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Abstract 

A finite-size scaling study of the capacity problem for the Hop field model is presented. Ques- 
tions of identifying the correct shape of the scaling function, of corrections to finite-size scaling 
and, in particular, the problem of properly dealing with disorder are carefully addressed. At first- 
order phase transitions, like the one considered here, relevant physical quantities typically scale 
exponentially with system size, and it is argued that in disordered systems reliable information 
about the phase transition can therefore be obtained only by averaging their logarithm rather than 
by considering the logarithm of their average - an issue reminiscent of the difference between 
quenched and annealed disorder, but previously ignored in the problem at hand. Our data for the 
Hopfield model yield ct¢ = 0.141 -4- 0.0015. They are thus closer to the results of a recent one- 
and two-step replica symmetry breaking (RSB) analysis, and disagree with that of an earlier 
one-step RSB study, with those of previous simulations, and with that of a recent paper using 
an infinite-step RSB scheme. 
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The present contribution is concerned with a seemingly old question - that o f  

the storage capacity ~c of  the Hopfield model [1]. There was, indeed, a time when 
this question appeared to have been settled. Applying the so-called replica method 

RS borrowed from spin-glass theory, Amit et al. [2] obtained ec -~ 0.1379 in the replica- 
symmetric (RS) approximation to the full theory. Knowing that the RS results were 

not really thermodynamically acceptable, they also performed numerical simulations, 
sim 0.144 ± 0.009, and they conjectured that the discrepancy which yielded [2] c% = 
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between these two results might be put down to effects of replica-symmetry breaking 
(RSB). A subsequent 1-step replica-symmetry breaking (1RSB) analysis performed by 
Crisanti et al. [3] did, indeed, yield ~IRSB ~ 0.144, SO that the conjecture of Amit 
et al. [2] appeared to be warranted, and further steps in Parisi's hierarchical replica- 
symmetry breaking scheme [4] were not expected to significantly change the results. 

sim 0.1455i0.001, Ensuing numerical investigations of Homer et al. [5] in fact gave ~c = 
thereby confirming the earlier simulation results, but narrowing down error bars. A 

sim 0.143 + 0.001, large-scale simulation of Kohring [6] was interpreted to yield ~c = 
so that the overall agreement between theory [2, 3] and numerical experiment [2, 5, 6] 
appeared to be rather good. 

The 1RSB calculation was recently redone in a wider context and supplemented by 
a 2RSB analysis [7]. For the Hopfield model, these authors found C~c 1RsB _~ 0.138186 

.2RSB ~ 0.138187, and they were forced to conclude that the 1RSB result obtained and % 
earlier [3] is very likely in error. Both, the 1RSB and the 2RSB result are found to 
lie within the reentrance bound [7, 8] -RS rT~ ~max ~, ! ~ 0.138189 which denotes the capacity 
maximally attainable at non-zero temperatures in the RS approximation. On the basis 
of the Parisi-Toulouse hypothesis [9] and very strong analogies with the SK model 
it was conjectured [7] that a complete RSB solution, presumably providing the exact 

_RS /T ~ _ and probably answer, would yield a T = 0 storage capacity not higher than ~maxt ) 
very close to that value. 

At this point we should like to mention another dissenting vote, viz. that of 
Tokita [10], who claims e~RSB ~--0.159, working in the RSB scheme of De 
Dominicis et al. [11]. 

The current state of affairs thus finds theory and numerical simulations, once more, 
in conflicting positions, rendering the old question completely open again. 

In what follows, we reinvestigate the numerical side of the problem. Our main 
hypothesis, which we shall try to substantiate below, is that Monte-Carlo data on the 
capacity problem have up to now been evaluated in questionable ways. We shall explain 
our views as to how the finite-size scaling (FSS) analysis of the simulation data should 
be performed, and produce new Monte-Carlo data which, when evaluated accordingly, 
yield ec _~ 0.141 4-0.0015 and are thus closer to the result of Ref. [7], whereas they 
clearly disagree with those of  Tokita [10]. 

Two main issues will be dealt with: (i) the question of identifying the correct shape 
of the scaling function that describes the FSS-signature of the phase transition and 
(ii) the problem of properly dealing with the effects of disorder in the FSS analysis. 
While the first may be regarded as specific for the model investigated, the second is of a 
more fundamental nature and of general relevance to FSS analyses of first-order phase 
transitions in disordered systems. Nevertheless, for reasons to be explained below, we 
find that the first issue has a stronger effect on the evaluation of our simulation data 
than the second. 

The Hopfield model of a neural network [1] is designed to store and retrieve a set 
of unbiased binary random patterns {~ ;  i = 1 . . . . .  N; # = 1 . . . . .  p )  with ¢/u E {4-1}, 
where i enumerates the neurons of the net and # is the pattern index. The patterns ~u 
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are encoded in couplings of the form 

1 P 
Jij. = -~ Z t~ { j  , Jii = 0, ( 1 )  

#-1 

and the dynamics of the neuron activities si C {-4-1} is given by a simple threshold rule 

si(t + 1) = sgn(hi(t)), (2) 

w i t h  hi denoting the local field potential 

N 

hi(t) = Z Jijsj(t). (3) 
j= l  

Updating in (2) may be either synchronous or asynchronous. 
The Hopfield model exhibits a discontinuous phase transition from a state of good 

retrieval, where the system has stable fixed points exhibiting C(1 ) overlaps 

N 
1 

me' = N Z ~s i  (4) 
i=1 

with the stored patterns, satisfying m ~ > 0.9, to a spin-glass phase with fixed points 
showing no (or rather small remanent) overlaps with the stored pattems, as ct = p/N 
is increased through ccc. 

The finite-size signature of this phase transition, as it is observed in numerical 
simulations, can be described as follows. One follows the evolution of the system 
dynamics (2), taking pure pattem states as initial conditions. Each initial state evolves 
to a target state characterized by its final overlap m y  with the initial pure pattern state. 
For sufficiently large system sizes N, the distribution of final overlaps has a double 
peak structure, one peak concentrated at my " 0.95, the other near m y  ~-- 0.3, with a 
rather clear gap between the two (see Fig. 1). As N is increased, one observes that the 
mass of the my distribution goes into the high-mf peak, if ct < ~c, whereas it goes into 
the low-my peak, if • > etc. Since the transition is discontinuous (or first order), one 
expects on the basis of heuristic arguments [12] that the scaling of these trends with 
system size N should be exponential in N. To be specific, denoting by f the fraction 
of pure pattern states of one given pattern set that evolves towards the high-mr peak, 
one expects the scaling 

exp{a(>) - N b(>) (~ - ~c)} if ~ > ~c 
f _ ~  (5) 

1 - exp{a(<) - N b(<) ( ~  - ~)} if ~ < c~. 

Eq. (5) is believed to describe the dominant trends in the scaling limit Is - ~c[ '~ 1, 
and Nlct - >> 1. 

An alternative representation that lumps the ~ < ~c and the ~ > ~c case into a single 
scaling-function [13] assumes a scaling of the form 

f exp{a - N b ( ~  - ~c)}. (6) 
g - - l - f  
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Fig. 1. Histogram of the final overlap distribution for N = 1024 at (a) c~ : 0.136, (b) c~ = 0.154 and for 
N : 5120 at (c) ~ = 0.136 and (d) c~ = 0.146. 

I f  desired, different sets o f  constants  might  be  used for the cases a > ~c and c~ < 

~c in (6)  as well. In the scaling l imit  Nl=c- ~1 >> 1 this representat ion is equiv-  

alent  to (5), but  small  corrections will  be generated on t ransforming one into the 

other. More importantly,  i f  corrections to FSS are expected to affect the data to be-  

g in  with, they will  be treated differently in the two approaches, and the quest ion 

as to which  scaling assumpt ion  provides a better model l ing  of  the data is clearly 

meaningful ,  and it should be addressed rather than that an answer  to it hypothe-  

sized. 

Al though the analogy with convent ional  temperature-  or f ield-driven first-order phase 

transi t ions as considered in Ref. [12] is not  complete,  let us - like previous authors 
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Fig. I. Continued. 
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[2 ,5 ,6 ,  13-15] - accept (5)  or (6) as working hypotheses, leaving as yet open the 

question o f  which ansatz provides a better model  of  the data. 

At  a more fundamental level, our disagreement  with previous numerical analyses is 

related to the question o f  dealing with the influence of  disorder on (5)  or (6). Clearly, 

since the Hopfield couplings are determined from a set of  random patterns, one must 

expect f in (5)  and (6)  to vary randomly from pattern set to pattern set. For this 

reason, the question o f  averaging arises, and it is here that we would like to make our 

second, and main point - explaining it for the sake o f  definiteness for the ansatz (5) 

at ~ > ~c- 
To make ourselves understood as clearly as possible, let us restate in detail and with 

a bit more care what the assumption (5)  o f  FSS (at ~ > ~c) precisely means for the 
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random system at hand. FSS for this system really asserts three things, namely (i) that 
f scales exponentially with system size, i.e., accounting for (9(1) prefactors, 

f = f N  = e x p { A N  --  N B N } ,  (7) 

with AN and B N b o t h  (9(1)  and randomly varying with the pattern set actually embedded 
in the net - A N = AN({~#) )  and BN = BN({¢u}), further (ii) that both A N and BN, 
as random variables, converge to non-random quantities in the thermodynamic limit 
in the sense that their distributions become sharp about non-random averages: CAA = 
(A2) - (AN)  2 ---+ O, CBB = ( B 2 ) - ( B u )  2 --+ 0 ( hence CAB = (ANBN)--(AN)(BN) --+ 0 by 
virtue of the Schwarz inequality ]CAB[ ~< ~ ), finally (iii) that the s-dependent 

averages behave according to aN(S) := (AN) --~ aN and bN(~) := (BN) ~ bN (~ -- ~c), 

as ~ "~ ~c, with constants aN and bN > 0 which tend to finite limits a and b as N 
becomes large. In particular, bN(~) approaches zero from above as c~ \ ~c, and it is 
this fact which is used to locate ~c. 

Keeping these three points in mind, we are now able to discuss the averaging issue. 
It appears that previous authors have in their FSS analyses of the capacity problem 

invariably averaged f itself 1 and assumed 

lim N -1 log(f )  = - /~(~ - ~c) (8) 
N---> oo 

with /~ constant in the sense that it does not depend on N or ~. In what follows, 
we argue that this assumption is generally wrono, even if AN and BN in (7) have all 

properties assumed in points (i)-(i i i) .  To see this, note that precisely because of the 
exponential scaling of f with N, one should average log f instead of f itself, in order 
to get typical results. Indeed, for sufficiently large N, the average of f itself is likely 
to be dominated by rare events for which Bu = BN({~u}) is unusually small, and 
it cannot be excluded that these untypical events invalidate the assumption expressed 
in (8) that limN_~o~N -1 log(f )  approaches zero at the true limit of capacity, and 
thereby invalidate all results based on that assumption. This holds true even if AN and 
BN are self-averaging in the thermodynamic limit and satisfy point (iii) above. 

Averaging log f instead, one obtains 

lim N - l ( l o g f )  = - b ( ~  - Ctc) (9) 
N---*oo 

by virtue of ( i ) -( i i i )  - a quantity which does, indeed, approach zero as ~ ~ ~ .  
It is perhaps worth pointing out that this issue is very well known in the statistical 

mechanics of disordered systems, where it is the partition function which scales expo- 
nentially with system size, ZN = exp{--NCN}, with a (dimensionless) free energy CN 
which is random but self-averaging in the thermodynamic limit. That is, CU as a ran- 
dom variable converges, as N ---+ cxD, to its configuration average, called the quenched 

free energy: ~U ---+ I//q = l i m N ~ ( ~ N )  = -- limN~oo N -1 (1OgZN). Note that averaging 

1 This cannot in all cases be reconstructed with certainty from the texts of  published papers. We would like 
to thank H. Homer, B. Forrest, G. Kohring and D.J. Amit for helpful correspondence regarding this point. 
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the logarithm of a quantity scaling exponentially with system size N is required to 

get the typical result for the free energy, viz., ~kq. Had one, on the other hand, inter- 
changed averaging and computation of the logarithm, one would have computed the 
annealed free energy ~ha =- - l i m s ~  N -11og(ZN), which is generally smaller than 
the quenched free energy, ~ha < @q. 

In the capacity problem, the quantity f of (7) is the analog of the partition function Z 
of a disordered system, and the quantity BN introduced in (i) above is, for large N, 
the analog of the (dimensionless) free energy. Assertion (iii) of FSS implies that 
the proper analog of the quenched free energy, bN(~) approaches zero from above, as 

"~ c(c. Since - by Jensens inequality - the analog of the annealed free energy obtained 
by computing log(f )  is generally smaller than its quenched counterpart, it may be 
expected to cross zero already at larger values of c~, thus leading to an overestimation 
of ~c! So much can be said in general, since we do not a priori know the precise form 
of the AN- and Bs-distribution in (7). 

With one additional assumption, which should however produce something typical for 
the dominant effect in general, a quick calculation can illustrate our point quantitatively. 
Assume that A N and B N in (7) are correlated Gaussians with CAA --~ CAA/N, CBB = 

Css/N, and CA~ = CAs/N, so that the distributions of AN and BN become sharp in the 
thermodynamic limit. The scaled elements CAA, etc. of the covariance matrix may, of 
course, still depend on ~ and (weakly) on N. Then the result obtained by computing 
(log f )  is given by (9), whereas points ( i)-( i i i )  together with our assumption about 
the distribution of the AN and the BN imply that 

1 ~ lim N -1 log(f)  = - b ( ~  - ~c) + ~CBB, (10) 
N ~ o o  

which is, indeed, different from (8), confirming our assertion that the assumption ex- 
pressed in that equation would be drastically wrong in this case, despite the fact that 
we had assumed AN and BN tO be self-averaging in the thermodynamic limit. Eq. (10) 
expresses the said influence of untypical events quantitatively for the Gaussian case. 
In particular, it also shows that the proper analog of the annealed free energy for the 

capacity problem approaches zero from above at 

a0 = ~c + 2~ CBS. ( 1 1 ) 

This value would erroneously be taken to denote the storage capacity of the model, if 
the evaluation is based on an analysis of log(f)  data, as in Refs. [2, 5, 6] and [13-15], 
but it is obviously greater than the true ac, even in the thermodynamic limit. Note 
therefore that simulating very large systems would not help to avoid wrong results for 
the capacity c~c, if the evaluation is based on (8). 

The same arguments apply to the other cases in (5) and (6): Taking the logarithm 
of the average instead of averaging the logarithm in quantities scaling exponentially in 
system size N will produce spurious results. Moreover, on transforming (5) into (6) 
or vice versa, higher order corrections in a - a~ or 1IN to b are generated as well 
(because aN, bN, and the scaled elements covariance matrix will generally depend on a, 
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hence ~ -  ~c). This holds also, if, starting from (6), averaging and function evaluation 
are exchanged through a second  level by evaluating log[(f)/(1 - ( f ) ) ]  instead of 
(log[f/(1 - f ) ] ) ,  as has been done in Refs. 13-15. Incidentally, since this implies an 
exchange of  averaging and function evaluation through two levels, of which the first 
involves a concave function and the second a convex function, the errors made at the 
first level will be partially compensated by those made at the second level. 

We believe that the failure of  previous investigators [2,5,6, 13-15] to notice these 
effects has lead to erroneous numerical estimates for the storage capacity ~c, and that a 
proper evaluation might reconcile theoretical and numerical results on this problem. In 
what follows we report results of a MC study of networks containing up to N = 5120 
neurons, which yields ~c = 0.141 + 0.0015. 

Let us mention a few points related to achieving a high efficiency in our simulation. 
First, we used parallel dynamics, because some of the points mentioned below will 
give a speed-up only for this case. Asynchronous and parallel dynamics have the same 
fixed points; in parallel dynamics there are also two-cycles. Where they occur, we find 
that they involve only a tiny fraction of all neurons, so they never switch between 
the high-mf and the low-mf peak. Moreover, if one turns to asynchronous dynamics 
when a two-cycle has been reached, there is always a fixed-point of the asynchronous 
dynamics "nearby". Next, we do not store couplings and write hi in terms of overlaps 

1 1 
~i ~jSj  = ~ Z ~ ( N m ~  - ¢Usi)" (12) hi-- ZJijsi: 

js~i js~i U # 

Bit-coding techniques are used to store the ~ and the si. Since we are interested only 
in the sign of hi and sgn(hi) = sgn(Nhi) ,  integer or logical operations can be used 
throughout the simulation. Up to this point, our strategy is similar to that proposed by 
Penna and Oliveira [16]. An improvement over their approach is obtained by noting 
that the states si change drastically only within the first few steps. Hence updates of 
the overlaps after each time step are efficiently performed once the set I of nodes at 
which changes do have occurred has been identified, 

N 

Nm~( t )  = Z ~ s i ( t )  
i=l 

= Nm~( t  - I) + Z ~ ( s i ( t )  - s i ( t  - I)). (13) 
iEl 

As everything is bitcoded, the search for changes in the state vector s can be done word- 
wise. Within a word in which changes are detected, changed bits (set bits resulting from 
an XOR operation) are read out sequentially. Still a significant speed-up is obtained - 
in particular, as the size of the set I of nodes in which changes do occur decreases  

as the dynamics proceeds and converges to a fixed point. So the numerical effort to 
update the overlaps according to (13) becomes progressively smaller as the dynamics 
is homing on a stable configuration. This feature is not available in the approach of 
Ref. [16]. However, it is particularly useful in our case, since we are simulating above 
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~c and the dynamics is approaching fixed points slowly. Quantitatively, the gain in 

efficiency is found to depend on the loading level, increasing with the distance from 

~c. To give an order of  magnitude, for the system sizes and loading levels simulated in 
the present study (see below) there are typically (9(10) parallel updates - making up for 
the larger fraction of the total number of  updates needed to find a stable configuration- 

in which only a tiny fraction of nodes, viz. 3% or less, do actually change. 

We have simulated systems with sizes ranging from N -- 1024 to N = 5120, for 

a range of a-values close to the anticipated ct~, always using 100 pattems from each 
pattern set to measure f .  Results are averaged over 200 pattern sets for N =- 1024, 

over 120 pattern sets for N = 2048, and over 60 pattern sets for N = 3072, N = 4096, 
and N = 5120. 

From the (log f )  and log( f )  data at ~ > ~c, it follows that the interchange of 
averaging and log-evaluation has a smaller effect than anticipated, basically because 

the scaling variable N(~ - Ctc) is still rather small for the loading levels and system 
sizes simulated; differences are barely visible in graphical representations, so in Fig. 
2 we only reproduce the (log f )  data. The difference is more clearly visible, albeit 

small, in the (log[f/(1 - f ) ] )  and the log(f /(1 - f ) )  data of  Fig. 3, because the 
(1 - f ) - t  for not too small f provides an amplifying mechanism. That is, the effect 

exists.  

The Clog f )  and the log( f )  data together imply that higher powers of c~ - ~c would 
be needed in the scaling ansatz (5) to begin with (see Fig. 2). That is, Eq. (5) ought 
to be replaced by 

f exp{a(>) - N b(>) (ct - C~c) - N c(>) (0t - Ctc) 2 } if ct > ctc, 
f (14) 

1 - exp{a(<) - N b(<) (C~c - ct) - N c(<) (Ctc - ct) 2 } if  ~ < ~c, 

where it is understood that averaging is being dealt with in the correct way. The 

(log[f/(1 - f ) ] )  data on the other hand are well fitted by (6). Both, the (log f )  and 
the (log[f/(1 - f ) ] )  curves, do not intersect exactly at one point, but rather in a 

sequence of points at ~ values CtU, U, between c( _~ 0.14 and 7 -~ 0.142. For large N 

and N '  the C~N,N, should converge to ~c which, in principle, provides a first method to 

locate ac. However, since convergence is nonmonotonic for the smaller system sizes, 
we use this fact only for a first orientation. From the fact that not all curves intersect in 
the same point, it can immediately be concluded that there is indeed an N dependence 
in the average an, i.e., there are corrections to FSS. Similar dependences are found in 
bN (and CN in (14)), although they cannot be read off directly from the figures. The 

data are consistent with 1IN corrections of  the form an =- CAN) = a + a(1)/N (and 
similarly for bN and CN). Given that (6) does provide a good description of the data, 
the appearance of higher order (c t -  ct~) corrections, both, in the (log f )  and the log( f )  
data, is not unexpected and is, indeed, observed. 

The unknown constants characterizing the properly averaged scaling functions are 
extracted from a set of simulations at various ~ and N. In practice, two values of ~, 
each simulated for a range of system sizes N which are large enough to allow a 

1 safe extrapolation of qSN(~) := --~(1og[f / (1  -- f ) ] )  to N = oo, the result of  which is 
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Fig. 2. (a) straight line and (b) quadratic interpolation of (log f )  versus memory loading ct p/N. The 
extrapolation for N ---, oo yields (a) ccc = 0.139 + 0.0015 and (b) ~c = 0.141 ± 0.0015. 

b ( ~ - ~ c )  - with two u n k n o w n  constants,  b and ctc - suffice to determine ~c (see Fig. 4). 

The CN(~) are read off from the interpolated curves in Fig. 3, in order to reduce the 

(statistical) error. I f  one uses the <log f )  data and the scaling ansatz (14)  instead, one 

needs three different values  o f  • to fix all three u n k n o w n  constants,  b, c, and etc. Both  

procedures yield ~ : 0.141 ± 0.0015. 

I f  one - er roneously  - uses an exponent ia l  scaling fit to the l o g ( f / ( 1  - f ) )  data, the 

value for ~c increases slightly to 0.142 + 0.0015. Failure to include the (9((ct¢ - ~)2) 

contr ibut ion in the exponent ia l  fit to the (log f )  data, on the other hand,  yields an ~ 

value o f  0.139-/-0.0015,  which we bel ieve to be too low - despite its better agreement  

with the results o f  Ref. [7]. 
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Fig. 3. (a) straight line interpolation for (a) <log l_-~f > and (b)log<l_--~> versus memory loading 
= p/N. The extrapolation yields (a) c~c = 0.141 ± 0.0015 and (b) ~¢ = 0.142 4- 0.0015. 

In summary, a FSS study of  the capacity problem for the Hopfield model has been 
presented, in which the questions of  corrections to FSS, of  identifying the correct 
shape of  the scaling function, and of  properly dealing with the disorder averaging 
problem are carefully discussed. The latter, in particular, is o f  general relevance for 
FSS analyses of  first-order phase transitions in disordered systems in which quantities 
scaling exponentially with system size t y p i c a l l y  occur [12]. While the system-sizes 
simulated in the present paper are certainly to be termed "moderate" at best, we believe 

our statistics to be good enough for a reliable analysis. Indeed, our key point is that 
even extraordinarily large systems would not have helped to avoid wrong conclusions, 
had they been evaluated "the old way". 
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Fig. 4. Extrapolation for N ~ o0. Two intercepts with the vertical axes allow the determination of the 
remaining unknown constants Ctc, b (see also Eq. (6)). We obtain Ctc = 0.141 5: 0.0015. 

Our results significantly reduce the discrepancy between earlier simulation results 

[2, 5, 6] and those of  a recent one- and two-step RSB study [7], and they clearly dis- 

agree with those of  an earlier one-step RSB analysis o f  Crisanti et al. [3] and the 
infinite-step RSB result o f  Tokita [10]. Whether the remaining small discrepancy be- 

tween our results and those of  Ref. [7] is significant or not, cannot be assessed with 
absolute certainty, but we are inclined to believe that it is. Possible mechanisms to 

explain the gap that remains are the following. Our T = 0 simulation is not the 
same as the T ~ 0 limit o f  a thermodynamic analysis to which the replica the- 

ory refers. The T --- 0 Monte-Carlo dynamics might after all get trapped by finite 

energy barriers which are not seen in thermodynamics. On the other hand, for first- 
order phase transitions in spin-glass-like systems, there may also exist true dynamic 
freezing transitions (even at nonzero temperatures) at values different from those pre- 

dicted by replica theory (and we are not  talking of  spinodals here), such as have 
recently been found in dynamical analyses of  the capacity problem for the binary 
perceptron [17] and of  the spherical p-spin interaction spin-glass [18], and we may 
well have seen the effects o f  such a true freezing transition in our simulations. One 
way to clarify this question might be to investigate the capacity problem for low 
activity systems, for which the discrepancy between existing simulation results [13] 
- evaluated "the old way"  - and predictions from replica analyses [19, 7] are much 
stronger. 
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