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Exploration and Search

Goal: to evaluate exploration and search efficiencies of random walkers.

Search domains: complex networks
Efficiency measured in terms of

average number Si (n) of different sites visited in an n step walk starting at
vertex i (exploration).
average number Si (n|ξ) of different sites j with items hidden on them
(ξj = 1) visited in an n step walk starting at vertex i (search).

Applications
assess efficiency of diffusive spread of information in networks (exploration)
locate viruses hidden in computer networks (search)
assess efficiency of web-crawlers used to update search results for search
engines (search)

Note: search context has game-theoretic aspects
(strategies of hider and seeker)
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Number of Different Sites Visited by a Random Walker

Known results for n� 1:
For d dimensional lattices and Bethe lattices: Si (n) independent of i .

S(n)'


√

8n/π , d = 1

πn/ lnn , d = 2

B(d)n , d ≥ 3
c−2
c−1 n , degree c BL

[Dvoretzky and Erdős (1951), Vineyard (1963), Montroll and Weiss (1965), Hughes and Sahimi (1982)]

For random graphs in the configuration model class

S(n)' Bn ,

where B depends on graph type, i.e. the degree distribution (pk ). Results
generally not available in closed form. [De Bacco, Majumdar and Sollich (2015)]
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Number of Different Sites Visited by a Random Walker

Evaluation following [De Bacco, Majumdar Sollich (2015)]

Express Si (n) in terms of probabilities Hij (n) of visiting j at least once in n
step walk starting in i ,

Si (n) = ∑
j

Hij (n)

Decompose Hij (n) according to time m of last visit to j

Hij (n) =
n

∑
m=0

Gij (m)qjj (n−m)

with
qjj(n−m) denoting the probability for a walker starting at j at not to return to
node j in n−m steps,
Gij(m) = (W m)ij denoting the m-step transition probability from i→ j .

In terms of z-transforms, f̂ (z) = ∑
∞
n=0 f (n)zn,

Ĥij (z) = Ĝij (z) q̂jj (z)
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Number of Different Sites Visited by a Random Walker
Evaluation (continued)

Exploit
relation between qjj(n) and first passage probabilities Fjj(n)

qjj(n−1)−qjj(n) = Fjj(n) ⇔ q̂jj(z) =
1− F̂jj(z)

1− z

relation between Gij(n) and first passage probabilities Fij(n)

Gij(n) = δij δn0 +
n

∑
m=0

Fij(m)Gjj(n−m) ,

or, in terms of z transforms,

Ĝjj(z) =
1

1− F̂jj(z)
,

entailing

Ĥij(z) =
1

1− z
Ĝij(z)

Ĝjj(z)

Thus finally

Ŝi (z) =
1

1− z ∑
j

Ĝij (z)

Ĝjj (z)
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Number of Different Sites Visited by a Random Walker

Evaluate Si(n) for n� 1 from z→ 1-asymptotics of

Ŝi(z) =
1

1− z ∑
j

Ĝij(z)

Ĝjj(z)

Requires knowledge of

Ĝ(z) =
[
1I− zW

]−1
.

We will consider general degree-biased random walks

Wij = Wi→j =
cijs(kj)

Γi
, with Γi = ∑

j
cijs(kj)

where cij = cji = 1, if i and j are connected, and cij = 0, if not.
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Spectral Analysis

To analyse Ĝ(z) =
[
1I− zW

]−1
, note that W satisfies a a detailed

balance condition with the equilibrium distribution

πi =
1
Y

Γis(ki) , with Y = ∑
j

s(kj)Γj .

Use this to express Ĝ(z) in terms of a symmetric matrix

Ĝ(z) = D−1/2R̂(z)D1/2 , with D = diag(Γis(ki)) ,

with
R̂(z) =

[
1I− zW

]−1
,

in which W = D1/2WD−1/2 is symmetric.
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Spectral Analysis

Evaluation of Ĝ(z) via spectral decomposition of R̂(z)

R̂(z) =
v1vT

1

1− z
+

N

∑
ν=2

vνvT
ν

1− zλν

≡ v1vT
1

1− z
+ Ĉ(z) ,

where we have isolated the contribution of the Perron-Frobenius
eigenvector v1 of W corresponding to λ1 = 1 of W , with entries
v1,i =

√
πi .

For irreducible W , one has |λν|< 1 for ν 6= 1, entaililing that the
contribution of Ĉ(z) becomes negligible in the z→ 1 limit, giving

Ŝi(z)∼ 1
(1− z)2Y ∑

j

s(kj)Γj

R̂jj
, z→ 1 ,

with
R̂jj = lim

z→1
lim

N→∞
R̂jj(z) .
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Exploration and Search Efficiency

The 1/(1− z)2 divergence of Ŝi(z), tranlates into

Si(n)∼ B n , n� 1 ,

independently of i , with exploration efficiency

B =
1
Y ∑

j

s(kj)Γj

R̂jj
,

with the N→ ∞ limit assumed to be taken in this expression.

This is trivially generalized to give a search efficiency

B(ξ) =
1
Y ∑

j

s(kj)Γj

R̂jj
ξj .

Note: the R̂jj still need to be evaluated! ⇒ Cavity method.
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Hide & Seek

Investigate search efficiencies for various strategies of placing hidden
items in the graph.

Consider degree biased hiding strategies

p(ξj = 1|kj = k) = ρh
h(k)

〈h〉
,

in which ρh is the fraction of sites carrying a hidden item, h is a function of
the degree, and 〈h〉= ∑k pk h(k).

Hiding and search strategies and their paremetrisations
Functional form Hiding Searching
power-law h(k) = kβ s(k) = kα

exponential h(k) = eβk s(k) = eαk

logarithmic h(k) = log(1 + βkγh ) s(k) = log(1 + αkγs )

Investigate matched and unmatched scenarios.
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Cavity Method

Non-trivial component in evaluation of search efficiencies

B(ξ) =
1
Y ∑

j

s(kj)Γj

R̂jj
ξj .

is evaluation of the R̂jj

Recall
R̂jj(z) =

[
1I− zW

]−1

Following Edwards and Jones (1976), can write

R̂ij(z) = 〈xixj〉

where 〈. . .〉 is an average over the multivariate Gaussian

P(x) =
1
Z

exp

[
−1

2
xT R̂−1(z)x

]
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Cavity Method

Rescaling variables xi/
√

Γi → xi , can write this as

P(x) =
1
Z

exp

[
−1

2 ∑
i,j

cij

(1
2

[
x2

i s(kj) + x2
j s(ki)

]
− z
√

s(ki)s(kj)xixj

)]

Only single site marginals are needed for the evaluation of R̂jj(z)

Cavity approach [Rogers, Perez-Castillo, Takeda, RK (2008), De Bacco, Majumdar, Sollich (2015)]

Need single site marginals for distribution of the form

P(x) =
1
Z

exp[−H(x)] , with H(x) =
1
2 ∑

i,j
V (xi ,xj)
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Cavity Method

For all i , can write

H(x) = ∑
j∈∂i

V (xi ,xj) + H(i)(x∂i ,x∂2 i)

Visualize decomposition

H(x) H(i)(x∂i ,x∂2 i)

Left: Full system described by H(x). Right: Cavity graph described by H(i)(x∂i ,x∂2 i )

18 / 35



Cavity Method

Single site marginal thus

Pi(xi) =
1
Z

∫
dx∂idx∂2 i exp

[
−∑

j∈∂i

V (xi ,xj)−H(i)(x∂i ,x∂2 i)
]

∝

∫
dx∂i exp

[
−∑

j∈∂i

V (xi ,xj)
]
P(i)(x∂i)

On locally tree-like graph

Pi(xi) ∝ ∏
j∈∂i

∫
dxj exp

[
−V (xi ,xj)

]
P(i)

j (xj)

By same line of reasoning

P(i)
j (xj) ∝ ∏

`∈∂j\i

∫
dx` exp

[
−V (xj ,x`)

]
P(j)
` (x`) (∗)
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Cavity Method

In the present case

V (xi ,xj) = cij

(1
2

[
x2

i s(kj) + x2
j s(ki)

]
− z
√

s(ki)s(kj)xixj

)
is harmonic.

Entails that cavity-recursion (∗) is self-consistently solved by Gaussians

P(i)
j (xj) =

√
ω(i)

2π
exp

[
−1

2
ω
(i)
j x2

j

]
Cavity-recursion (∗) gives (as z→ 1)

ω
(i)
j = ∑

`∈∂j\i

[
s(k`)−

s(kj)s(k`)

ω
(j)
` + s(kj)

]
. (∗)

Solve iteratively for given large single instances.
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Cavity Method

Single-site marginals Pi(xi), too, are Gaussian with inverse variances

ωi = ∑
j∈∂i

[
s(kj)−

s(ki)s(kj)

ω
(i)
j + s(ki)

]
.

Search efficiencies in terms of these (need to undo xi/
√

Γi → xi

transformation).

B(ξ) =
1
Y ∑

i
s(ki)ωiξi .
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Thermodynamic Limit

In infinite system limit interpret cavity-recursion (∗) as stochastic recursion
for inverse variances of single-site cavity marginals.
Use (∗) to derive system of self-consistency equations for the distributions
of the inverse cavity variances for ensembles of random graphs in the
configuration model class.
Note:

due to the structure of (∗) need degree dependent families of such
distributions
for general random graph ensembles, need to formulate and solve these
projecting to the giant component of these networks, (Perron-Frobenius
eigenvector is otherwise non-unique
do this by combining (∗) with stochastic recursions for indicator variables of
the percolation problem [RK, Phys. Rev. E (2016)]

ni = 1−∏
j∈∂i

(
1−n(i)

j

)
n(i)

j = 1− ∏
`∈∂j\i

(
1−n(j)

`

)
.
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Thermodynamic Limit

Recursion equations for joint distributions of inverse cavity variances and
cavity indicator variables

π̃k (ω̃, ñ) = ∑
{kν≥1,ñν}k−1

[ k−1

∏
ν=1

kν

c
pkν

]∫ [ k−1

∏
ν=1

dπ̃kν
(ω̃ν, ñν)

]
δ(ω̃−Ωk−1({ω̃ν,kν}|k))

×δñ,1−∏
k−1
ν=1(1−ñν)

,

with

Ωk−1({ω̃ν,kν}|k) =
k−1

∑
ν=1

[
s(kν)− s(k)s(kν)

ω̃ν + s(k)

]
.

From solution (obtained using population dynamics) get joint distributions
of inverse single site variances and GC indicator variables

πk (ω,n) = ∑
{kν≥1,ñν}k

[ k

∏
ν=1

kν

c
pkν

]∫ [ k

∏
ν=1

dπ̃kν
(ω̃ν, ñν)

]
δ(ω̃−Ωk ({ω̃ν,kν}|k))

×δn,1−∏
k
ν=1(1−ñν)

,
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Search Efficiencies in the Thermodynamic Limit

Putting things together we get

B(ξ) =
1

Ng
∑
k≥1

p(k |1)
[
s(k)E[ω|k ,n = 1]E(ξ|k)

]
Here

p(k |1) is the degree distribution conditioned on the giant cluster

p(k |1) =
1
ρ

[
1− (1− ρ̃)k

]
pk

with ρ denoting the fraction of sites on the giant cluster, and ρ̃ the
probability that a random link connects to a site on the giant cluster.
[I. Tishby, O. Biham, E. Katzav, and RK, Phys. Rev. E (2018)]

We also have

E(ξ|k) = ρh
h(k)

〈h〉
E[ω|k ,n = 1] =

1
ρ

∫
dπk (ω,1)ω

and

Ng =
c
ρ

∑
k ,k ′

k
c

pk
k ′

c
p′k s(k)s(k ′)

[
1− (1− ρ̃)k ′+k−2]
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Simulations

Simulation results for exploration efficiency testing linearity S(n)∼ Bn of a degree-biased random walker with s(k) = k on the GC of an ER

graph of size N = 600 with c = 4. Results are averaged over Ns = 2000 random graph realizations. The fraction of sites in the giant cluster is

ρ' 0.98. We estimate B ' 0.7167±0.0002. From [S. Pandey and RK, J Phys A 52, 085001 (2019)]
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Simulations vs Single Instance Cavity

Comparing simulation and single instance cavity results. Left: exploration efficiency B of a degree-biased random walker with s(k) = kα on the
GC of an ER graph of size N = 600 with c = 4. Right: Search efficiency B(ξ) of a power-law degree biased random walk computed for

power-law degree biased hiding with h(k) = k for the case where a fraction ρh = 0.025 of sites have an item hidden on them. Results are
averaged over Ns = 2000 random graph realizations. Error bars are significantly smaller that the symbols.

From [S. Pandey and RK, J Phys A 52, 085001 (2019)]
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Population Dynamics vs Single Instance Cavity

Comparison of single instance cavity and thermodynamic limit results. Left: exploration efficiency B of a degree-biased random walker with

s(k) = kα on the GC of an ER graph of size N = 600 with c = 4. Right: Search efficiency B(ξ) of a power-law degree biased random walk

computed for power-law degree biased hiding with h(k) = k for the case where a fraction ρh = 0.025 of sites have an item hidden on them.

Results are averaged over Ns = 2000 random graph realizations. Error bars are significantly smaller that the symbols. From [S. Pandey and RK,

J Phys A 52, 085001 (2019)]
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Hide and Seek

Efficiency of power-law search with s(k) = kα (left panel) and of exponential search with s(k) = eαk (right panel) as functions of α, when set

against power-law hiding of the form h(k) = kβ for various β, and ρh = 0.025. In both panels, curves from bottom to top correspond to

increasing values of the bias parameter β of the hiding strategy. Shown are single instance cavity results for the giant component of ER graphs

with c = 4 and N=6000, averaged over Ns = 2000 instances. From [S. Pandey and RK, J Phys A 52, 085001 (2019)]
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Hide and Seek

Efficiency of power-law search with s(k) = kα (left panel) and exponential search with s(k) = eαk (right panel) set against logarithmic hiding of

the form h(k) = log(1+βk) for various β, and ρh = 0.025, with β = 0 meant to refer to unbiased random hiding. In both panels, curves from

bottom to top correspond to increasing values of the bias parameter β of the hiding strategy. Shown are single instance cavity results for the

giant component of ER graphs with c = 4 and N=6000, averaged over Ns = 2000 instances. [S. Pandey and RK, J Phys A 52, 085001 (2019)]
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Influence of Network Type

Comparison of network exploration efficiencies for four different graph types using the cavity method. Parameters are N=6000, and c=4 for ER

and regular random graphs; for the scale-free graph we chose γ = 2.65, with kmin = 2, kmax = 400 giving a mean connectivity c = 3.905.

From[S. Pandey and RK, J Phys A 52, 085001 (2019)]
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A Non-Backtracking Approximation

Assuming that every non-backtracking step explores unseen parts of the
network one can evaluate exploration and search efficiencies analytically.

Network exploration efficiency of a degree-biased random walker with degree bias following a power-law s(k) = kα as a function of the bias

parameter α (left panel). Efficiency of power-law search with s(k) = kα , set against power-law hiding h(k) = kβ , with β = 1 as a function of the

bias parameter α (right panel). Both panels compare results obtained via population dynamics for the thermodynamic limit with those of a

non-backtracking approximation. From [S. Pandey and RK, J Phys A 52, 085001 (2019)]
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Summary

Evaluated network exploration and search efficiencies of degree biased
random walkers on complex networks.

Evaluation using cavity method for single large instances and in the
thermodynamic limit.

Thermodynamic limit required projection of results on giant cluster.

Degree bias in search can increase efficiencies significantly.

. . . and exploit the heterogeneity of the network and/or hiding strategies

Optimal search efficiencies B(ξ) > ρh possible.

Cavity and thermodynamic limit (population dynamics) results in excellent
agreement with simulations.

To do: (i) fluctuations, (ii) rare events . . .
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Summary

Evaluated network exploration and search efficiencies of degree biased
random walkers on complex networks.

Evaluation using cavity method for single large instances and in the
thermodynamic limit.

Thermodynamic limit required projection of results on giant cluster.

Degree bias in search can increase efficiencies significantly.

. . . and exploit the heterogeneity of the network and/or hiding strategies

Optimal search efficiencies B(ξ) > ρh possible.

Cavity and thermodynamic limit (population dynamics) results in excellent
agreement with simulations.

To do: (i) fluctuations, (ii) rare events . . .

Thank you!
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