinner curves stand for the degree 
contributions from k  =  1 to k  =  16. The leftmost peak at h  =  0 corresponds to k  =  1: as 
h grows, the pdf π(h) receives contributions from higher degrees. Also in this case, only 
the degree contributions up to k  =  11 are highlighted.
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4.1.2.  Random regular graph: adjacency matrix.  We now consider the simpler and analyti-
cally tractable case of the random regular graph (RRG). A RRG with connectivity c is charac-
terized by the property that every node has exactly c neighbours, or equivalently every row of 
its {0, 1}-adjacency matrix has exactly c nonzero entries. This implies that the largest eigen-
value of such matrix is 〈λ1〉J = λ = c (deterministically), and its corresponding eigenvector 
has all identical components v1 = (1, 1, ..., 1)T .

In this case, the Poissonian degree distribution featuring in (68) can be safely replaced by 
δs,c. Furthermore, if we consider the pure adjacency matrix case (i.e. with p(K) = δ(K − 1)), 
(68) and (70) become

π(ω, h) =
∫
{dπ}c−1δ

(
ω −

(
λ−

c−1∑
�=1

1
ω�

))
δ

(
h −

c−1∑
�=1

h�
ω�

)
,� (82)

1 =

∫
{dπ}c

( ∑c
�=1

h�
ω�

λ−
∑c

�=1
1
ω�

)2

,� (83)

which can be exactly solved by the ansatz

π(ω, h) = δ(ω − ω̄)δ(h − h̄),� (84)

leading to the following equations for the parameters ω̄, h̄ and λ

ω̄ = λ− c − 1
ω̄

,� (85)

h̄ = (c − 1)
h̄
ω̄

,� (86)

Figure 3.  This panel refers to the behaviour of the typical largest eigenvalue in the 
Erdős–Rényi adjacency matrix case as the maximum degree kmax is varied. The value 
of 〈λ1〉 is found via population dynamics for any fixed value of kmax. Each value 
has been then checked against direct diagonalisation extrapolation at N → ∞. The 
mean connectivity parameter c̄ appearing in (2) is set to 4, whereas the population 
size is NP = 106 for any data point. Clearly, the mean degree c tends to c̄ = 4 as kmax 
increases. As expected, 〈λ1〉 grows as kmax increases, but the growth becomes slower as 
the probability of finding a node of higher and higher degree becomes negligible even 
in the thermodynamic limit.
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Figure 4.  Marginal distributions π(ω) and π(h) for Erdős–Rényi weighted adjacency 
matrices in the limit N → ∞. The graphs are obtained via the population dynamics 
algorithm. Here the mean connectivity is c  =  4, kmax = 16 and the population size 
is NP = 106. The bond weight distribution is chosen to be uniform, specifically 
p(K) = 1/2 for all K ∈ [1, 3]. The resulting typical top eigenvalue is 〈λ1〉J ≈ 10.8407. 
Top panel: marginal distribution of the ω-variables; the thick blue line represents the full 
distribution, the thinner curves underneath correspond to the various degree contributions 
from k  =  1 up to k  =  16. The contribution of nodes with degree k  =  1 corresponds to 
the peak located at ω = 〈λ1〉J ≈ 10.8407, as expected from equation (69). The peculiar 
structure of the distribution π(ω) in the case of the pure adjacency matrix (see figure 2) 
where every single degree contribution corresponds to a specific peak in π(ω) is lost 
here, due to the presence of nontrivial bond weights. As in figure 2, only the degree 
contributions up to k  =  11 are labelled. Bottom panel: marginal distribution of the bias 
fields h; again, the thick blue line represents the full distribution, while the thinner 
curves underneath correspond to the different degree contributions. Again, only the 
degree contributions up to k  =  11 are labelled.
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1 =

(
ch̄/ω̄

λ− c/ω̄

)2

.� (87)

Equation (86) entails that ω̄ = c − 1. Then, inserting this value in (85), we find λ = c.
The value of h̄ can then be found exploiting the normalization condition (87), yielding 

h̄ = c − 2.
The action at the saddle-point reads then

Sn = n
β

2
h̄2

ω̄

[
− ω̄ + 1
ω̄ − 1

+
2

ω̄ − 1
+ 1

]
+ n

β

2
c = n

β

2
c,� (88)

and therefore, the typical largest eigenvalue is

〈λ1〉J = lim
β→∞

2
βN

lim
n→0

1
n

Nn
β

2
c = c,� (89)

equal to λ as expected.

4.2.  Density of the top eigenvector’s components

In this statistical mechanics framework, the quantity

�̃β (u) =

〈
1
N

N∑
i=1

δ (u − vi)

〉
� (90)

is defined such that in the limit β → ∞ it gives the density of the top eigenvector components 
for a given N × N  sparse symmetric random matrix J. The simple angle brackets 〈...〉 stands 
for thermal averaging, i.e. with respect to the Gibbs–Boltzmann distribution (6) of the system

Pβ,J(v) =
exp

(
β
2 (v, Jv)

)
δ
(
|v|2 − N

)

∫
dv′ exp

(
β
2 (v′, Jv′)

)
δ
(
|v′|2 − N

) .� (91)

Defining an auxiliary partition function as

Z(β)
ε (t, J; u) =

∫
dv exp

[
β

2
(v, Jv) + βt

∑
i

δε (u − vi)

]
δ
(
|v|2 − N

)
,� (92)

where δε is a smooth regulariser of the delta function, the quantity (90) can be formally 
expressed as

�̃β(u) = lim
ε→0+

1
βN

∂

∂t
ln Z(β)

ε (t, J; u)
∣∣∣
t=0

.� (93)

Averaging now over the matrix ensemble

�β(u) = 〈�̃β (u)〉J� (94)

and sending β → ∞ at the very end, the density of the top eigenvector’s components is even-
tually given by the remarkable formula

�(u) = lim
β→∞

lim
ε→0+

1
βN

∂

∂t

〈
ln Z(β)

ε (t, J; u)
〉

J

∣∣∣
t=0

.� (95)
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To compute the average of the logarithm of the auxiliary partition function Z(β)
ε (t, J; u), we 

will employ the replica trick once again
〈
ln Z(β)

ε (t, J; u)
〉

J
= lim

n→0

1
n
ln

〈
[Z(β)

ε (t, J; u)]n
〉

J
.� (96)

We can anticipate that the replicated partition function will take the form
〈
[Z(β)

ε (t, J; u)]n
〉

J
∝

∫
DϕDϕ̂d�λ exp

[
NS(β)

n

[
ϕ, ϕ̂,�λ; t, ε; u

]]
,� (97)

where ϕ and ϕ̂ are functional order parameters. In a saddle point approximation for large N
〈
[Z(β)

ε (t, J; u)]n
〉

J
≈ exp

[
NS(β)

n

(
ϕ�, ϕ̂�,�λ�; t, ε; u

)]
,� (98)

where the starred objects satisfy self-consistency equations in which t can be safely set to zero: 

indeed, the partial derivative ∂∂t in (95) only acts on terms containing any explicit dependence 
on t, and not through any other indirect functional dependence. Inserting (98) into (96), and 
assuming that

S(β)
n

(
ϕ�, ϕ̂�,�λ�; t, ε; u

)
∼ nsβ (t, ε; u) + o(n)� (99)

as n → 0 (in a replica-symmetric setting), the final expression for the average density of top 
eigenvector’s components for N → ∞ reduces to

�(u) = lim
β→∞

1
β

s′β (0, 0; u) ,� (100)

where (·)′ stands for differentiation with respect to t.
Interestingly, we will find that the stationarity conditions defining ϕ�, ϕ̂� and λ� at the 

saddle point for t  =  0 are just identical to those found in the replica calculation for the largest 

eigenvalue. The explicit n-dependence of the action S(β)
n

(
ϕ�, ϕ̂�,�λ�; t, ε; u

)
 is extracted by 

representing the order parameters ϕ and ϕ̂ as an infinite superposition of Gaussians, as previ-
ously done for the leading eigenvalue calculation.

In the next subsections, we will apply this formalism to weighted Erdős–Rényi and random 
regular adjacency matrices.

4.2.1.  Erdős–Rényi graph: weighted adjacency matrix.  The average replicated partition func-
tion becomes

〈
[Z(β)

ε (t, J; u)]n
〉

J
=

∫ n∏
a=1

(dva)

∫ n∏
a=1

(
β

4π
dλa

)
exp

(
i
β

2
N
∑

a

λa

)

× exp


 c

2N

∑
ij

(〈
eβK

∑
a viavja

〉
K
− 1

)
− i

β

2

∑
a

∑
i

λav2
ia + βt

∑
a

∑
i

δε (u − via)


 ,

�

(101)

in complete analogy with (36).
By introducing the functional order parameter

ϕ(�v) =
1
N

∑
i

∏
a

δ (va − via)� (102)

via the usual integral identity
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1 =

∫
NDϕDϕ̂ exp

{
−i

∫
d�vϕ̂(�v)

[
Nϕ(�v)−

∑
i

∏
a

δ (va − via)

]}
,

� (103)
the replicated partition function can be once again cast in a form that allows for a saddle point 
approximation

〈
[Z(β)

ε (t, J; u)]n
〉

J
∝

∫
DϕDϕ̂d�λ exp

[
NS(β)

n

[
ϕ, ϕ̂,�λ; t, ε; u

]]
,

� (104)

where the action S(β)
n

[
ϕ, ϕ̂,�λ; t, ε; u

]
 is the sum of four terms

S(β)
n

[
ϕ, ϕ̂,�λ; t, ε; u

]
= S1[ϕ, ϕ̂] + S2[ϕ] + S3(�λ) + S4[ϕ̂,�λ; t, ε; u],� (105)

where for simplicity we omit the full dependence on variables on the right hand side. The first 
three contributions are identical to those appearing in the largest eigenvalue calculation (see 
(43)–(45)). The explicit t and u dependence is confined to the fourth contribution,

S4[ϕ̂,�λ; t, ε; u] = Log
∫

d�v exp

[
−i

β

2

∑
a

λav2
a + βt

∑
a

δε (u − va) + iϕ̂ (�v)

]
.

� (106)
The saddle point equations for ϕ�, ϕ̂� (where we can safely set t  =  0) are then identical 

to those (see (47) and (48)) appearing in the calculation for the average largest eigenvalue. 
Therefore we can follow the same strategy as before, and represent ϕ� and ϕ̂� as uncount-
ably infinite superposition of Gaussians, whose parameters fluctuate according to joint pdfs π 
and π̂ as in (51) and (52). Such joint pdfs satisfy the very same self-consistency equations as 
in (68) and (65) and for these reasons we can use the same labels as before. The only differ-
ence with respect to the previous case is in the extra t-derivative that we have to take from the 
contribution S4(ϕ̂

�,λ; t, ε; u).
Inserting the ansatz

iϕ̂�(�v) = ĉ
∫

dω̂dĥ π̂(ω̂, ĥ)
n∏

a=1

exp

(
β

2
ω̂v2

a + βĥva

)
� (107)

into (106), and expanding eiϕ̂�(�v) =
∑

s�0
(iϕ̂�(�v))s

s! , we obtain (in the limit n → 0)

S4(ϕ̂
�,λ�; t, ε; u) = ĉ + n

∞∑
s=0

pĉ (s)
∫
{dπ̂}s Log

∫
dv exp

[
−i

β

2
λ�v2 + βtδε (u − v)

+
β

2
{ω̂}sv2 + β{ĥ}sv

]
.

�

(108)

Therefore, we can isolate the function sβ(t, ε; u) in (99) as

sβ(t, ε; u) =
∞∑

s=0

pc (s)
∫
{dπ̂}s Log

∫
dv exp

[
−β

2
λv2 + βtδε (u − v)

+
β

2
{ω̂}sv2 + β{ĥ}sv

]
,

�

(109)

in view of the identifications ĉ = c and iλ� ≡ λ as before. Taking the t-derivative and setting 
t and ε to zero, we get
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s′β(0, 0; u) = β

∞∑
s=0

pc (s)
∫
{dπ̂}s

exp
[
−β

2 (λ− {ω̂}s)u2 + β{ĥ}su
]

∫
dv exp

[
−β

2 (λ− {ω̂}s)v2 + β{ĥ}sv
] .

Taking the β → ∞ limit as in (100), we eventually find

�(u) =
∞∑

s=0

pc(s)
∫

{dπ̂}s δ

(
u − {ĥ}s

λ− {ω̂}s

)
.� (110)

Expressing everything in terms of the π-distribution, indicating with p c(s) the actual degree 
distribution (2) and truncating the series at the largest degree kmax (as we did in previous sec-
tions), we eventually obtain

�(u) =
kmax∑
s=0

pc(s)
∫

{dπ}s

〈
δ


u −

∑s
�=1

h�K�

ω�

λ−
∑s

�=1
K2
�

ω�



〉

{K}s

,� (111)

where π(ω, h) satisfies the self-consistent equation (69) (to be solved via population dynam-
ics), supplemented with the normalisation condition (70). Once again, the brackets 〈·〉{K}s

 
denote averaging w.r.t to a collection of s i.i.d random variables K�, each drawn from the bond 
weight pdf p(K).

Equation (111) essentially recovers equation (25) found with the cavity method. As a gen-
eral remark, it is worth noticing that the β-dependent distribution �β(u) had already arisen 
naturally in the eigenvalue calculation when evaluating the stationarity conditions with respect 
to λ. In fact, the distribution in (61) is exactly identical to �β(u). Moreover, in the cavity for-
malism, �β (u) is closely related to the single-site marginal of a single instance (16).

We remark once again that—in analogy with the typical largest eigenvalue calculation—
the validity of equation (111) is not restricted to a truncated Poisson degree distribution (2). It 
actually provides the density of the top eigenvector’s components for the weighted adjacency 
matrix of any configuration model with finite connectivity and bounded maximal degree as a 
weighted superposition of delta functions, one for each degree of the graph. It is then natural 

to identify the quantity 
∑s

�=1
h�K�
ω�

λ−
∑s

�=1
K2
�

ω�

 as the contribution to the density coming from nodes of 

degree s.
The s  =  0 contribution from isolated nodes indeed gives rise to the sharp peak at u  =  0. 

The �(u) of a Erdős–Rényi {0, 1}-adjacency matrix is shown in figure 2 (top panels), whereas 
the case of weighted Erdős–Rényi adjacency matrices is shown in figure 5.

4.2.2.  Random regular graph: adjacency matrix.  In this case, building on section  4.1.2 
and recalling that pc(s) = δs,c and p(K) = δ(K − 1), the ratio in (111) simply becomes 
c(c − 2)/[c(c − 1)− c] = 1, entailing

�(u) = δ (u − 1) ,� (112)

as expected.

4.2.3.  Large-c limit for weighted adjacency matrices.  We consider now the large 
c-limit of Erdős–Rényi graphs (more generally, any configuration model graph for which 
σ2

k
〈k〉2 = 〈k2〉−〈k〉2

〈k〉2 → 0 as 〈k〉 = c → ∞). A meaningful large-c limit is obtained for equa-

tion (68) by rescaling each instance of the bond random weights as Kij = Jij/
√

c , leading to
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π(ω, h) =
∑
s�1

s
c

pc(s)
∫
{dπ}s−1

〈
δ

(
ω − λ+

1
c

s−1∑
�=1

J 2
�

ω�

)
δ

(
h − 1√

c

s−1∑
�=1

h�J�

ω�

)〉

{J}s−1

.

� (113)
In the c � 1 limit, the s-sum in equation (113) is restricted to s = c ±O(σk) (with σk =

√
c 

for Erdős–Rényi graphs), so that the argument appearing in the first δ-function on the rhs of 
this equation can be evaluated by appeal to the law of large number (LLN). This entails that

ω = λ− 1
c

s−1∑
�=1

J 2
�

ω�
� (114)

Figure 5.  Density of the top eigenvector components �(u) for Erdős–Rényi weighted 
adjacency matrices in the limit N → ∞. The graphs are obtained via the population 
dynamics algorithm. As in figure 4, the mean connectivity is c  =  4, kmax = 16 and the 
population size is NP = 106. The bond weight distribution is chosen to be uniform, 
specifically p(K) = 1/2 for all K ∈ [1, 3]. Top panel: the thick blue line represents 
the full distribution �(u), whereas the thinner curves underneath indicate the various 
degree contributions k = 0, 1, 2, 3, ... Once again, the peak at u  =  0 is given by the 
contribution of isolated nodes (k  =  0). Larger degree nodes contribute to the tail of the 
distribution. Once again, only the degree contributions up to k  =  11 has been labelled. 
Bottom panel: the comparison between results for the density of components (25) 
or equivalently (111) of the top eigenvector obtained with population dynamics (red 
stars) and results obtained with direct diagonalisation (green diamonds) shows perfect 
agreement between the two.

V A R Susca et alJ. Phys. A: Math. Theor. 52 (2019) 485002



26

is non-fluctuating, hence the self-consistency equation demands that

π (ω, h) = δ(ω − ω̄)× P(h),� (115)

with (by the LLN)

ω̄ = λ− 1
c

s−1∑
�=1

J 2
�

ω̄
= λ− 〈J 2〉J

ω̄
.� (116)

Specializing to 〈J 2〉J = 1, we see that

ω̄1,2 =
1
2

(
λ±

√
λ2 − 4

)
,� (117)

which requires λ � 2 to have real positive ω̄ .
Similarly, the argument of the second δ-function on the rhs of (113) exhibits a scaling that 

allows one to conclude (for 〈J�〉J = 0) that

h =
1√
c

k−1∑
�=1

h�J�

ω�
=

1√
c

k−1∑
�=1

h�J�

ω̄
∼ N (0,σ2

h)

by appeal to the Central Limit Theorem. The variance follows using independence of the {h�} 
and {J�}

σ2
h = 〈h2〉 = 1

cω̄2

s−1∑
�=1

〈h2
�〉〈J 2

� 〉J =
σ2

h

ω̄2 .� (118)

This equation allows a finite variance if and only if ω̄2 = 1, which requires λ = ±2, i.e. that 
λ—the most probable location of the largest eigenvalue—is at the edge of the Wigner semi-
circle (and we require the positive solution).

To obtain the distribution �(u) of eigenvector components, it is instructive and more direct 
to look back at the cavity equations (24)–(26). After the rescaling K� = J�/

√
c  and in the 

large c-limit, it is easy to see from (24) that Ω = ω̄ and that H is a sum of Gaussians, and thus 

Figure 6.  Density of the top eigenvector’s components for sparse Markov matrices 
representing the transition matrices of unbiased random walks in the thermodynamic 
limit N → ∞. The histogram has been produced by population dynamics with a 
population of size NP = 106, specialised to the case of a shifted Poissonian degree 
distribution with minimum degree kmin = 2 and average degree 〈k〉 = 6 (c  =  4). The 
simulation results (blue crosses) match the theoretical predictions (red dashed bars).
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itself Gaussian, of variance σ2
h/ω̄

2 ≡ σ2
h  by (118). It then follows from the normalisation con-

dition (26) that σ2
h = 1, so eventually

�(u) =
1√
2π

e−u2/2 .� (119)

Looking now at the variable η = u2, and noting that positive and negative u give rise to the 
same η, one obtains by the simple transformation of pdf’s

�(η) =
1√
2πη

e−η/2,� (120)

which is the standard form of Porter-Thomas distribution for real-valued (invariant) random 
matrices (see [23], equation (9.10)).

5.  Application: sparse random Markov transition matrices

In this section, we cross-check the formalism with an ensemble of transition matrices W for 
discrete Markov chains in an N-dimensional state space. The evolution equation for the prob-
ability vector p(t) is given by

p(t + 1) = Wp(t) .� (121)

The transition matrix W is such that Wij � 0 ∀(i, j) and 
∑

i Wij = 1 ∀j . For an irreducible 
chain, the top right eigenvector of the matrix W corresponding to the Perron–Frobenius eigen-
value λ1 = 1 represents the unique equilibrium distribution, i.e. v1 = peq. The matrix W is in 
general not symmetric: however, if the Markov process satisfies a detailed balance condition, 
i.e. Wijp

eq
j = Wjip

eq
i , it can be symmetrised via a similarity transformation, yielding

WS
ij = ( peq

i )−1/2Wij( peq
j )1/2 .� (122)

The symmetrised matrix WS will be the target of our analysis: even though it is not itself 
a Markov matrix since the columns normalisation constraint is lost, in view of the detailed 
balance condition WS has the same (real) spectrum of W, and its top eigenvector v1 is given in 
terms of the top right eigenvector of W, peq, as

v(i)
1 = ( peq

i )1/2 .� (123)

We will consider the case of an unbiased random walk: the matrix W is then defined as

Wij =

{
cij

kj
, i �= j

1, i = j and kj = 0,
� (124)

where cij represents the connectivity matrix and kj =
∑

i cij  is the degree of the node j . In 
this case, the top right eigenvector of W is proportional to the vector expressing the degree 
sequence: for our purposes, we choose the inverse of the mean degree as proportionality con-
stant, i.e. peq

i = ki/ 〈k〉. The symmetrised matrix WS is expressed as

WS
ij =

{ cij√
kikj

, i �= j

1, i = j and kj = 0,

with its top eigenvector being v(i)
1 =

√
ki/ 〈k〉 . Therefore, we expect that
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�(u) =
∑

k�kmin

p(k)δ

(
u −

√
k
〈k〉

)
,� (125)

where p(k) is the degree distribution of the connectivity matrix {cij}.
In order to avoid isolated nodes and isolated clusters of nodes, we consider a shifted 

Poissonian degree distribution with kmin = 2, i.e.

p(k) =
e−cck−2

(k − 2)! k�2,� (126)

with mean degree 〈k〉 = c + 2.
The single-instance cavity treatment starts from the Gibbs–Boltzmann distribution

Pβ,WS (v) =
1
Z
exp


β


1

2

N∑
ij

vi
cij√
kikj

vj −
λ

2

N∑
i

v2
i




 ,� (127)

which, after the change of variable ṽi = vi/
√

ki , becomes

Pβ,WS (ṽ) =
1
Z
exp


β


1

2

N∑
ij

ṽicijṽj −
λ

2

N∑
i

kiṽi
2




 .� (128)

It is convenient to frame and solve the problem in terms of the vector ṽ, since in this case 
the matrix involved in the analysis is just the standard {0, 1}-adjacency matrix of the underly-
ing graph, as in [58, 59]. The cavity single-instance equations for this problem read

Ω
(i)
j = λkj −

∑
�∈∂j\i

1

Ω
( j)
�

,� (129)

H(i)
j =

∑
�∈∂j\i

H( j)
�

Ω
( j)
�

,� (130)

whereas the equations for the single-site marginal coefficients read

Ωi = λki −
∑
j∈∂i

1

Ω
(i)
j

,� (131)

Hi =
∑
j∈∂i

H(i)
j

Ω
(i)
j

.� (132)

In the thermodynamic limit N → ∞, the equations (129) and (130) lead to

q (ω, h) =
∞∑

k=2

k
〈k〉

p (k)
∫ [

k−1∏
�=1

dq (ω�, h�)

]
δ

(
ω − λk +

k−1∑
�=1

1
ω�

)
δ

(
h −

k−1∑
�=1

h�

ω�

)
,� (133)

in complete analogy with (21).
Similarly, equations (131) and (132) lead to

Q (Ω, H) =
∞∑

k=2

p (k)
∫ [

k∏
�=1

dq (ω�, h�)

]
δ

(
Ω− λk +

k∑
�=1

1
ω�

)
δ

(
H −

k∑
�=1

h�
ω�

)
,� (134)

V A R Susca et alJ. Phys. A: Math. Theor. 52 (2019) 485002



29

entailing that the density of the top eigenvector’s components in the space of vectors ̃v is given 
by

� (ũ) =
∫

dΩdHQ (Ω, H) δ

(
ũ − H

Ω

)
,� (135)

which follows from the general theory.
As before, (133) and (134) are efficiently solved via a population dynamics algorithm: as 

expected, the convergence is attained for λ = 1, i.e. in correspondence of the largest eigen-
value of WS. Running the simulations, we find that the distribution �(ũ) converges to a delta 
peak centered at a finite real positive value: this behaviour agrees perfectly with the theoretical 
predictions, because it precisely implies that �(u) must be given by (125). Indeed, the two 
quantities are related via the aforementioned change of variables, u ← ũ

√
k , and the constant 

value the variables ũ converge to corresponds to 1/
√
〈k〉, once the normalisation is fixed 

according to (26). In figure 6, we compare the density of the top eigenvector’s components for  
sparse Markov matrices (representing the transition matrices of unbiased random walks) with 
numerical diagonalisation.

As a concluding remark, we notice that the same route can be followed to characterise the 
top eigenpair statistics of the so-called tilted Markov transition matrix [73] appearing in the 
context of rare events for random walks on networks [74]. This will be discussed in a separate 
publication.

6.  Population dynamics

The population dynamics algorithm employed to solve (69) is deeply rooted in the statistical 
mechanics of spin glasses [75, 76]. In our context, it can be summarised as follows.

Two coupled populations with NP members each {(ωi, hi)}1�i�NP
 are randomly initialised, 

taking into account that ωi > ζ, where ζ is the upper edge of the support of the pdf p(K).
For any suitable value of iλ∗ ≡ λ ∈ R, the following steps are iterated until stable popula-

tions are obtained:

	 (i)	�Generate a random s ∼ s
c pc (s), where c = 〈s〉

	(ii)	�Generate s  −  1 i.i.d random variables K� from the bond weights pdf p(K)
	(iii)	�Select s  −  1 pairs (ω�, h�) from the population at random; compute

ω(new) = λ−
s−1∑
�=1

K2
�

ω�
,� (136)

		

h(new) =

s−1∑
�=1

h�K�

ω�
,� (137)

		 and replace a randomly selected pair (ωj, hj) where j   =  1,...,NP with the pair 
(
ω(new), h(new)

)
.

	(iv)	�Return to (i).

Convergence is assessed by looking at the first moments of the vector formed by the NP sam-
ples. A sweep is completed when all the NP pairs (ωj, hj) of the population have been updated 
at least once according to the steps above.
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The procedure to evaluate (24) (or alternatively (25)) is almost identical, except for the 
details concerning the s-sampling. Starting from two coupled populations with NP members 
{(Ωi, Hi)}1�i�NP, the following steps are iterated:

	 (i)	�Generate a random s ∼ pc (s), where c = 〈s〉
	(ii)	�Generate s i.i.d random variables K� from the bond weights pdf p(K)

	(iii)	�Select s pairs (ω�, h�) from the population {(ωi, hi)}1�i�NP
 at random; compute

Ω(new) = λ−
s∑

�=1

K2
�

ω�
,� (138)

		

H(new) =

s∑
�=1

h�K�

ω�
.� (139)

	(iv)	�Replace a randomly selected pair (Ωj, Hj) where j   =  1,...,NP with the pair 
(
Ω(new), H(new)

)
, 

which is then a new sample from Q(Ω, H). It can be used via equation  (25) to create 
u(new) = H(new)/Ω(new) as a new sample from �(u).

	(v)	�Return to (i).

The value of the parameter λ controls the convergence of the algorithm: indeed, the conv
ergence to a non-trivial distribution is achieved only when λ is equal to the typical largest 
eigenvalue 〈λ1〉J, as prescribed by the theory: for any λ > 〈λ1〉J , the variables of type h will 
shrink to zero, whereas for λ < 〈λ1〉J  they will blow up in norm. Hence, the value λ = 〈λ1〉J  
is the only value for which the normalisation condition (70) (or equivalently (26)) can be satis-
fied, in complete agreement with the replica predictions.

In view of the expected behaviour described above, we will initially start from a large value 
of λ, which is then progressively decreased until convergence is achieved. A suitable starting 
value is given by the largest degree kmax that appears in the connectivity distribution. The value 
of kmax is fixed in such a way that pc(kmax)NP � 1: only if this condition is met, the value kmax 
appears at least once in the degree array that is created to sample from p c(k). Because of this 
choice, the largest degree depends on the limits of the machine that is used to run the popula-
tion dynamics algorithm: by using a population size NP = 106 and a parameter c̄ = 4 in (2), 
we are able to reach kmax = 16. Thus, the normalisation constant N  in (2) is not very different 
from 1, and c̄ � c = 〈s〉, making the truncation of the Poisson distribution—for all practical 
purposes—ineffective.

Once λ has been set to the only value (= 〈λ1〉J) for which a non-trivial finite normalisation 
can be found, the value of such normalisation can be adjusted by properly rescaling the h’s. 
Such rescaling is always allowed due to the linear nature of the recursion that governs their 
update. This recursion will be discussed in detail in appendix A.

The population dynamics algorithm can also be employed to evaluate numerically the int
egral in (81). The integral has the following structure:

I =
∫

dπ(ω, h)dπ(ω′, h′) 〈 f (ω, h,ω′, h′, K)〉K ,
� (140)

where f  is a generic function of the cavity fields and K. Once the correct value of λ = 〈λ1〉J  
has been found, a number Neq of equilibration sweeps is performed, following the protocol 
illustrated above.
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After equilibration, a variable F  =  0 is initialised. Then for j = 1, . . . , Nmeas:

	 (i)	�Perform a sweep
	(ii)	�Pick (ω, h) and (ω′, h′) at random, generate K ∼ p(K) and compute f (ω, h,ω′, h′, K).
	(iii)	�Update F: F = F + f (ω, h,ω′, h′, K).

The value of the integral (140) is approximated by invoking the law of large numbers, as

I � F
Nmeas

,� (141)

where the typical fluctuation is of the order of 1/
√

NPNmeas .

7.  Conclusions

In summary, we have further developed a formalism—pioneered by Kabashima and collabo-
rators—to compute the statistics of the largest eigenvalue and of the corresponding top eigen-
vector for some ensembles of sparse symmetric matrices, i.e. (weighted) adjacency matrices 
of graphs with finite mean connectivity. The top eigenpair problem can be recast as the optim
isation of a quadratic Hamiltonian on the sphere: introducing the associated Gibbs–Boltzmann 
distribution and a fictitious inverse temperature β, the top eigenvector represents the ground 
state of the system, which is attained in the limit β → ∞. In order to extract this limit, we have 
employed two methods, cavity and replicas, both borrowed from the statistical mechanics 
approach to disordered systems. We first analysed the case of a single-instance matrix within 
a ‘grand canonical’ cavity framework. The single-instance cavity method leads fairly quickly 
to superficially appealing recursion equations, however it has the obvious drawback of enlarg-
ing—and not reducing—the complexity of the problem: indeed, it turns a N-dimensional 
problem involving the single matrix J into an Nc dimensional problem—where c = 〈k〉 > 1 
is the mean degree—involving the non-backtracking operator B, as detailed in appendix A.

However, the cavity single-instance recursions constitute an essential ingredient to arrive at 
the equations (21), (25) and (26) for the associated joint probability densities of the auxiliary 
fields of type Ω and H that characterise the typical largest eigenvalue and the statistic of the 
top eigenvector in the thermodynamic limit N → ∞. Moreover, the exact same equations (see 
(69), (111) and (70)) are found via the completely alternative replica derivation, entailing that 
the two methods are equivalent in the thermodynamic limit. Within the population dynamics 
algorithm employed to solve the stochastic recursion (21) (or equivalently (69), we are able 
to identify the typical largest eigenvalue as the parameter controlling the convergence of the 
algorithm, and unpack the contributions coming to nodes of different degrees to the average 
density of the top eigenvector’s components. The simulations show excellent agreement of 
the theory with the direct diagonalisation of large matrices. As a further cross-check of the 
formalism, we computed the average density of the top eigenvector’s components of sparse 
Markov matrices representing unbiased random walks on a sparse network under the detailed 
balance condition, thus retrieving the expected relation between such components and the 
node degrees of the underlying network.
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Appendix A. The solution of the single instance self-consistency  
equations and the non-backtracking operator.

The set of self-consistency equations (14) and (15) for the cavity fields, supplemented with 
(17) and (18) for the coefficients of the marginal distributions, constitutes the full solution 
of the top eigenpair problem for a single instance of a sparse matrix. Even in this case, the 
convergence of the update equations (14) and (15) is dictated by the value of the parameter λ, 
which once again is related to the possibility to normalise the resulting top eigenvector.

Note that (15) is a linear recursion driven by the operator B, whose elements can be defined 
as

B(i,j),(k,�) =

{ Jj�

Ω
( j)
�

i �= � ∧ j = k

0 otherwise
.� (A.1)

B is an example of non-backtracking operator, first introduced by Hashimoto in [77]. For a 
given graph, the Hashimoto non-backtracking operator B̃ in its original form counts the num-
ber of paths from a node i to a node � passing through a third node j , for every choice of these 
three different nodes. It is defined as

B̃(i,j),(k,�) =

{
1 i �= � ∧ j = k
0 otherwise

.� (A.2)

In our case, if the absolute value of the largest eigenvalue of the modified non-backtrack-

ing operator B is greater than 1, the absolute values of the cavity fields H(i)
j ’s will blow up, 

whereas if it smaller than 1, they will shrink to zero. Therefore, λ must be tuned appropriately 
in (14) to prevent the linear recursion (15) from landing on a trivial solution. Indeed, when λ 

is ‘too large’, the Ω(i)
j ’s will be large too, resulting in a largest eigenvalue of B with magnitude 

smaller than 1. This would suggest to progressively decrease λ from a large value down to its 
lower bound λ1, necessary to ensure that the optimisation problem is well-defined. In other 

words, the largest eigenvalue of the operator B must be exactly 1 for the H(i)
j ’s to have a finite 

norm. This will happen only when λ = λ1.

Collecting the H(i)
j ’s in a 2M =

∑N
i=1 ki dimensional vector, equation (15) can be rewritten 

as a linear vector iteration driven by B as

H(i)
j =

∑
(k,�)

B(i,j),(k,�)H
(k)
� ,� (A.3)

where the entries B(i,j),(k,�) are defined in (A.1). Relabelling with a new, single index a any pair 
of connected indices (i, j), (A.3) reads

Ha =
2M∑

b=1

BabHb,� (A.4)

which can interpreted as a vector linear iteration,

Ht = BHt−1,� (A.5)

with the index t labelling each iteration.
Starting from a certain initial condition H0, the solution of (15) is obtained after successive 

iterations according (A.5) until Ht stabilises. The stability can be assessed by looking at the 
norm of the vector Ht. After a suitable number of iterations t, expanding the initial condition 
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vector in the basis {bi} formed by the right eigenvectors of B, the leading contribution is 
expressed in terms of its top eigenpair

Ht = BtH0 = Bt

(
2M∑
i=1

ci(0)bi

)
≈ c1(0)γt

1b1,� (A.6)

where the contributions coming from the other eigenpairs {bi, γi} are exponentially sup-
pressed, all the other eigenvalues of B being smaller than γ1.

The ratio ηt  of the norms of two successive iterations approaches a constant value η� as 
t → ∞, corresponding to the absolute value of largest eigenvalue of B,

ηt =
‖Ht‖∥∥Ht−1

∥∥ =

∥∥BHt−1

∥∥
‖Ht−1‖

→ η� = |γ1| .� (A.7)

Thus, the convergence of (15) is attained when the value of η� = |γ1| reaches 1 as λ 
approaches λ1 from above. We again recall that λ = λ1 is the smallest possible value such that 
the cavity partition function (8) is well defined, and so the actual value λ1 can be found by 
asymptotic extrapolation. Figure A1 shows an example of this procedure.

We remark that the procedure above holds only if the largest eigenvalue of B is real: if it is 
complex, there will be a pair of complex conjugate first eigenvalues, i.e. those with the largest 
norm, which dictate the asymptotic behavior of (A.5). In this case, the bi-orthonormal basis of 
left and right eigenvectors must be taken into account

Figure A1.  Cavity single instance. The example refers to a single Erdős–Rényi 
adjacency matrix of size N  =  2000 and mean degree c  =  4. In the upper panel, the plot 
of the ratio η� (see (A.7)) as a function of the parameter λ: λ is lowered (blue diamonds) 
until η� = 1. In correspondence of this value, λ = λ1 (red circle). The cavity method 
predicts the value λ1 = 5.251 599, to be compared with the value λdiag

1 = 5.251 575 
obtained by direct diagonalisation, resulting in a relative error of 0.001%. In the lower 
panel, the histogram of top eigenvector components of the same matrix as predicted by 
(19) shows perfect agreement with the components obtained by direct diagonalisation.
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Ht ≈ c1(0)γt
1b1 + c2(0)(γ�

1 )
tb�1 ,� (A.8)

where the coefficients c1(0) and c2(0) are in general complex. Therefore, the quantity ηt  does 
not approach a steady limit for large t in this case, and oscillations arise. In fact, it can be 
shown that

‖Ht‖
2

∥∥Ht−1

∥∥2 = η2

[
|c1|2 + |c2|2 + 2a cos (2φt + ψ)

]
[|c1|2 + |c2|2 + 2a cos (2φ (t − 1) + ψ)]

,� (A.9)

where

a = α|c1||c2|,� (A.10)

ψ = φ1 − φ2 + θ .� (A.11)
Here, (|c1|, |c2|) and (φ1,φ2) are the moduli and phases of the complex coefficients c1(0) and 
c2(0), η is the ratio of the radial part of the vectors Ht and Ht−1, α and θ are respectively the 
modulus and the phase of the dot product between the right (and left) eigenvector b1 (respec-
tively b�

1) with itself, and �  and φ are the modulus and phase of the pair of the complex eigen-
values with the largest norm.

In this case, the recursion (A.5) does not converge to a single limit, and the cavity formal-
ism does not lead to an acceptable solution. Therefore, the strongest limitation of the single 
instance cavity method is that the largest eigenvalue γ1 of the non-backtracking operator B 
associated to the matrix J must be real. This restriction unfortunately rules out a variety of 
interesting sparse matrix ensembles.

Appendix B.  Exact replica calculation for the largest eigenvalue for any 
bounded degree distribution p(k).

In this appendix, we show how to get the typical largest eigenvalue with the replica method 
without any shortcut in the calculation. We will thus employ the distributions (27) and (28) to 
perform the averaging w.r.t the matrix ensemble. We recall that the parameter c appearing in 
(28) stands for the actual mean of the bounded degree distribution of interest, which may in 
general differ from the parameter ̄c of the truncated Poisson distribution (see (2)). They tend to 
coincide only if kmax is large. This procedure is general and holds for any graph within the con-
figurational model with degree sequence originated by a finite-mean degree distribution p(k).

Following the same reasoning in section 4.1, the replicated partition function is given by 
(33). Taking the average w.r.t the joint distribution (28) of matrix entries yields [61]
〈
exp


β

2

n∑
a=1

N∑
i,j

viaJijvja



〉

J

=
1
M

∫ π

−π

(
N∏

i=1

dφi

2π

)
exp

(
−i

∑
i

φiki

)

× exp


 c

2N

∑
i,j

(〈
eβK

∑
a viavja+i(φi+φj)

〉
K
− 1

)

 ,

�

(B.1)

where 〈·〉K  denotes averaging over the single-variable pdf p (K) characterising the i.i.d. bond 
weights Kij. A Fourier representation of the Kronecker deltas expressing the degree constraints 
in (28) has been employed. As in section 4.1, we also employ a Fourier representation of 
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the Dirac delta enforcing the normalisation constraint. The replicated partition function thus 
becomes

〈Zn〉J =
1
M

(
β

4π

)n ∫ (
n∏

a=1

dvadλa

)
exp

(
i
β

2
N
∑

a

λa

)
exp

(
−i

β

2

∑
a

∑
i

λav2
ia

)

×
∫ π

−π

(
N∏

i=1

dφi

2π

)
exp

(
−i

∑
i

φiki

)
exp


 c

2N

∑
i,j

(〈
eβK

∑
a viavja+i(φi+φj)

〉
K
− 1

)

 .

� (B.2)
In order to decouple sites, we introduce the functional order parameter

� (�v,φ) =
1
N

N∑
i=1

δ (φ− φi)

n∏
a=1

δ (va − via) ,� (B.3)

where the symbol �v  denotes a n-dimensional vector in replica space. We then consider its 
integrated version [61]

� (�v) =
∫

dφ eiφ� (�v,φ) =
1
N

N∑
i=1

eiφi

n∏
a=1

δ (va − via) ,� (B.4)

and enforce the latter definition using the integral identity

1 =

∫
ND�D�̂ exp

{
−i

∫
d�v �̂ (�v)

[
N� (�v)−

∑
i

eiφi

n∏
a=1

δ (va − via)

]}
.

� (B.5)
In terms of the integrated order parameter (B.4) and its conjugate, the replicated partition 
function can be written as

〈Zn〉J =
1
M

(
β

4π

)n

N
∫

D�D�̂d�λ exp
(
−iN

∫
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)
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2
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)

× exp
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Nc
2
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eβK
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〉
K
− 1
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−π

(
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dφi

2π

)
e−i

∑
i φiki

∫ n∏
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dva exp
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−i

β

2

∑
a

∑
i

λav2
ia + i

∑
i

eiφi

∫
d�v�̂ (�v)
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a=1

δ (va − via)

]
.

�

(B.6)

The multiple integral in the last line above is the product of N n-dimensional integrals, each 
related to a degree ki. It can be written as

I =
N∏

i=1

∫ π

−π

dφi

2π

∫
d�vi exp

(
−iφiki − i

β

2

∑
a

λav2
ia + i�̂(�vi)eiφi

)

=exp

[
N∑

i=1

Log
∫

d�vi exp

(
−i

β

2

∑
a

λav2
ia

)
I[ki,�vi]

]
,

�

(B.7)

where Log denotes the principal branch of the complex logarithm, and

I[ki,�vi] =

∫ π

−π

dφi

2π
exp

(
−iφiki + i�̂(�vi)eiφi

)
.� (B.8)
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Each of the φi integrals can be performed by rewriting the last exponential factor as a power 
series, viz.

I[ki,�vi] =

∫ π

−π

dφi

2π
e−iφiki

∞∑
s=0

(i�̂(�vi)
s)

s!
eisφi =
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s=0

(i�̂(�vi)
s)

s!
δs,ki =

(
i�̂(�vi)

ki
)

ki!
∀ki,� (B.9)

with i = 1, . . . , N. Thus, by invoking the Law of Large Numbers, the single site integral I 
(B.7) can be expressed as

I =exp

[
N∑

i=1

Log
∫

d�vi exp

(
−i

β

2

∑
a

λav2
ia

) (
i�̂(�vi)

ki
)

ki!

]

=expN
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[
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∫
d�v exp

(
−i

β

2

∑
a
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a

)
(i�̂(�v))k − Log(k!)

]
,

�

(B.10)

where we have used

1
N

N∑
i=1

Logf (ki) �
kmax∑

k=kmin

p(k)Logf (k),� (B.11)

where p(k) is the actual degree distribution of the graph.
As in section 4.1, the replicated partition function takes a form amenable to a saddle point 

evaluation for large N

〈Zn〉J ∝
∫

D�D�̂d�λ exp
(

NSn[�, �̂,�λ]
)

,� (B.12)

where

Sn[�, �̂,�λ] = S1 [�, �̂] + S2 [�] + S3(�λ) + S4[�̂,�λ] .� (B.13)

The terms S1, S2 and S3 are equal to those found in section 4.1, respectively (43)–(45), whereas

S4[�̂,�λ] =
kmax∑

k=kmin

p(k)

[
Log

∫
d�v exp

(
−i

β

2

∑
a

λav2
a

)
(i�̂(�v))k − Log(k!)

]
.

�

(B.14)

As in section 4.1, we then search for replica-symmetric saddle-point solutions written in 
the form of superpositions of uncountably infinite Gaussians with a non-zero mean,

λā = λ ∀ā = 1, . . . , n,� (B.15)

��(�v) = �0

∫
dωdh π (ω, h)

n∏
a=1

1
Zβ(ω, h)

exp

[
−β

2
ωv2
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,� (B.16)

�̂�(�v) = �̂0
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dω̂dĥ π̂(ω̂, ĥ)
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exp
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2
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]
,� (B.17)

where

Zβ(x, y) =

√
2π
βx

exp

(
βy2

2x

)
,� (B.18)
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and—with a modest amount of foresight—we use the same notation as before for the distribu-
tions π and π̂. The �0 and �̂0 are determined such that the distributions π(ω, h) and π̂(ω̂, ĥ) 
are normalised. The �0 in (B.16) is needed since ��(�v) is the saddle-point expression of the 
integrated order parameter.

Rewriting the action in terms of π and π̂, after performing the �v -integrations, and extract-
ing the leading n → 0 contribution yields

Sn = S1[π, π̂] + S2[π] + S3(λ) + S4[π̂,λ],� (B.19)

with

S1[π, π̂] = −i�0�̂0 − i�0�̂0n
∫

dπ(ω, h)dπ̂(ω̂, ĥ) ln
Zβ(ω − ω̂, h + ĥ)

Zβ(ω, h)
,� (B.20)

S2[π] =
c
2
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0 − 1
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+ n

c
2
�2

0
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(B.21)

S3(λ) = i
β

2
nλ,� (B.22)

S4[π̂,λ] = cLog(i�̂0)−
kmax∑
k=0

p(k)Log(k!) + n
kmax∑
k=0

p(k)
∫
{dπ̂}k Log Zβ
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)
,�

(B.23)
where we have taken into account that kmin = 0 and we have introduced the shorthands

Z(2)
β (ω,ω′, h, h′, K) = Zβ(ω

′, h′)Zβ

(
ω − K2

ω′ , h +
h′K
ω′

)
� (B.24)

and {dπ̂}s =
∏s

�=1 dω̂�dĥ�π̂(ω̂�, ĥ�), along with {ω̂}s =
∑s

�=1 ω̂� and {ĥ}s =
∑s

�=1 ĥ�.
We note that the action contains O(1) and O(n) terms as n → 0: the O(1) terms are can-

celled by the O(1) terms arising from the evaluation of the normalisation constant M at the 
saddle-point. Indeed, by following a very similar reasoning as in (B.1), we find that

M =

∫ π

−π

(
N∏

i=1

dφi

2π

)
e−i

∑
i φiki exp


 c

2N

∑
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(
ei(φi+φj) − 1

) .� (B.25)

We then introduce in (B.25) the scalar order parameter

�0 =
1
N

N∑
i=1

eiφi� (B.26)

via the integral representation

1 =

∫
N

d�0d�̂0

2π
exp

[
−i�̂0

(
N�0 −

∑
i

eiφi

)]
.� (B.27)

By using the same argument as in (B.10), the normalisation constant M can be written in 
a form amenable to a saddle-point evaluation,
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M =

∫
N

d�0d�̂0

2π
exp

[
N

(
−i�0�̂0 +

c
2
(�2

0 − 1) + cLog(i�̂0)−
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(B.28)

The stationarity conditions for SM are

∂SM

∂�0
= 0 ⇒ i�̂0 = c�0,� (B.29)

and

∂SM

∂�̂0
= 0 ⇒ i�0 =

c
�̂0

� (B.30)

entailing that

i�0�̂0 = c,� (B.31)

�2
0 = 1 .� (B.32)

The two conditions above exhibit a gauge invariance [61]. Once the same gauge has been cho-
sen for the saddle-point solution of M and the O(1) terms of the action (B.19) in the numera-
tor, they cancel out so that the action (B.19) is O(n) as expected.

Thus, taking into account the cancellation coming from (B.31) and (B.32), the action terms 
in (B.19) read exactly as those found in section 4.1, thus proving that the ‘shortcut’ derivation 
in section 4.1 is perfectly legitimate. According to the present derivation, the degree distribu-
tion p(k) appearing in the single-site term S4 is already the true degree distribution of the 
graph, and does not require any a posteriori correction.
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