
Z. Phys. B 95, 249-260 (1994) ZEITSCHRIFT 
FOR PHYSIK B 
�9 Springer-Verlag 1994 

Replica symmetry breaking in attractor neural network models 
Helmut Steffan*, Reimer Kiihn** 

Institut ffir Theoretische Physik, Ruprecht-Karls-Universit/it, Philosophenweg 19, D-69120 Heidelberg, Germany 

Received: 1 March 1994 

Abstract. The phenomenon of replica symmetry breaking 
is investigated for the retrieval phases of Hopfield-type 
network models. The basic calculation is done for the 
generalized version of the standard model introduced by 
Horner [1] and by Perez-Vicente and Amit [2] which can 
exhibit low mean levels of neural activity. For a mean 
activity ~=  1/2 the Hopfield model is recovered. In this 
case, surprisingly enough, we cannot confirm the well 
known one step replica symmetry breaking (1RSB) result 
for the storage capacity which was presented by Crisanti, 
Amit and Gutfreund [3] (~RSB--~0.144). Rather, we find 
that 1RSB- and 2RSB-Ans/itze yield only slightly in- 
creased capacities as compared to the replica symmetric 
value (e~RSB--~0.138 186 and e2RSB--~0.138 187 compared 
to effs-~0.137 905), significantly smaller also than the 
value ~cSim = 0.145_+0.009 reported from simulation stud- 
ies. These values still lie within the recently discovered 
reentrant phase [4]. We conjecture that in the infinite 
Parisi-scheme the reentrant behaviour disappears as is 
the case in the SK-spin-glass model (Parisi-Toulouse-hy- 
pothesis). The same qualitative results are obtained in the 
low activity range. 

PACS: 87.I0; 75.10H 

1. Introduction 

The Hopfield model of a neural network [5] is at present 
considered to be well understood. By suitably adopting 
mean field theory of spin glass like systems [6], Amit et 
al. [7] were able to compute its phase diagram in a replica 
symmetric (RS) approximation. In particular, they found 
the T = 0  storage capacity of the model to be ~ s  
-~0.138 in the RS framework. From simulations, they 
obtained a slightly larger value ecsim-- 0.145 + 0.009 [7], 
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and they conjectured that the origin of such a discrepancy 
might be put down to effects of replica symmetry break- 
ing (RSB). 

A subsequent one-step replica symmetry breaking 
(1RSB) analysis of Crisanti et al. [3] did indeed yield 
~JRSB--~0.144 in very good agreement with the earlier 
simulation results, so that the question of the storage 
capacity of this model appeared to have been settled: 
effects of RSB are found to be small and 1 RSB correc- 
tions seem to bridge the gap between RS results and those 
of numerical simulations. Large scale simulations by 
Kohring [8] seemed to confirm the overall picture. 

For generalized Hopfield-type models adapted to store 
an ensemble of low-activity patterns [1, 2], deviations be- 
tween results of RS mean field analysis and simulation 
data were found to be much stronger. For instance, at 
an intermediate level d = 0.1 for the mean activity, con- 
sidered to be in a neurophysiologically acceptable range, 
it was found that e~s ~ 0.483 [ 1 ], whereas simulations [9] 
yielded ~ m  = 0.585 _+ 0.01, i.e. a discrepancy of roughly 
20% as opposed to a 4% discrepancy in the standard 
model. 

The question then arises, whether in such a situation, 
a 1RSB analysis would likewise be sufficient to close the 
gap between RS results and estimates obtained from 
Monte-Carlo simulations, or whether - on contrary - 
further steps in Parisi's approximating scheme [10] or 
even the full hierarchical scheme of RSB [ 11 ] were needed 
to explain the numerical results. 

In the present paper, we have addressed this question, 
and we have obtained answers in completely unantici- 
pated directions, as follows. We have performed 1RSB 
and 2RSB analyses for general Hopfield-type models 
storing ensembles of low-activity patterns [ 1 ], [2]. For an 
activity d = 1/2, these models are equivalent to Hopfield's 
standard model [5], and our 1RSB results should there- 
fore merge with those of Crisanti et al. [3] as we take the 
limit d ~  1/2. It turns out that such 'confirmation en route' 
of the findings of Crisanti et al. could not be accom- 
plished, and we are forced to conclude that their often 
quoted value ~ ~ R SB~__ 0.144 for the storage capacity of the 
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standard model is in error - in particular since we have 
invited an independent check of our results, which was 
recently performed by Huyghebaert [12] using the bifur- 
cation-finding software package 'AUTO'. 

Our main results for the ~7= 1/2 case are e lRSB 
~0.138186, and e2RSB~--0.138187. These values are still 
lying well within the recently discovered reentrance phase 
of the Hopfield model [4]. That is, 1RSB and 2RSB 
approximations are found insufficient to bridge the gap 
between RS and simulation results. Moreover, we shall 
argue on the basis of the Parisi-Toulouse hypothesis [13] 
appropriatly adapted to the Hopfield model phase dia- 
gram that even the full hierarchical RSB scheme of Parisi 
[11] will not yield storage capacities as high as those 
reported from various simulation studies. Rather, as in 
the SK-model, the reentrance phenomenon is expected to 
simply disappear in the full RSB solution. This renders 
the problem of how to explain discrepancies between 
theory and numerical experiment an open question again. 

For values other than ~ = 1/2 we obtain qualitatively 
similar results. Here, we have performed numerical eval- 
uations only of the 1RSB theory, and we find the 1 RSB 
storage capacity to lie again within the RS reentrance 
phase (as it should according to the Parisi-Toulouse hy- 

~RSB~--0.495 at d=0.1, well below the simu- pothesis), e~ 
lation result ~ c  sim = 0 . 5 8 5  "~- 0 . 0 1  [9]. 

Our paper is organized as follows. In Sect. 2, we in- 
troduce the generalized Hopfield model for the storage 
of low-activity patterns. In Sect. 3, we compute the replica 
free energy and evaluate it in the RS, and the 1 RSB and 
2RSB approximations, relegating details of the deriva- 
tions to appendices. In Sect. 4 we present and discuss 
outcomes of a numerical analysis of the 1 RSB and the 
2RSB approximations for the Hopfield model, and of the 
1 RSB approximation for the generalized model at ~7 = 0.1. 
In Sect. 5, we discuss analogies between the Hopfield 
model and the SK-model with ferromagnetic anisotropy 
[6] to put our results into a wider perspective. From an 
appropriate adaption of the Parisi-Toulouse hypothesis 
to the phase diagrams of the generalized Hopfield-type 
models, we conjecture that even the full hierarchical RSB 
solution of these models, presumably providing their 
exact solution, would yield results which are at variance 
with currently available simulation data. A concluding 
section is devoted to discuss the state of affairs that has 
thus emerged. 

2. The generalized Hopfield model 

In order to set the scene and to fix our notation, we shall 
here introduce our variant of the generalized Hop field 
model for the storage of patterns of arbitrary activity. 

Let us denote by 6 the average fraction of active nodes 
in each pattern to be stored. We take a storage prescrip- 
tion of a generalized Hebbian form 

1 P 
j~y = ~  ~, ~u ~u, i=#j, (1) 

p = l  

where 1 __< i,j <__ N label the neurons of the net and 
1 =< p =< p enumerates the patterns. For the representation 

of the active (A) and inactive (I) neural states s;, we take 

A = I =  - (2) 
d ' 1 - - 6 '  

given that the pattern statistics is 

= IA,  with prob. a ~e 
' . I ,  with prob. 1 - 6 (3) 

The representation defined by (2) is known to be well 
adapted to the storage of patterns with statistics given in 
(3) [ 1 ], [2], using a generalized Hebbian storage prescrip- 
tion as in (1), and supplementing it with a suitable thresh- 
old 0. Moreover, it is known to saturate the well known 
Gardner bound [ 14] 

1 
= c ~ 2 a l l n a  I , (4) 

as d~0 .  The asynchronous dynamics of the model, de- 
fined by 

&(t+At)=AO(h~(t)-O)+I(1 -O(h~(t)-O)), (5) 

with he(t)=~,  Jejsj(t) and O(x) the usual Heaviside 
J 

function, is governed by the energy function 

H [ s l =  _1 ~, jusis++O ~,si. (6) 
i * j  i 

Asynchronous Glauber dynamics, if adapted to (5), con- 
verges to a Gibbs distribution over the space of neural 
states that is generated by (6). The next section is devoted 
to deal with the quenched randomness in the couplings 
due to the stored patterns. 

3. The replica free energy 

3.1. General theory 

As usual, to investigate the thermodynamics of systems 
with quenched randomness, one has to compute the 
quenched free energy - f l f  (fl) = (ln Z )  ~, where Z is the 
partition function at fixed disorder and where ( . . . )  ~ de- 
notes an average over disorder according to its distri- 
bution. The computation utilizes the replica identity 

( l n Z ) ~ = l i m  1 ln(Z~)~.  (7) 
n ~ 0  17 

In the details of the calculation we follow Amit et al. [7]. 
Assuming that the system state has macroscopic corre- 
lations only with a finite number of patterns, say ~v, 
v = 1 ..... l, we obtain the replica free energy through stan- 
dard arguments [7], by averaging over the remaining pat- 
terns ~ ' :  

O~ 

n f=�89 ~, (m~.)2+2~ l n d e t ( 1 - f l q )  
y , a  

1 
+ fl~ z~ r~b q~b-- ~- (ln 2 )  r (8) 

a < b  



Here 2~ is a replica partition function 

Z = Z  exp {fl (~a sa [ ~  v ma v v--o] 
{,"} 

+ y, ra Sa  --g N, (S~ , (9) 
a<=b a 

corresponding to a replicated single-site Hamiltonian of 
the form 

- m S ~ - O  
a 

b --flO~ Z rabSaS -~ 2 Z ( S a ) 2 "  ( 1 0 )  

a~b a 

We have introduced overlaps with the condensed patterns 

1 

i 

and the matrix q of Edwards-Anderson order parameters, 
with elements 

1 s"s b (12) *,  
i 

with 1 < a, b < n labeling the replicas. In mean-field the- 
ory, the order parameters must satisfy the fixed point 
equations 

v mo=(g~(s~))r v=l,...,1, a=l,.. . ,n 

q,b=((S~162 l <=a,b<=n, 
(13) 

in which ( . . . )  without subscript denotes a Gibbs average 
performed with the Hamiltonian /} in (10) while 
( . . . )  ~ designates an average over the condensed patterns 
{~. The matrix r with elements r,b is simply related to 
the q-matrix. One has 

f l r~  = �89 (1 - f l q ) f a  1 , 

a < b ,  

~rab = ( 1  - -  f l q ) a b  1 , 
(14) 

with 1 the n• unit matrix. It is understood that an 
analytic continuation to non-integer n and the n--+0 limit 
are eventually to be taken. 

Equations (13)-(14) are usually solved by making an 
ansatz concerning the transformation properties of the 
saddle-point values of the order parameters m~ and qab 
under permutation of replicas. 

3.2. The replica symmetric approximation 
The first and most natural ansatz is of course that ex- 
hibiting complete replica symmetry (RS): 

1 /  v m ~ - m  , % ~ = ~ ,  q~b=q, a .b ,  (15) 

the replica symmetry ofq  being inherited by r due to (14). 
This ansatz allows for an easy evaluation of all terms 
appearing in (8), (13) and (14), as well as for an analytic 
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continuation of the results to n ~ 0 .  As the n ~ 0  limit is 
taken one gets 

f = � 8 9  ~, ( m ~ ) 2 - ~  

+ g  

~-2 fl?gl- flrq'~, (16) 
q 

1 - f l ( q - q )  / 

where m ~, c~ and q satisfy 

m V 

q 

Here ( . . . )  without subscript denotes a 'thermal average' 
performed over the Gibbs distribution generated by the 
single-site Hamiltonian 

_ _ S  2 (fl ( 2 f ' -  r )--  1), (18) 

while Z is the corresponding partition function, and 
(...)z,~v a combined average over a zero mean unit 
variance Gaussian z and the ~ v according to their dis- 
tribution. Moreover, we have 

q 
r =  

(19) 
1 

B ( 2 ~ - r ) -  
1 

The computation leading to these equations are standard, 
and we shall not document them here. 

The RS solution fails to be thermodynamically stable 
as the temperature is lowered through the AT-line [15], 
given by 

T 2  - 0~ (1 - C) 2 (((s2) - ( s )  2)2)z ' r (20) 

where we have introduced the 'response parameter' 
C =  fl ( q - q ) .  The RS Hopfield model results are recov- 
ered by taking O = 0  and A = - I =  1 in (16)-(20). 

To improve upon the results of the RS approximation 
in the region where RS is known to be broken according 
to the AT criterion [15], one can follow Parisi's scheme 
of hierarchical replica symmetry breaking [ 10, 11 ]. In what 
follows, we present the first two steps of Parisi's approxi- 
mations for the generalized Hopfield model. Details of 
the calculation are to be found in Appendices A and B 
for the 1 RSB and the 2RSB approximations respectively. 
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3.3. The 1RSB approximation 

In the 1 RSB ansatz, one assumes that the overlaps m v 
still exhibit the full invariance with respect to permuta- 
tions of replicas, 

1i v m ~ = m  , a = l  .... ,n ,  (21) 

where as the Edwards-Anderson matrix q acquires the 
following structure, 

I 
q, a=b,  

qab = ql, ] a-- b ] <=m, (22) 

q0, otherwise. 

Here m < n is a partitioning parameter that is to be de- 
termined from a stationarity condition for the free energy. 
Formally, we may express q in terms of a tensor product 
structure 

q = (t~_ qa) 1~ + (q I _ qo) l_n | em T + qo % e l ,  (23) 
m 

where 1 k denotes a k-dimensional unit matrix and 
eft=(1,  1 . . . . .  1) a transposed column vector with k ele- 
ments identical 1, that is, ek e~" is nothing but a k • k 
matrix completely filled with one's. The matrix 1 -  flq 
clearly has the same type of tensorial structure, and so 
does r, because it is simply related with its inverse. These 
observations allow a fairly straightforward evaluation of 
all terms appearing in (8)-(10), as well as of a 1RSB 
formulation of the saddle point equations (13). We get 
(for details, see Appendix A) 

f ( my, qo, ql, q, ro, rl, r, m) 

=�89 ~, (mY) 2 -  <ln<Z >ZI>Z,~V 
v 

or( qo + 1 (Qqo) 
+5 -U o Pm In + lnQa, 

p 2 r0 + Prl qa (m - 1) - fir0 q0 m)  + 

for the free energy, and 

<" > mV= ~v<Z <s>>~, 
~ m  < z  >~, ~,~ 

1(<2m<&>~, ~ , 
q o = \  ~, ~ ) >z,r 

q~ <Z 5~, ~,~ 

C=B(O-q , )  

z ,  ~ v  

(24) 

(25) 

for the fixed point equations. There is an extra equation 
due to the stationarity condition on f with respect to the 
partitioning parameter m, which can be expressed as fol- 
lows: 

1 
l ~ m  

( Z  ln Z >z, 
~ m  ~ m  <z 5~, ~,~ 

o~ ( qo q, 1 (Qq~))  
+5 Qqo Qql tim In 

(26) 

In (24-26), we have introduced the auxiliary quantities 
Qq~ defined as 

Qql= l -  f l (~ -q l ) ,  Qqo=Qq~- flm(qa-qo). (27) 

The elements of the r-matrix, are given by 

Aqo 
r o ~ A r o  - -  2 , 

Qqo 

Aql 
r 1 - r o - A q  - Qqo Qq~' (28) 

1 
fl (2 P- rl )= f l A P = - -  Q 

q l  ~ 

where Aqo = qo and A q l  = q l  - -  qo. The quantity Z, finally, 
denotes the partition function corresponding to the 
single-site Hamiltonian 

The notation used for the averaging brackets conforms 
to that introduced in the previous subsection. 

The numerical solution of these equations will be dis- 
cussed in Sect. 4 below. The case of the standard Hopfield 
model is recovered by taking A = - I =  1 and ~9 = 0. 

3.4. The 2RSB approximation 

The 2RSB approximation is obtained from the 1RSB 
scheme by endowing the m • m diagonal submatrices of 
q with a structure akin to that arrived at when breaking 
RS for the first time in the full matrix. Formally, 

T q=(~--qz)ln+(q2--ql)l  n | em2em2 
m2 

+ (ql %) 1Z  | r r - -  %, %,  + q0 e n e . .  ( 3 0 )  
m I 

The tensorial structure of q is inherited by 1 - flq and by 
r for the same reasons as in the 1 RSB case. Moreover, 
as in the 1 RSB approximation, one keeps replica sym- 
metry for the overlaps m~. This leads to the free energy 
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f (  m~, qo, ql, q2, q, ro, rl, rE, r; ml, m2) 

1 ( ( ~m, : '~)  ) In <Z 
~ p rrl z1 z, ~ v 

c~( q o ,  1 ( Q q o )  
+ 2  -Qqo- t -~11 In 

1 (Qq'~ l 
+ 18m-~ In + ~ l n  Q~ 

\ Qq2} 

+ B 2fc)+ flr2q2(m 2 -  1) 

+ Brl q: (rnl - m2) - 18ro qo mr) / 
(31) 

and the saddle point equations 

= v <z"~>~ L1 
(32) 

<Z (zm2>~2 /~1 
qo = m l  (33) 

<z >5 
1 ,~v  

\ (Z  2)~2 ) ~1 (34) 

ql= ( ( z m Z ) z ~ ) z  I ,,v 

I / ~m2 ~ <Zrn2<S)2)z2\ \ 

1 
C--  18 ( Cl - qe) = _ ~ 

V~A r2 

(2m2)m2 dz2 (S))z 2 
\ z2 ~m2 • ( Z ) ~  (36) 

I 

The partitioning parameters m I and m 2 are determined 
by stationarity conditions on f ,  leading to two further 
fixed point equations, namely: 

1 (ln((Z ~m2 m~)~)~):2 
f l m l  1 ,:v 

1 / :1., 
~m2 m2 \1  tim2 ( ( Z  )z2 

z~ v 

c~( qo q: 1 (Qq~l)) 
+ 2 Oqo Oq: tim: In 

(37) 

and 

I 2m2)~ ~m2 1 ( (  ~ 1 

tim2 ( ( 2 ' ~ ' ) ~ ) . :  :,:v 

: ( q, q, : 
+ ~  Qq, Qq2 18m21n \ Q q ~ / J "  (38) 

The r elements, finally, are algebraically related to the 
elements of q: 

Aqo 
r o =-- A r o Q~o 

dql 
r 1 - ro=-Ar l  -- Qqo Qq, ' 

(39) 
dq2 r2--r l - -Ar2 Qq, Qq2 ' 

1 
fl ( 2 f - rz) =- flA ? = 

Qq2 

Here A qo = qo, and A qi = qi - qi- 1 for i = 1, 2, while 

Qq2= 1 - f l  ( q - q 2 ) ,  

Oql = Oq2 - ~m2 (q2 -- qa), (40) 

Oqo -= Oq, - Bin1 (ql - qo). 

As in the previous subsection, Z denotes a partition func- 
tion corresponding to a single-site Hamiltonian, namely 

+ ~1 /~-2z2-0  ] s - - 2 [ f l A f - 1 ] s 2 .  (41) 

Conventions regarding averaging brackets are the same 
as before. 

From the structure of the 1RSB and the 2RSB equa- 
tions, a formulation of the infinite RSB scheme is fairly 
easily obtained. Since we have not evaluated this limit 
numerically, we will not reproduce the corresponding 
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equations here. The interested reader will find the details 
in [16]. 

4. Results 

We have solved the fixed point equations corresponding 
to the RS, the 1RSB and the 2RSB approximations for 
the Hopfield model with a =  1/2, as well as those cor- 
responding to the RS and the 1 RSB approximations for 
the generalized model at d = 0.1. In both cases, simulation 
data are available for comparison with theoretical results 
[7-9]. The RS approximations reproduce previously 
known results as they should. 

As usual, the numerics simplifies considerably in the 
T =  0 limit, because the innermost Gaussian averages in 
the saddle point equations can be performed analytically 
in this limit, giving simple expressions in terms of error 
functions. Moreover, it can be shown that, as this limit 
is taken, the partitioning parameters m and ml, m 2 of the 
1RSB and the 2RSB approximations enter the theory 
only through the scaled combinations D = B m  and 
D 1 = t i r o l ,  O 2 = ~ m 2 ,  which remain finite as the fl--+oo 
limit is taken. In the case of the 1 RSB approximation, 
this has already been noticed by Crisanti et al. [3]. 

4.1. The standard model at d =  1/2 

In the case of the standard model, we have A = - I =  1 
and 0 = 0. The full phase diagram in the RS approxi- 
mation is well known [7]. In Fig. 1 we present, for later 
reference, an enlarged portion of it, exhibiting the bound- 

ary of the retrieval phase at low temperatures, as well as 
its AT-line. A noteable feature here is the reentrant be- 
haviour signified by a back-bending of the transition line 
for T__< T(0~max)= 0.024, previously discovered by Naef 
and Canning [4]. Moreover, the AT-line below which the 
RS approximation fails to be thermodynamically ac- 
ceptable is seen to meet the RS phase boundary just 
slightly above T(~max) , where reentrant behaviour be- 
gins. We will return to discussion of these features in 
Sect. 5 below. 

Knowing that replica symmetry must be broken below 
the AT-line, we have analyzed the 1RSB approximation 
of the model. Figure 2 shows the order parameters m 1, 
ql, and qo (q = 1) at T =  0.02, for a range of 0~ values that 
cross the AT-line at 0~AT--~0.1376. As is to be expected 
ql and q0 become different, as 0c is increased through eaT. 
The figure exhibits both stable and unstable solutions of 
the order parameters. The stable and unstable branches 
of these order parameters all coalesce at eclRS~(T) 
"~ 0.138 19, signifying the tangent-bifurcation that marks 
the boundary of the retrieval phase at this temperature 
in the 1 RSB approximation. 

At zero temperature, T =  0, we find the following 
critical parameters 

0% ---0.138 1864895 

m 1 __ 0.966 77 

qo =0.99648 (42) 

C -~0.052 89 

D - 36.78 

T Hopfield model 

I I I I I I I 
1,4 

1.2 

1 

0.8 SG 

0.6 

0.4 

0.2 F+SG 

0 q I I l I 

0 0 .02  9.04 0.06 0.08 0.1 0.12 0.14 
O~ 

T 
0.05 

0.045 

0.04 

0.035 

0.03 

0.025 

0.02 

0.015 

0.01 

0,005 

0 

Hopfield model, enlarged 

I I I 

/ 
/ 

/ 

I I ~ / r  I I 

0,1376 0.1378 0.i38 0.1382 0.1384 
OZ 

I 

SG 

Fig. 1. Phase diagram of the standard model in 
the RS approximation at d =  1/2, and enlarged 
portion of it near T= 0, ~ = a c. The dotted line 
is the AT-line. We denote by P the 
paramagnetic phase, by SG the spin glass 
phase, and by F the (ferromagnetic) retrieval 
phase 

m 1 

0.985 

0.98 
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Fig. 2. Retrieval overlap m 1 and Edwards- 
Anderson order parameters ql, and qo (fat 
line) as functions of ~ at T =  0.02, in a 
1RSB approximation of the standard model. 
Both, stable and unstable solutions of the 
fixed point equations are shown (upper 
branches and lower branches, respectively), 
with gaps left at the point where they 
coalesce, in order to exhibit their separate 
identity. The stable branches of qo and ql 
become different as ~ is increased through 
the AT-line. The coalescing of stable and 
unstable branches marks the limit of 
capacity, ~RSB (T) for this temperature 



These values deviate considerable f rom those previously 
reported by Crisanti et al. [3] 

a c ~-0.144 

m1~_0.982 
(43) 

C ~0.111 

D ~-0.03 

which they obtained through a Monte-Carlo minimiza- 
tion of the free energy function (24), rather than by de- 
riving and solving the associated fixed point approxi- 
mations. 

In view of this discrepancy, we have performed several 
internal consistency checks of  our results. Since our ex- 
pression for the free energy is the same as in [3], a possible 
discrepancy could arise due to erroneous expressions for 
the fixed point equations. However, our 1 RSB fixed point 
system can in principle also be derived f rom the 2RSB 
approximation by either taking the limit ma-+l  or the 
limit m 1 ---, n. Both checks confirmed the expressions given 
in (25-29). Moreover,  we have some internal consistency 
checks by isolating asymptotics of  various integrations 
analytically, with essentially no change on the results. We 
have also omitted the stationarity requirement with re- 
spect to the partitioning parameter  m, treating D = t im 
as a free parameter,  and computing c% at T =  0 as a func- 
tion of D. The result is shown in Fig. 3. The capacity 

~ (D) never increases beyond c~ 1 RS~ (Din,x) ,,~ 0.1382, ap- 
proaching - as it should - the replica symmetric capacity 

0 . 1 3 8 2  ~ ^  , i 

0 .1381  

c~c o.13805 

0 .138  

0 . 1 3 7 9 5  ' 

0 .1379 '  i r , , 

20 40 60 80 100 
D 

Fig. 3. 1 RSB approximation in the standard model at T= 0, without 
stationarity requirement imposed with respect to the partitioning 
parameter D = tim. Shown is ejRs~ as a function of D. In the limits 
D--~0 and D ~  0% the RS result is recovered. The stationary value 
is marked black 

I I I I I I I  

0.998 

0,996 

q(D) 
0 . 9 9 4  

0 .992  

255 

0.90  , i I I P I I i I 

5 10 15 20 25 30 35 40 45 50 

D 

Fig, 4. Parisi function for the standard model in the 1RSB (dotted) 
and the 2RSB (full line) approximation at T= 0 

~cRS=0.137905 as D ~ 0  or D ~ o o ,  albeit in the latter 
case slowly. Even ~lp'SB(Dmax) is found to be slightly 
smaller than e~S(T)max~-0.1381885. Lastly, an inde- 
pendent check of our results was recently obtained by 
Huyghebaert  [12], using the bifurcation finding software 
package 'AUTO' ,  and confirming our results to an ac- 
curacy of  9 significant digits. 

We have also considered the 2RSB approximation in 
the T--+0 limit. Because of  additional integrations that 
need to be performed numerically, these results are in- 
herently less precise than those for the 1RSB scheme. 
They are collected in Table 1. 

Note  that the 2RSB approximation gives only a rather 
slight increase in the T =  0 storage capacity, which is still 
within the RS reentrant phase, i.e., e2p.sB < eRS (T)max" 
Figure 4 shows the Parisi function, as a function of  the 
rescaled partitioning parameters D i = flmi, in the 1 RSB 
and 2RSB approximations, respectively. 

4.2. The general model at ~=0 .1  

For  the general model (~7 different f rom 1/2), there is no 
longer a symmetry between the active and inactive neural 
states. In what follows we shall exclusively deal with the 
ci = 0.1 case, for which simulations results are available 
for comparison [9]. A non-zero threshold has to be in- 
troduced, and it must be optimized in order to yield the 
largest retrieval region. In Fig. 5, we show the RS bound- 
ary of  the retrieval region for the generalized model at 
d = 0.1, for various values of  the threshold 0. The optimal 
threshold, yielding the largest T =  0 capacity is found to 
be 0opt ~-~- 1.825 57 for this system. 

In principle, the envelope of the retrieval regions at- 
tainable with continuously varying 9 gives the ultimate 
boundary for retrieval. This would require 0 to vary 

TaMe 1. Retrieval boundary at T =  0 in RS, 1 RSB and 2RSB approximations for the standard model with d = 1/2.  Also given are values 
for (free) energy u and entropy s 

~ m I D D 1 D 2 f = u s 

RS 0.137 905 566 0.967 417 - 0.501 445 395 - 0.001 445 

1RSB 0.138 186489 0.966 777 36.783 -0.501 446051 - 0.000 104 

2RSB 0.138 187 733 0.966 776 2.406 38.320 -0.501 446 125 - 0.000 097 
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Fig. 5. Retrieval phase boundaries in the RS approximation for the 
generalized model at t~ = 0.1, for various values of the threshold 0 
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Fig. 6. RS retrieval phase boundary for the generalized model at 
= 0.1 and optimal threshold 0 = 1.82557. Also shown is the AT- 

line (dotted). As in the standard model, it touches the RS phase 
boundary just slightly above the temperature where reentrance ap- 
pears in the RS approximation 

with temperature, ~}--0 (T). Note the strong reentrant 
behaviour in case of near optimal threshold, clearly vis- 
ible in the present case without amplification. 

As in the standard model, the RS solution fails to be 
acceptable for T <  TAT (e), given by (20), and depicted 
in Fig. 6 for 0 = 0 opt- Again, exactly as in the standard 
model, the AT-line is seen to meet the RS phase boundary 
just slightly above T(umax) below which the RS phase 
boundary bends back to lower values of  c~. For  the pre- 
sent case T(Cr at ~ 0 . 4 9 5  17, whereas the 
T----0 capacity is 

u ffs ~ 0.484 15. (44) 

We have investigated the 1RSB approximation of  this 
model at T- -0 ,  with results collected in Table 2. 

The q values for this case are at 0=q1---0.929310 
and q0-~0.891226 compared to the replica symmetric 
0 = q  ~ 0.924 081. While the relative increase in computed 
T =  0 storage capacity due to 1 RSB corrections is signifi- 
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Fig. 7. 1 RSB approximation for the generalized model at T=  0, 
and c/= 0.1 without stationarity requirement imposed with respect 
to the partitioning parameter D = tim. Shown is ~ RSB as a function 
of D. In the limits D--*0 and D ~ m ,  the RS result is recovered. 
The value of a~RSB with stationarity imposed with respect to D is 
at D~-3.523 and is marked black. It is slightly smaller than that 
maximally attainable without stationarity requirement imposed 

cantly larger than in the standard model (roughly 2% as 
opposed to only 0.15% in the standard model), it does 
still give a capacity within the reentrant phase, and far 
below the number cr im-- 0.585 _+ 0.01 reported from nu- 
merical simulations [9]. Again we have checked our re- 
sults by treating D as an independent parameter, not fixed 
by a stationarity requirement, with results qualitatively 
similar to the case of the standard model; see Fig. 7. 

Though we have not analyzed the 2RSB approxima- 
tion, we expect the outcome of such an analysis to be 
qualitatively similar to the standard case: there will be 
an additional slight increase in the T =  0 storage capacity, 
but it will still be smaller than e~S(T)  . . . . .  i.e. still be 
within the reentrant phase. 

A final note here concerns the sharp bends in the RS 
phase diagrams, at temperatures above T(0cmax). They are 
due to the fact that the RS retrieval phase loses stability 
in different directions giving way to different frozen 
phases, depending on whether c~ < e * or c~ > ~ *, where 

�9 denotes the loading level at which the sharp bend 
occurs. Since the non-retrieval phases are not so much 
of  concern to us in the present context, we will not elab- 
orate on this point, however. The interested reader may 
consult [1] and [16] on this matter. 

5. Relation with RSB in the SK-model 

In the previous section, we have seen that 1RSB or 2RSB 
approximations to the mean-field solution of generalized 
Hopfield-type models yield a slight increase of the storage 

Table 2. Retrieval boundary at T =  0 in the RS and the 1 RSB approximations for the generalized model at d =  0.1 and with optimal 
threshold O = 1.82557 

~c m 1 C D f = u s 

RS 0.484 151 834 0.836 979 0.176 688 - 0.508 557 635 - 0.004 886 

1RSB 0.495 030 302 0.828 196 0.055 155 3.523 - 0.509 302 481 - 0.000 406 



capacities of these models, but this increase was found 
to be much smaller than probably expected from simu- 
lation results [7-9], or previously reported [3]. In all cases, 
the resulting storage capacity was found to be smaller 
than that maximally attainable in the RS approximation 
at finite temperature. In Sect.4, we have also evaluated 
T =  0 energies and entropies; cf. Tables 1 and 2. The re- 
sults show that the 1RSB and 2RSB approximations are 
still not thermodynamically acceptable at very low tem- 
peratures near the respective ec, because the T =  0 entro- 
pies turn out to be negative, which is strictly forbidden 
in a system with discrete variables. 

Internal energy u and entropy s are computed from 
, . .  ~ f l f  

the relauons u = ~ -  and s = flu - p f  in units o f k  B. The 

computations are straightforward, if perhaps tedious in 
details. For the T =  0 entropy, one obtains 

st=0 = - 2 (~_C_C~ + In (1 - C ) ) ,  (45) 

which is formally independent of the degree of approxi- 
mation in the finite-step RSB scheme, provided the re- 
sponse parameter C is defined as C =  B ( O - q  (1)), with 
O the diagonal entry in the matrix of Edwards-Anderson 
order parameters, and q (1) the off-diagonal entry in the 
innermost blocks, that is q ( 1 ) = q  in the RS approxima- 
tion, and q (t)  = qk in the kRSB scheme, k = 1, 2,. . . .  Thus 
as long as C(T= 0) is non-zero, the T =  0 entropy will 
come out negative. 

The same formal independence for the zero entropy 
expression of the degree of approximation in the Parisi 
scheme is observed for the SK-model, where 

C 2 

s S ~ ~  4 ' (46) 

with C = f l ( O - q ( 1 ) ) = f l ( 1  - q(1)), and q(1)=qk  in the 
kRSB scheme. 

As a consequence, it is to be expected that no finite 
approximation in Parisi's approximating scheme will yield 
thermodynamically acceptable solutions at T--0  for the 
retrieval phases of generalized Hopfield models, just as 
in the case of the SK-model, where only the full hierar- 
chical scheme of infintely many levels of RSB gives a 
Parisi function q(x) that is sufficiently smooth on the 
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D = fix scale to produce a vanishing C in the T = 0 limit, 
and thereby a vanishing zero temperature entropy. 

Further evidence for the analogy between the retrieval 
phases of generalized Hopfield models and the magnetic 
phase of the SK-model with ferromagnetic anisotropy 
<Jij ) = Yo/N comes from comparing lines of constant 
magnetization in a RS approximation; see Fig. 8. 

As in the Hopfield model, reentrance is observed in 
the RS approximation of the SK-model phase diagram. 
Moreover, in both models, the AT-line is seen to intersect 
the constant-magnetization lines slightly above the tem- 
perature where they begin to bend back (to larger Jo in 
the SK-model, to smaller ~ in the Hopfield model). Thus, 
reentrant behaviour as observed in RS approximations 
is found to be AT unstable in both models, in a strikingly 
similar fashion 1. 

Now according to the Parisi-Toulouse hypothesis [13], 
one effect of RSB in the SK-model is, roughly, to freeze 
the value of the magnetization as a function of temper- 
ature. That is, in the full RSB solution of the SK-model, 
the iso-magnetization lines in the phasediagram 8 will be 
verticals below the AT line. This statement is believed to 
be exact for the m = 0 line, i.e., the phase boundary, and 
to constitute a very precise approximation otherwise [ 13]. 

By analogy, and in view of the great similarity of the 
analytic structure, the same is expected to hold in the case 
of generalized Hopfield models. As a consequence, the 
retrieval phase boundary - as the envelope of iso-oveflap 
lines with non-zero m v - should in the full RSB scheme 
turn out to be vertical (or very close to a vertical) below 
the point where the AT line touches the RS phase bound- 
ary. 

This hypothesis is completely in accord with the results 
of our 1RSB and 2RSB analyses, which showed that 
the T--0  transition point ac is shifted to slightly higher 
values, closer to the point where they are expected to 
be if the hypothesis were true, and never beyond the 
abscissa a RS (T)max of the reentrant point, in contrast to 
previously reported results [3]. 

6. Summary and discussion 

We have studied effects of RSB in generalized Hopfield- 
type models of attractor neural networks. We have ob- 

1 There is a mapping of the replica symmetric Hopfield model onto 
the replica symmetric SK-model; for details see [16] 
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Fig. 8. Comparison of RS phase diagrams of 
the SK model (left) and Hopfield model (right). 
Shown are iso-magnetization lines in the SK 
model and iso-overlap lines in the Hopfield 
model. In both models, the AT-line (dotted) is 
seen to intersect the lines of constant 
magnetization/overlap just  slightly above the 
temperature at which reentrance begins 
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tained 1RSB and 2RSB corrections to RS results, which 
are m u c h  smaller than expected from simulation results 
[7-9] or previously reported for the standard model at 
5 =  1/2 [3]. In all cases the 1RSB and 2RSB storage 
capacities obtained were found to be smaller than those 
attainable in the RS approximation at finite temperature. 
Our results were found to be consistent with what is to 
be expected if the Parisi-Toulouse hypothesis about the 
nature of the Parisi function q (x) [ 11, 13] would hold for 
Hopfield-type models in the same manner as it does in 
the SK spin glass model. On the basis of this hypothesis, 
we conjecture that the reentrance phenomenon observed 
in RS analyses of Hopfield-type models would simply 
disappear in a full hierarchical Parisi RSB solution of 
these models. 

This state of affairs raises the question of how to re- 
concile discrepancies between theory and numerical ex- 
periments in these systems�9 Two possible explanations 
come to mind, and both are, we think, worth checking�9 

One possibility is that T =  0-Monte Carlo Dynamics 
gets trapped in energy valleys which are surrounded by 
nonextensive energy barriers, A E , , ~ N  v with 0 < v  < 1. 
The existence of such nonextensive energy barriers be- 
tween thermodynamically unstable retrieval states and 
the spin glass phase might well invalidate conventional 
(exponential) finite-size-scaling expressions for first order 
phase transitions, on which the analyses of simulation 
data [7, 9] were based�9 Here we should, however, remark 
that Mfiller [17] - knowing of our results - has recently 
performed Monte Carlo simulations which would con- 
firm our values for ~c on the basis of a conventional finite- 
size-scaling analysis of his data. 

A second possibility concerns the existence of dynami- 
cally frozen phases not detectable in equilibrium treat- 
ments. Discrepancies analogous to those between our re- 
sults and those of simulations have, indeed, recently been 
observed in the case of the binary perceptron [18], the p- 
spin interaction spin glass [19], and in the case of fluc- 
tuating manifolds in random media [20], where dynam- 
ically frozen phases were observed in regions of param- 
eter space in which static approaches yielded ergodic 
phases. 

This work has been part of the PhD thesis of HS. Numerous fruitful 
discussions with H. Horner are gratefully and with pleasure ac- 
knowledged. RK thanks the Laboratoire de Physique Th6orique of 
ENS for the hospitality extended to him while parts of this paper 
were being written. 

A p p e n d i x  A .  T h e  1 R S B  a p p r o x i m a t i o n  

In this appendix, we present the main ideas that go into 
the evaluation of the replica free energy (8) in the 1RSB 
approximation, and into the derivation of the corre- 
sponding 1 RSB version of the fixed point equations (13). 
The 1RSB approximation is based on the ansatz (23) for 
the matrix of Edwards-Anderson order parameters, in 
which m is a partitioning parameter for the set of n replica 
that is to be determined from a stationarity condition on 
f .  Clearly, the structure of q is inherited by 1 -  flq, 

1 - f l q  = (1 - - / ~  (q - -  q l ) )  In - -  ]~ (ql --  qo) 1 ~  
m 

T T 
em em --  flqo en en , (47) 

as well as by r in virtue of (14). Using this structure, we 
have to evaluate the various terms appearing in the free 
energy (8). 

(i) In order to evaluate In det (1 - iOq), we diagonalize 
(47). This is accomplished by noting that 1 n = 1L | 1 m ,  

�9 m 
T and that matrices with tensor and e,e~r= e,  e~r| emem, 

m m 
product structure can be diagonalized separately in each 

T tensor product component�9 Matrices of the form eke k 
have one eigenvalue k and a ( k -  1)-fold eigenvalue zero. 
Since they trivially commute with the corresponding unit 
matrices 1~, the full spectrum of (47) is readily obtained 
to yield 

det (1 - flq) 

= (1 - f l  ( q  - q , )  - t i m  (q l  - q0) - nf lqo)  

x (1 - f l  (q  - q l )  - f lrn (ql  - qo)) m 

n 

• (1 - / / ( q -  ql)) m. (48) 

(ii) Next, the term ~ rabq ,  b appearing in (8) is 
a<b 

evaluated by endowing r with the same block structure 
as q, and by parametrizing it analogously. This gives 

~,  gab qab 
a<=b 

n 
- 2 [2/$4 "~- ( m  --  I )  r I ql -~ (fl - -  rr/) r 0 q0]- (49) 

(iii) In view of (14), to express the elements of r in 
terms of those of q, we have to invert 1 - flq. This is done 

r form a closed by noting that the matrices 1~ and ek ek 
algebra, since e k ek r ek ek r = k % e ~ .  Thus the inverse of 
1 -  flq must be of the same structure as 1 -  flq itself, 
albeit with different coefficients in front of the three ten- 
sor product matrices appearing in (47). These coefficients 
are computed from the condition that the product of 
1 -  flq and its inverse should give a unit matrix. This 
yields (28), with the Qq, ,  defined by (27). 

(iv) Finally, to evaluate the single-site replica parti- 
tion function corresponding to the Hamiltonian (10), we 
have to decouple the replicated spins coupled through the 
term ~. rabSaS b. With r of 1RSB form analogous to (23), 

a ~ b  
we get 

Z ra b s a s  b 
a<b 

_ 1 [ ( 2  P -  r l )  - - 5  
L 

n n/m 

Z (sa )2  -~ ( r l  --  r0) Z 
a = l  k = l  

( a m  ) 2  ( a ~ = n ) 2 ]  
• a(k-1)m+a + r  0 S a . (50) 

1 =1 
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Gaussian linearization of the last term in (50), using a 
Gaussian variable z, will produce n / m  identical uncoup- 
led blocks of size m in the evaluation of (9). Within these 
blocks there is still a coupling between spins due to the 
next-to-last term in (50). These are decoupled using a 
Gaussian z~. This then yields 

1 

I n  ~ m  m , ( l n 2 ) r  ( Z ) ~ , ) ~ , ~  (51) 

in (8), as n--+0, with Z the partition function correspond- 
ing to the on-site Hamiltonian (29). Similar linearization 
techniques are readily seen to produce the 1 RSB fixed 
point equations (25) from (13), as the n--+0-1imit is taken. 

Collecting all items so far computed, we obtain the 
1 RSB expression (24). Stationarity of this expression with 
respect to the partitioning parameter m requires (26) to 
hold, which completes our derivation of the 1 RSB ap- 
proximation. 

A p p e n d i x  B .  T h e  2 R S B  a p p r o x i m a t i o n  

In the present appendix, we sketch the evaluation of (8) 
in the 2RSB approximation, and the derivation of the 
corresponding 2 RSB version of the fixed point equations 
(13). The following outline completely parallels that of 
Appendix A, and we will not repeat the arguments in 
detail. 

The 2RSB approximation is based on the ansatz (30) 
for the matrix of Edwards-Anderson order parameters, 
in which ml and rn2 are partitioning parameters which 
are to be determined from a stationarity condition on f 
Again, the structure of q is inherited by 1 -  flq, 

1 - -  f l q  = (1 - -  f l  ( q  - -  q2) )  1~ - -  13 (q2 - -  q l )  I n  
m2 

| r em2 em~ --/3 (qx -- qo) I n  
ml 

ern~ em~ --/3qo e. % . (52) 

as well as by r in virtue of (14). 
(i) In order to evaluate In det (1 - flq), we diagonalize 

(52) along the lines outlined in Appendix A. This yields 

det (1 - flq) 

= (1 - f l  (gl - q2) - flrn2 (q2 - q0 

--  t irol  (q,  --  qo) -- pnqo)  (1 -- fl (0-- q2) 

- - - - 1  
- -  tim2 (q2 - -  qm) - -  Bm~ (q~ - -  qo))) ml 

n n 

• (1 - / 3  (q - q2) - 13m2 (q2 - ql))) . . . .  
n 

• -B(O-qOf m2. (53) 

Fab qab 
a<=b 

n 
= ~- [ 2  r 0  + ( m 2  - -  1) r 2 q2 + (ml - -  m2) rl ql 

+ (n -- ml) ro qo]. (54) 

(iii) To express the elements of r in terms of those of 
q, we have to invert 1 -  flq. This is done as outlined 
in Appendix A, and yields (39), with the Qq, defined 
by (40). 

(iv) Next, to evaluate the single-site replica partition 
function corresponding to the Hamiltonian (10), we have 
to decouple the replicated spins coupled through the 
term ~, rabSaS b. With r of 2RSB form analogous to 

a<=b 
(30), we get 

Z rabSaS b 
a~b 

i - 5  2 r - r 2 )  (sa) a 
a=l 

n/m2(?~ a)2 
-~- ( r 2  - - / " 1 )  Z s ( k - -  1 ) m 2 +  

k = l  1 

n/ml(rnr )2 
~f- (Y1 -- to) Z s(k- 1)m1-k-a 

k = l  1 

+ r o s" . (55) 
1 

This structure suggests an iterative Gaussian linearization 
scheme as in the case of the 1RSB approximation dis- 
cussed in the previous appendix. A Gaussian z is intro- 
duced to decouple spins in different blocks of size m l ,  
and creates n / m  1 identical independent, i.e., uncoupled 
blocks of this size. Within a block of size m~, there are 
m l / m  2 identical blocks of size m2, which are decoupled 
through a Gaussian z 1. Finally the m 2 spins within each 
of these smaller blocks are decoupled using a Gaussian 
z 2. This results in 

1 

(In 2 ) , v  = n ( l n  ( ( Z " 2 ) ~ ) ~ ) ~ ,  g v (56) 

in (8), as n--+0. Here 2 is the partition function corre- 
sponding to the on-site Hamiltonian (41). Again, similar 
linearization techniques are seen to produce the 2RSB 
fixed point equations (36) from (13), as the n--+0-1imit is 
taken. 

Collecting al l  items, we obtain the 2RSB expression 
(31). Stationarity of this expression with respect to the 
partitioning parameters m~ and m 2 requires (37) and (38) 
to hold, which completes our derivation of the 2RSB 
approximation. 

(ii) The term ~, rab qab appearing in (8) is evaluated 
a~b 

by endowing r with the same block structure as q, and 
by parametrizing it analogously. This gives 
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