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Overview

• Look at spectra of sparse symmetric random matrices

– Follow replica formulation of Edwards and Jones (76),

Rodgers and Bray (88)

– Use techniques recently developed for StatMech of finitely

coordinated random systems

– Use different representation of replica symmetric ansatz

– Identify DOS of localized and extended states

– Deconvolution: local DOS of vertices with different coor-

dination

• Explore for various ensembles

• Some details in

– RK, J Phys A41, 295002, (2008), cond-mat/0803.2886

– T. Rogers, I. Perez Castillo, RK, and K. Takeda Phys Rev E 78, 031116

(2008), cond-mat/0803.1553
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Spectral Density and Resolvent

• Spectral density of random matrix M from resolvent

ρ(λ) = lim
N→∞

1

πN
Im Tr [λεI − M ]−1 , λε = λ − iε

• express (S F Edwards & R C Jones, JPA, 1976) as

ρ(λ) = lim
N→∞

1

πN
Im

∂

∂λ
Tr ln [λεI − M ]

= lim
N→∞

−
2

πN
Im

∂

∂λ
lnZN ,

where ZN is a Gaussian integral:

ZN =

∫ N
∏

i=1

dui
√

2π/i
exp







−
i

2

∑

i,j

ui(λεδij − Mij)uj






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Sparse Random Matrices

• Sparse symmetric matrix M given, e.g. by

Mij = cijKij

with {cij} adjacency matrix of a random graph. E. g.

cij =

{

0 ;with prob 1 − c
N

1 ;with prob c
N

≡ Posisssonian (Erdös Renyi) random graph.

Others: regular, scale-free, small-world . . .

• Distribution of Kij arbitrary

(Gaussian, bimodal, non-random . . . )

• Exploit StatMech techniques for sparsely coordinated amor-

phous systems. (RK, J van Mourik, M Weigt, A Zippelius J Phys A,2007)
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Performing the Average — Replica Method

• Replica identity

lnZN = lim
n→0

1

n
lnZn

N

• For integer n, Zn
N is partition function of n identical copies

of the system (n-th power of Gaussian integral)

Zn
N =

∫

∏

ia

duia
√

2π/i
exp







−
i

2
λε
∑

i,a

u2
ia

+
c

2N

∑

ij

(〈

exp
(

iK
∑

a
uiauja

)

〉

K

− 1

)







• Decoupling of sites by introducing the replicated density

ρ(u) =
1

N

∑

i

∏

a
δ(ua − uia)
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• Enforce definition via (functional) δ-distribution

1 =
∫

DρDρ̂ exp







−i
∫

duρ̂(u)
(

Nρ(u) −
∑

i

∏

a
δ(ua − uia)

)







• Gives

Zn
N =

∫

Dρ
∫

Dρ̂ exp

{

N

[

c

2

∫

dρ(u)dρ(v)

(〈

exp
(

iK
∑

a
uava

)

〉

K

−1

)

−
∫

du iρ̂(u)ρ(u) + ln

∫

∏

a

dua
√

2π/i
exp

(

i ρ̂(u) −
i

2
λε
∑

a
u2

a

)

















• Evaluation of N−1 lnZn
N by saddle point method
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• Stationarity w.r.t. ρ and ρ̂

δ

δρ(u)
: iρ̂(u) = c

∫

dρ(v)

(〈

exp
(

iK
∑

a
uava

)

〉

K

− 1

)

(∗)

δ

δρ̂(u)
: ρ(u) =

exp
(

i ρ̂(u) − i
2 λε

∑

a u2
a

)

∫

du exp
(

i ρ̂(u) − i
2 λε

∑

a u2
a

) (∗∗)

• Problem: n → 0 limit. (GJ Rodgers, AJ Bray, PRB 37, 1988)

Ansatz: permutation & rotational symmetry in replica space

i ρ̂(u) = cg(|u|)

• Exploit to perform ‘angular integrals in (*),(**)
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• For K ∈ {±1} get

g(u) = −u
∫ ∞

0
dv exp

[

cg(v)−
i

2
λεv

2
]

J1(uv) , as n → 0

Independent SuSy derivation (YV Fyodorov, AD Mirlin, JPA 24, 1991)

• Rodgers-Bray Equation extremely difficult to analyze.

• Here: different representation of permutation & rotational

symmetry. Superpositions of Gaussians:

ρ(u) =

∫

dπ(ω)
∏

a

exp [ − ω
2u2

a]

Z(ω)

iρ̂(u) = c
∫

dπ̂(ω̂)
∏

a

exp [ − ω̂
2u2

a]

Z(ω̂)

⇔ solve (*),(**) in terms of an integral transformation

• Get saddle point equations for π and π̂
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Population Dynamics

• Self-consistency equations for π and π̂: pair of non-linear

integral equations

π̂(ω̂) =

∫

dπ(ω)
〈

δ
(

ω̂ − Ω̂(ω, K)
)〉

K

π(ω) =
∑

k≥1

k

c
pc(k)

∫ k−1
∏

ℓ=1

dπ̂(ω̂ℓ) δ
(

ω − Ωk−1
)

with

Ω̂(ω, K) =
K2

ω
, Ωk−1 = iλε +

k−1
∑

ℓ=1

ω̂ℓ

• Structure suggests solving via stochastic population based

algorithm; note: get complex ω, ω̂, but Re(ω) ≥ 0, Re(ω̂) ≥ 0

selfconsistently in population.
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Spectral Density

• Spectral density from solution (using {ω̂}k =
∑k

ℓ=1 ω̂ℓ)

ρ(λ) =
1

π
Im

∞
∑

k=0

pc(k)
∫ k
∏

ℓ=1

dπ̂(ω̂ℓ)
i

iλε + {ω̂}k

=
1

π

∞
∑

k=0

pc(k)
∫ k
∏

ℓ=1

dπ̂(ω̂ℓ)
Re{ω̂}k + ε

(Re{ω̂}k + ε)2 + (λ + Im {ω̂}k)
2

• Define

P(a, b) =
∑

k

pc(k)
∫ k
∏

ℓ=1

dπ̂(ω̂ℓ) δ (a − Re {ω̂}k) δ (b − Im {ω̂}k) ,

and get

ρ(λ) =

∫

da db

π
P(a, b)

a + ε

(a + ε)2 + (b + λ)2
.

• Note: singular nature of integrand for a = 0, as ε → 0.
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Results — Sampling

• Integral defining ρ(λ) is evaluated by sampling from popula-
tion

ρ(λ) ≃
1

N











1

π

N
∑

i=1
ai=0

ε

ε2 + (bi + λ)2
+

1

π

N
∑

i=1
ai>0

ai + ε

(ai + ε)2 + (bi + λ)2











• Note: ε → 0-limit singular in the first contribution:

bi + λ 6= 0 ∀i vs. bi + λ = 0 for some i .

• Identify with pure point (singular) and continuous spectrum
respectively. (R Abou-Chacra, PW Anderson, DJ Thouless, JPC 6,

1973)

Need to keep small ε > 0 (and N ε ≫ 1) to ‘see’ first contri-
bution.
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Results — Poisson Random Graphs
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Spectral densities for 〈K2
ij〉 = 1/c, on Poissonian random graphs with c = 4 (left), and c = 2

(right) using ε = 10−300 (full line); in both panels: numerical diagonalization results for

graphs of size N = 2000 (dashed).
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More on the Posisson c = 2 case
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Upper left: zoom into the central region; upper right: results on logarithmic scale; lower:

results regularized at ε = 10−3. In all panels: numerical diagonalization results for graphs of

size N = 2000 (dashed). Localization for |λ| > 2.295 ! 13/22



Localization — IPRs

IPR(v) =

∑N
i=1 v4

i

(
∑N

i=1 v2
i )

2

• IPR = O(1) for localized, O(N−1) for de-localized states
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Continuous and full densities of state, and average IPRs for Poissonian random graphs with

c = 2 (left) and c = 4 (right). Average IPRs from numerical diagonalization of matrices with

N = 250, N = 500, N = 1000 and N = 2000. Scaling of IPRs confirms location of mobility

edges seen in DOS. 14/22



IPRs — Scaling with System Size
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Scaling of average IPRs with system size for Poisson Random graphs with c = 2 (upper)

and c = 2 (lower). The fraction of sites not in the giant cluster is xi ≃ 0.205 at c = 2 and

xi ≃ 0.02 at c = 4.
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Orther Ensembles

• Poisson random graphs with bimodal couplings

• Regular random graphs with Gaussian or bimodal couplings

(recover Wigner semi-circle law in the c ≫ 1 limit)

• Scale free graphs (power law degree distribution)

— For p(k) = P0k−γ confirm ρ(λ) ∼ λ1−2γ at large λ.

• In all cases: localization & mobility edges.
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Results — Graph-Laplacians

• Spectra of matrices with row-constraints

Mij = cijKij − δij

∑

k

cikKik ; Kij = 1/c ⇔ M = ∆
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Spectral density for the Laplacian on a Poissonian random graph with c = 2 as computed via

the present algorithm. Left: ε = 10−3-results; right: results from numerical diagonalisation

of N × N matrices of the same type with N = 2000.
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Continuous Spectrum and ’Low-Energy’ Lifshithz Tail
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Spectral density for the Laplacian on a Poissonian random graph with c = 2. Left: continuous

part of the spectrum obtained using ε = 10−300 as a regularizer. Right: zoom into the small

|λ| region, exhibiting a mobility edge and a localized DOS (ε = 10−5 and 10−6) compatible

with Lifshitz tail behaviour.
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Results — Unfolding Spectral Densities
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Spectral density for the Laplacian on a Poissonian random graph with c = 2 (full upper

line), shown together with its unfolding according to contributions of different coordination.

Identifiable humps from left tor right: k = 9, k = 8, . . . k = 3. Several notable humps from

k = 2, together with the k = 1 contribution mainly responsible for dip at λ = −1. The k = 0

contribution is mainly responsible for the δ-peak at λ = 0
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Results — Random Schrödinger Operators

• Spectral properties of discrete random Schrödinger operator

H = −∆ + V , Vij = viδij, vi ∈ [−W, W ]
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RSO on a Poissonian random graph with c = 4, and W = 1. Left: Spectral density and IPRs

(N = 250, 500, 1000, and 2000. Right: Continuous DOS and its unfolding (k = 1, . . .13)
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RSO on a Poissonian random graph with c = 4, and W = 1. DOS and its unfolding

(k = 0, . . .5).
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Summary

• Computed DOS of sparse random matrices using replica. For

single instances see T. Rogers, et al PRE (2008).

• Techniques, ansätze etc inspired by previous work on Stat

Mech of heterogeneous systems.

• Allows to disentangle pure point and continuous spectrum.

• Allows to compute local DOS unfolded according to coordi-

nation.

• Method is versatile (Poissonian and other degree distribu-

tions); Laplacians; discrete random Schrödinger operators;

Anderson localisation.

• To do: asymmetric matrices (Rogers, Anand); modular&

small world systems; eigenvector distributions, spectral cor-

relations . . .
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