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Overview

e Look at spectra of sparse symmetric random matrices

— Follow replica formulation of Edwards and Jones (76),
Rodgers and Bray (88)

— Use techniques recently developed for StatMech of finitely
coordinated random systems

— Use different representation of replica symmetric ansatz
— Identify DOS of localized and extended states

— Deconvolution: local DOS of vertices with different coor-
dination

e EXplore for various ensembles

e Some details in
— RK, J Phys A41, 295002, (2008), cond-mat/0803.2886
— T. Rogers, I. Perez Castillo, RK, and K. Takeda Phys Rev E 78, 031116

(2008), cond-mat/0803.1553
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Spectral Density and Resolvent

e Spectral density of random matrix M from resolvent

1
p(A) = lim —Im Tr Al — M]7 1, Ae = \ —ie

N—oco m™IN

® CXPress (s F Edwards & R C Jones, JPA, 1976) AS

S 1 0
A) = |IIim —Im — Trin{\sl — M
. 2 o —
= |im ——Im — InZy ,
N—oo 7N O\

where Z, is a Gaussian integral:
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Sparse Random Matrices

e Sparse symmetric matrix M given, e.g. by
with {c;;} adjacency matrix of a random graph. E. g.

CH_{O ;with prob 1 — %
L 1 ;with prob &
= Posisssonian (Erdds Renyi) random graph.

Others: regular, scale-free, small-world . ..

e Distribution of Kj;; arbitrary
(Gaussian, bimodal, non-random .. .)

e EXploit StatMech techniques for sparsely coordinated amor-
phous systems. (RK, J van Mourik, M Weigt, A Zippelius J Phys A,2007)
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Performing the Average — Replica Method

e Replica identity

N =
anN:rILIE]OE In Zn;

e For integer n, Z}’\L, IS partition function of n identical copies
of the system (n-th power of Gaussian integral)

_ du.; ]
ZN = /H uza.exp{—;)\gzu%

1,a

1 % > <<exp (iKza:umuja)>K _ 1> }

e Decoupling of sites by introducing the replicated density

pw) = 5 S TT 0 — i)
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e Enforce definition via (functional) é-distribution

1= /DpDﬁ exp {—i/duﬁ(u) (Np(u) — ZH(S(’U@ - uza))}

e Gives

Z% = /Dp/Dﬁ exp{N [g/dp(u)dp(’v) <<exp (iKza:uava)>K—1>

du

_/duz’ﬁ(u)p(u)—l—ln/H \/ﬁexp (i A(u) —%/\sZug)

e Evaluation of N~1InZ% by saddle point method
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e Stationarity w.r.t. p and p

o .
sp(uy P

c/dp(v) <<e><p (iKZuava)> — 1) (%)
a K

5 W = (i5(u) — 5 A Squ2)

so(w) T Jduexp (ip(u) — 4 Ay, )

()

e Problem: n — O limit. (GJ Rodgers, AJ Bray, PRB 37, 1988)
Ansatz: permutation & rotational symmetry in replica space

ip(u) = cg(ul)

e Exploit to perform ‘angular integrals in (*),(**)
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For K € {£1} get
o 7} >
g(u) = —u/o dv exp [cg(fv) — 5)\5’0 Ji(uv) , as n—0
Independent SuSy derivation (yvVv Fyodorov, AD Mirlin, JPA 24, 1991)

Rodgers-Bray Equation extremely difficult to analyze.

Here: different representation of permutation & rotational
symmetry. Superpositions of Gaussians:

pw) = [dr(@)]]

exp [ — Sug]

a Z(w)
B L exp [ — ul]
ip(u) = c/dw(w) 1;[ Z(Cj

& solve (%), (**) in terms of an integral transformation

Get saddle point equations for = and =
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Population Dynamics

e Self-consistency equations for m and 7: pair of non-linear
integral equations

7(0) = /dw(w) (5(@ ~ Qw, K))) .
L k—1
@) = 3 “pe(k) [ [ (@) 8w - 2%-1)
/=1

k>1 €
with
R K2 k—1
Qw, K) =, Qo1 =i+ > &y
=1

e Structure suggests solving via stochastic population based
algorithm; note: get complex w,®, but Re(w) > 0, Re(@) >0
selfconsistently in population.

9/22



Spectral Density

e Spectral density from solution (using {@}, = Z’gzlag)

() = %Im Z pc(k)/ H d7(we) Z,\€+{w}k

PPN Re{w}k + ¢
= — C IC dﬂ' w
”kz::op ( )/el;[1 ) (Re{@}r 4+ )2 + (A +Im{@})?

e Define
k
P(a,b) = ch(k)/ 11 d7(&p) 6 (a — Re {@}g) 6 (b—Im {D}y) ,
k =1

and get

——~ __ [ da db a-+ ¢
PN = | TP o e

e Note: singular nature of integrand for a = 0, as € — 0.
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Results — Sampling

e Integral defining p(\) is evaluated by sampling from popula-
tion

()\) ai—l—e

1 |1
N %Z 2+, +/\>2+w; (a; + )2 + (b + )2
a;= O a;>0

e Note: ¢ — O-limit singular in the first contribution:

b +X#*=0 Vi vs. b,+A=0 for some .
e Identify with pure point (singular) and continuous spectrum

respectively. (R Abou-Chacra, PW Anderson, DJ Thouless, JPC 6,
1973)

Need to keep small e > 0 (and Ne > 1) to ‘see’ first contri-
bution.
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Results — Poisson Random Graphs
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Spectral densities for (K%) = 1/¢, on Poissonian random graphs with ¢ = 4 (left), and ¢ =2
(right) using € = 107300 (full line); in both panels: numerical diagonalization results for

graphs of size N = 2000 (dashed).
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More on the Posisson ¢ = 2 case
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Upper left: zoom into the central region; upper right: results on logarithmic scale; lower:
results regularized at e = 10~3. In all panels: numerical diagonalization results for graphs of

size N = 2000 (dashed). Localization for |A| > 2.295 ! 13/22



Localization — IPRsS

DY
IPR(v) = (z,f\;l UE)Q

e IPR = O(1) for localized, O(N—1) for de-localized states

1

1

0.1¢

0.1

p(A) IPR
p(A) IPR

0.01 |

0.01

0.001

3 2 1 o 1 2 3
A
Continuous and full densities of state, and average IPRs for Poissonian random graphs with

c = 2 (left) and ¢ = 4 (right). Average IPRs from numerical diagonalization of matrices with

N = 250, N =500, N = 1000 and N = 2000. Scaling of IPRs confirms location of mobility

edges seen in DOS. 14 /22



IPRs — Scaling with System Size
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IPR at lambda
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Scaling of average IPRs with system size for Poisson Random graphs with ¢ = 2 (upper)

and ¢ = 2 (lower). The fraction of sites not in the giant cluster is z; ~ 0.205 at ¢ = 2 and

z; ~ 0.02 at ¢ = 4.
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Orther Ensembles

e Poisson random graphs with bimodal couplings

e Regular random graphs with Gaussian or bimodal couplings
(recover Wigner semi-circle law in the ¢> 1 limit)

e Scale free graphs (power law degree distribution)
— For p(k) = Pok™7 confirm p()\) ~ A1=27 at large .

e In all cases: localization & mobility edges.
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Results — Graph-Laplacians

e Spectra of matrices with row-constraints

k

25 T T T 25

15 1 15

PN
PN
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Spectral density for the Laplacian on a Poissonian random graph with ¢ = 2 as computed via

L I
-1 0 1

>

the present algorithm. Left: ¢ = 10 3-results; right: results from numerical diagonalisation

of N x N matrices of the same type with N = 2000.
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Continuous Spectrum and 'Low-Energy’ Lifshithz Tail
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Spectral density for the Laplacian on a Poissonian random graph with ¢ = 2. Left: continuous
part of the spectrum obtained using e = 10739 as a regularizer. Right: zoom into the small
|A\| region, exhibiting a mobility edge and a localized DOS (e = 10~° and 10—6) compatible

with Lifshitz tail behaviour.
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Results — Unfolding Spectral Densities

10

=

01F

P(N)

0.01

0.001

Spectral density for the Laplacian on a Poissonian random graph with ¢ = 2 (full upper
line), shown together with its unfolding according to contributions of different coordination.
Identifiable humps from left tor right: k=9, k=8, ...k = 3. Several notable humps from
k = 2, together with the £k = 1 contribution mainly responsible for dip at A= —-1. The k=0

contribution is mainly responsible for the d-peak at A =20
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Results — Random Schrodinger Operators
e Spectral properties of discrete random Schrodinger operator

H=-A+V, Vij = 03044, v; € [-W, W]

1 L T T T ' L 1
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0.001 1le-06

2

RSO on a Poissonian random graph with ¢ =4, and W = 1. Left: Spectral density and IPRs

(N = 250, 500, 1000, and 2000. Right: Continuous DOS and its unfolding (k=1,...13)
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Summary

e Computed DOS of sparse random matrices using replica. For
single instances see T. Rogers, et al PRE (2008).

e [echniques, ansatze etc inspired by previous work on Stat
Mech of heterogeneous systems.

e Allows to disentangle pure point and continuous spectrum.

e Allows to compute local DOS unfolded according to coordi-
nation.

e Method is versatile (Poissonian and other degree distribu-
tions); Laplacians; discrete random Schrodinger operators;
Anderson localisation.

e To do: asymmetric matrices (Rogers, Anand); modular&
small world systems; eigenvector distributions, spectral cor-
relations ...
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