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Abstract – We compute spectral densities of large sample auto-covariance matrices of stationary
stochastic processes at fixed ratio α=N/M of matrix dimension N and sample size M . We find a
remarkable scaling relation which expresses the spectral density ρα(λ) of sample auto-covariance
matrices for processes with correlations as a continuous superposition of copies of the spectral
density ρ

(0)
α (λ) for a sequence of uncorrelated random variables at the same value of α, rescaled

in terms of the Fourier transform Ĉ(q) of the true auto-covariance function. We also obtain a

closed-form approximation for the scaling function ρ
(0)
α (λ). Our results are in excellent agreement

with numerical simulations using auto-regressive processes, and processes exhibiting a power-law
decay of correlations.

Copyright c© EPLA, 2012

Introduction. – When analyzing the properties of
stationary stochastic processes [1], one typically begins
by concentrating on low-order statistics, in particular the
mean and the auto-covariance as a function of time-lag.
One way to characterize the latter further consists in look-
ing at the auto-covariance matrix obtained by sampling
the auto-covariance function on a grid of (equidistant)
time-lags, and in particular at its spectrum. For second-
order stationary processes the auto-covariance function
depends only on time-lags, so that the auto-covariance
matrix is on average Toeplitz. However, due to the finite-
ness of the samples used in practice to estimate the
auto-covariance function, empirically determined auto-
covariance matrices will exhibit random fluctuations about
their average Toeplitz form.
A key issue then is to judge how the spectral proper-

ties of empirical auto-covariance matrices will be affected
by these random fluctuations. Clearly, having a theory
that would quantify such effects analytically could be
useful for the empirical analysis of stochastic processes.
However, such theoretical understanding is at present
almost entirely lacking —in marked contrast to the situa-
tion for the closely related problem of sample covariance
matrices of a multi-dimensional data set estimated from
finitely many independent measurements.
From an abstract point of view, both problem classes

belong to random matrix theory [2,3]. In the case of sample
covariance matrices, the random matrix ensemble in
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question is the well-known Wishart-Laguerre ensemble [4],
which has been widely studied for several decades, and for
which numerous results are available. The spectral prob-
lem for example was solved in the 1960s by Marčenko and
Pastur [5]; typical fluctuations of the largest eigenvalue of
Wishart matrices were shown [6] to follow a Tracy-Widom
distribution [7], and large deviation properties of both
the largest [8] and smallest [9] eigenvalue have recently
been characterized. Numerous variants of the original
Wishart-Laguerre ensemble have been studied in the liter-
ature over the years (e.g., [10–13]), and applications have
been formulated in a variety of fields, including multivari-
ate statistics [14], wireless communication [15] and the
analysis of cross-correlations in financial data [16,17]. For
a more complete recent overview, we refer to [3].
Due to the temporal structure of the underlying signals

in the problem of sample auto-covariance matrices of
time series, the ensemble of random matrices describing
this problem is radically different from the Wishart-
Laguerre ensemble, and much less is known about their
spectral properties. The existence of the limiting spectral
density of sample auto-covariance matrices of moving-
average processes [1] with i.i.d. driving (of both finite
and infinite order) has in fact been established only very
recently [18]; the corresponding existence proof for the
closely related problem of random Toeplitz matrices with
i.i.d. entries is also only a few years old [19]. We are
not aware of closed-form expressions for limiting spectral
densities for these cases —whether exact, or approximate
but of a quality that would allow meaningful use for,
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e.g., time series analysis. The purpose of the present letter
is to report recent progress that fills this gap.

Ensemble definition and spectral density. –

We consider stationary zero-mean processes (xn)n∈Z.
These could be discrete-time processes to begin with,
or sampled from continuous-time processes at discrete
equidistant time steps ∆τ , in which case xn ≡ x(n∆τ).
We are interested in the spectrum of N ×N empirical
auto-covariance matrices C, which are estimated by
measurements on sequences of M samples. There are
several (non-equivalent) ways to define the elements of C.
Our choice is

Ckℓ =
1

M

M−1
∑

m=0

xm+kxm+ℓ, 1� k, ℓ�N. (1)

Sample auto-covariance matrices C of this form constitute
randomly perturbed Toeplitz matrices [20]. They are
not Toeplitz themselves, but their averages are, and
fluctuations about these averages decrease with increasing
sample size M . We note that our choice differs from
the ones looked at in [18], where sample auto-covariance
matrices were constructed as random Toeplitz matrices
from the start.
Our main results are the following. In the large N

limit, spectral properties depend on the “aspect ratio” α=
N/M , i.e., on the ratio of matrix dimension N and the size
M of the samples used to define empirical averages, which
we take to be fixed. We find a remarkable scaling relation
which expresses the spectral density ρα(λ) of sample
auto-covariance matrices for processes with dynamical
correlations as a continuous superposition of rescaled

copies of the spectral density ρ
(0)
α (λ) for a sequence of

uncorrelated, i.i.d. random variables. We also obtain a

simple closed-form expression for ρ
(0)
α that provides an

excellent approximation to numerically simulated spectra.
The spectral density of a matrix C is evaluated in terms

of its resolvent as

ρN (λ;C) =
1

πN
Im Tr

[

λεI−C
]−1
. (2)

Here I is the N ×N unit matrix and λε = λ− iε, the limit
ε→ 0+ being understood. We follow Edwards and Jones
[21] and express the trace of the resolvent, averaged over
the matrix ensemble, in terms of a Gaussian integral as

ρN (λ) =−
2

π
lim
ε→0
Im
∂

∂λ

1

N
〈lnZN 〉 , (3)

with

ZN =

∫ N
∏

i=k

duk
√

2π/i
exp
{

− i
2

∑

k,ℓ

uk(λεδkℓ−Ckℓ)uℓ
}

.

(4)

The angled brackets in eq. (3) indicate an ensemble aver-
age, which can be evaluated using replicas. Analogous

calculations in random matrix theory [21] suggest that
the final results will exhibit the structure of a replica-
symmetric high-temperature solution, and hence that an
annealed calculation (which replaces 〈lnZN 〉 by ln〈ZN 〉
in (3)) will provide exact results. Indeed, both the Wigner
semi-circle law for spectral densities of Gaussian random
matrices and the Marčenko Pastur law for spectral densi-
ties of Wishart matrices can be obtained from such an
annealed calculation, and this is the approach we adopt
here.
Inserting the definition in eq. (1) into eq. (4), one notes

that ZN depends on the disorder, i.e., on the {xn}, only
through the M variables

zi =
1√
N

N
∑

k=1

xi+kuk, 0� i <M. (5)

Assuming that the true auto-covariance C̄(k) = 〈xnxn+k〉
is absolutely summable, we can argue from the central
limit theorem (CLT) for weakly dependent random vari-
ables that the zi will be correlated Gaussian variables
with 〈zi〉= 0, and covariance matrix Q whose elements
are given in terms of C̄ as

Qij = 〈zizj〉=
1

N

∑

kℓ

C̄(i− j+ k− ℓ)ukuℓ. (6)

The disorder average 〈. . .〉 is thus a Gaussian integral,
which can be performed to give

〈ZN 〉 =
∫

∏

k

duk
√

2π/i
exp
{

− i
2
λε
∑

k

u2k

−1
2
ln det(I− iαQ)

}

. (7)

The matrix Q being Toeplitz, we will use Szegö’s
theorem [20] to evaluate the “spectral sum” ln det (I−
iαQ)=Tr ln(I− iαQ) in eq. (7).
Briefly, Szegö’s theorem states that for Toeplitz matri-

ces A which have matrix elements aij depending only on
the difference of their arguments, aij = ai−j , the spectral
density in the limit of large matrix dimension N can be
expressed in terms of the Fourier transform or “symbol”
â(q) of the sequence (an)n∈Z as

ρN (λ;A)→
∫ π

−π

dq

2π
δ(λ− â(q)), N →∞, (8)

provided the an decrease sufficiently rapidly with |n|. The
convergence is understood in the weak sense.
Given that our sequence of Q-matrices does not fully fit

the assumptions of the standard theory in that the matrix
elements are themselves dependent on the dimension M ,
we expect this to be only an approximation; it should,
however, become exact in the limit α→ 0.
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To proceed, we need Fourier representations of Q, and
we will have to keep track of finite-M , finite-N expressions
in what follows. Assuming M to be odd, we have

Qij =
1

M

(M−1)/2
∑

µ=−(M−1)/2
e−iqµ(i−j)Qµ (9)

for the ({uk}-dependent) elements of Q, with

Qµ =
1

N

∑

kℓ

Ĉ(qµ)e
−iqµ(k−ℓ) ukuℓ

= Ĉ(qµ)|û(qµ)|2 ≡Q(qµ), (10)

where qµ =
2π
M µ and û(qµ) =

1√
N

∑N
k=1 e

iqµkuk. Here

Ĉ(qµ) =

(M−1)/2
∑

n=−(M−1)/2
C̄(n)eiqµn (11)

is the Fourier transform of the true auto-covariance func-
tion of the underlying process. Truncating the sum in
eq. (11) at |n|� (M − 1)/2, as we have done, will create
negligible errors in the large M limit if

∑∞
n=−∞ |C̄(n)|

exists, as was required already when appealing to the
CLT for the zi statistics above. The fact that we have
restricted the qµ values to the discrete grid with spacing
2π/M approximates Q by its cyclified version. In Szegö’s
terminology, the matrix Q has Qµ =Q(qµ) as its (M -grid)
symbol, and Szegö’s approximation for the spectral sum
reads

ln det(I− iαQ)≃
(M−1)/2
∑

µ=−(M−1)/2
ln
(

1− iαQµ
)

. (12)

The symmetry C̄(n) = C̄(−n) entails Ĉ(qµ) = Ĉ(−qµ),
thus Q(qµ) =Q(−qµ). Next, one extracts the {uk} depen-
dence (via the {Qµ}) from the evaluation of (12), using
δ-functions and their Fourier representations. The {uk}
integrals then become Gaussian, and we can express 〈ZN 〉
as

〈ZN 〉 =
∫ (M−1)/2

∏

µ=0

dQ̂µdQµ
2π

exp







−
(M−1)/2
∑

µ=0

iQ̂µQµ

−
(M−1)/2
∑

µ=0

ln(1− iαQµ)−
1

2
ln det(λεI−R)







.

(13)

The elements of the N ×N matrix R in (13) are given
by Rkℓ =

2
N

∑(M−1)/2
µ=0 Q̂µĈ(qµ) cos(qµ(k− ℓ)), with 1�

k, ℓ�N . We have combined modes with µ and −µ
and neglected as sub-leading the fact that the resulting
prefactors differ for the µ= 0 mode.
We next use residues to evaluate the Qµ integrals

in (13):

∫

dQµ
2π

e−iQ̂µQµ

1− iαQµ
=







α−1 e−Q̂µ/α; Q̂µ > 0,

0; else.

After rescaling Q̂µ/α→ Q̂µ this yields

〈ZN 〉=
〈

exp
{

− 12 ln det(λεI−R)
}〉

{Q̂µ}
(14)

with now

Rkℓ =
2

M

(M−1)/2
∑

µ=0

Q̂µĈ(qµ) cos(qµ(k− ℓ)). (15)

In eq. (14) we have introduced the short-hand

〈. . .〉{Q̂µ} =
∫ ∞

0

(M−1)/2
∏

µ=0

{

dQ̂µe
−Q̂µ
}

(

. . .
)

(16)

for the Q̂µ-integrals. As the notation indicates, these
amount to averages over exponentially distributed
random variables of unit mean. Hence within our Szegö-
approximation, the original spectral problem for sample
auto-covariance matrices C is equivalent to that for
random Toeplitz matrices R given by (15).
To make progress we use the fact that the matrices

R, too, are Toeplitz, and approximate the spectral sum
ln det(λεI−R) appearing in (14) in terms of Szegö’s
theorem,

ln det(λεI−R)≃
(N−1)/2
∑

ν=−(N−1)/2
ln
(

λε−Rν
)

, (17)

with

Rν =
1

M

(M−1)/2
∑

µ=0

Q̂µĈ(qµ)

(N−1)/2
∑

n=−(N−1)/2;σ=±1
ei(pν+σqµ)n

=

(M−1)/2
∑

µ=0

Q̂(qµ)Ĉ(qµ)Sνµ ≡R(pν), (18)

for pν =
2π
N ν defined on a grid of spacing 2π/N , and the

S-kernel given by

Sνµ =
1

M

∑

σ=±1

sin(N(pν +σqµ)/2)

sin((pν +σqµ)/2)
. (19)

Next one extracts the Q̂µ dependence from the spectral
sum (17) by enforcing the Rν definitions using δ-functions
and their Fourier representations. This enables one to
perform the Rν integrals using residues much as in the
case of the Qµ integrals above, giving

〈ZN 〉=
〈

(N−1)/2
∏

ν=0

Fν

〉

{Q̂µ}

(20)

with

Fν = i

∫ ∞

0

dR̂ν e
−iR̂ν
(

λε−
∑(M−1)/2
µ=0 Q̂µĈ(qµ)Sνµ

)

. (21)
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R. Kühn and P. Sollich

The coupling via the S-kernel entails that the Fν for differ-
ent ν are correlated. To proceed, we exploit the property
that the S-kernel is rapidly oscillating, and sharply peaked
at |pν ± qµ| ≃O(1/N). The dominant contributions to the
exponential in (21) at fixed ν therefore lie in the interval
Iν = {µ : |ν±αµ|� 1}. We therefore approximate the S-
kernel by a rectangular window on Iν . The height of this

window is set by the requirement that
∑(M−1)/2
µ=0 Sνµ = 1.

Given that Iν contains 2/α indices µ, the height must be
chosen as α/2. Using also smoothness of Ĉ(qµ) on the qµ
scale, we thus approximate

(M−1)/2
∑

µ=0

Q̂µĈ(qµ)Sνµ ≃
α

2
Ĉ(pν)

∑

µ∈Iν
Q̂µ. (22)

As the Iν are overlapping, the Fν in (21) remain correlated.
As a last step we ignore these residual correlations and
substitute y= αR̂νĈ(qµ)/2 in eq. (21) to arrive at a closed-
form approximation for 〈ZN 〉:

〈ZN 〉 ≃
(N−1)/2
∏

ν=0

{

2 i

αĈ(pν)

∫ ∞

0

dy
e−iyλε2/(αĈ(pν))
(

1− iy
)2/α

}

. (23)

For the spectral density (3) in the thermodynamic limit
N →∞,M →∞, keeping the aspect ratio α=N/M fixed,
we then get

ρα(λ) = −
2

π
lim
ε→0
Im
∂

∂λ
lim
N→∞

1

N
ln〈ZN 〉

=

∫ π

0

dq

π

1

Ĉ(q)
ρ(0)α (λ/Ĉ(q)) (24)

in which

ρ(0)α (λ) =− lim
ε→0

1

π
Im
∂

∂λ
ln Iα

(

2

α
λε

)

(25)

with Iα obtained from (23) in terms of an incomplete Γ-
function: for Imx< 0,

Iα(x) ≡
∫ ∞

0

dy e−iyx
(

1− iy
)−2/α

= i (−x)−1+2/α e−xΓ(1− 2/α,−x). (26)

Note that eq. (24) implies that the scaling function ρ
(0)
α (λ)

has an independent meaning as the spectral density of the
empirical auto-covariance matrix (at the same value of α)
for a sequence of uncorrelated data, for which Ĉ(q)≡1.
Equation (24) thus constitutes a remarkable scaling
relation relating the spectral density of sample auto-
covariance matrices for processes with dynamical corre-
lation to the spectral density of sample auto-covariance
matrices for i.i.d. sequences of random data.
We note in passing that the approximations introduced

to evaluate the spectral sums for the R matrix (15), which
are needed in the general case to deal with the coupling
of terms through the S-kernel, would not be required at

 0
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 0  0.5  1  1.5  2  2.5

ρ
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)

λ

Fig. 1: (Colour on-line) Spectral density for sample auto
covariance matrices of i.i.d. signals xn ∼N (0, 1) at α= 0.1

(green curve); analytic approximation, eq. (25), for ρ
(0)
α (λ) (red

curve). The Marčenko-Pastur law (blue dotted curve) for the
same α is also shown for comparison.

α= 1 where the R matrix is diagonalized exactly in terms
of Fourier modes. Taking the exponential distribution
of the Q̂µ in (15) into account, one would obtain a
scaling function for this case that is itself exponential,

ρ
(0)
1 (λ) = e

−λ. This is different from but qualitatively
and quantitatively very close to the α→ 1 limit of the
approximate result (25), (26).

Numerical tests. – We checked our results using
simulations of 800× 800 matrices, taking averages over
5000 realizations. Figure 1 compares results for a sequence
of i.i.d. variables with our prediction (25) for the scaling

function ρ
(0)
α , and the Marčenko-Pastur law at α= 0.1.

The figure clearly shows that our analytic prediction,
while not exact, captures the salient features of the
spectra of auto-covariance matrices for sequences of i.i.d.
variables reasonably well, including in particular the peak
position, as well as the fact that the spectra have non-
compact support. It also shows that spectral properties
of the ensemble of sample auto-covariance matrices are
qualitatively different from those of Wishart matrices.
Figure 2 checks our scaling prediction for an AR2

process of the form xn+
1
2xn−1+

5
16xn−2 = σξn, with

i.i.d. ξn ∼N (0, 1), and σ chosen to ensure that C̄(0) =
〈x2n〉= 1. Figure 3 does the same for a process P with
a power-law decay of its auto-correlations of the form
C̄(k) = 1/(1+ (k/2)2). Results are shown as probability
density functions for logarithms of eigenvalues so as to
better resolve tails at small and large λ. The spectra
in figs. 2 and 3 are both evaluated at two values of α.
In each case we compare simulations with scaling based

either on our analytic approximation (25) for ρ
(0)
α , or on

an empirical scaling function determined via simulation,
with an α= 0.1 example shown in fig. 1. Agreement is
excellent throughout: apart from small discrepancies in
the tails we find that the curves representing simulation
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Fig. 2: (Colour on-line) Test of scaling for spectra of sample
auto-covariance matrices of an AR2 process as described in
the main text at α= 0.1 (narrower set of curves) and α=
0.8 (wider set of curves). For both α’s we show simulation
results (green dashed curve) and scaling results using either
the empirical scaling function (black full curve), or our analytic
approximation (25) (red full curve).

results and empirical and analytic scaling predictions lie
virtually on top of each other. Larger noise levels in the
empirical scaling prediction for the process with a power-
law decay of its auto-correlation are due to the existence
of Ĉ(q)≪ 1 values in its Fourier transform; these lead to
relatively large contributions to the scaling integral (24)

from λ’s in the tails of the scaling function ρ
(0)
α , where our

empirical estimates of ρ
(0)
α (λ) are necessarily poorer due

to scarcity of events.

Summary and discussion. – In summary, we have
computed spectra of sample auto-covariance matrices in
the limit of large matrix dimension N , at fixed value of
the aspect ratio α=N/M of the number N of time-lags
included in the matrix and the size M of the samples
used to define empirical averages. We find a remark-
able scaling relation which expresses the spectral density
ρα(λ) of sample auto-covariance matrices for processes
with dynamical correlations as a continuous superposi-

tion of rescaled copies of the spectral density ρ
(0)
α (λ) for a

sequence of uncorrelated, i.i.d. random variables, with the
rescaling factors given in terms of the Fourier transform
Ĉ(q) of the true auto-covariance function. We also obtain

a simple closed-form expression for ρ
(0)
α that provides an

excellent approximation to numerically simulated spectra.
Our analytical calculations are based on a number of

approximations, viz. i) the annealed approximation for the
computation of free energies; ii) the use of Szegö’s theorem
for the evaluation of spectral sums involving the Q and R
matrices in eqs. (12) and (17), respectively; iii) a rectangu-
lar window approximation for describing couplings via the
S-kernel in (22); and finally iv) a decorrelation approxima-
tion used to obtain the final product representation (23)
of the partition function.

 0
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 0.15

 0.2

 0.25

-8 -6 -4 -2  0  2  4

ρ
(l
n

(λ
))

ln(λ)

Fig. 3: (Colour on-line) Test of scaling for spectra of sample
auto-covariance matrices of a process P with power-law decay
of its auto-covariance function at α= 0.1 (narrower set of
curves) and α= 0.8 (wider set of curves). For both α’s we show
simulation results (green dashed curve) and scaling results
using either the empirical scaling function (black full curve),
or our analytic approximation (25) (red full curve).

Experience with matrices from the Gaussian orthogo-
nal ensemble and the Wishart-Laguerre ensemble suggest
that the annealed approximation is indeed exact. While
the use of Szegö’s theorem for the evaluation of the spec-
tral sum (12) involving the Q matrix can be argued to
be exact in the α→ 0 limit, and thus to constitute an
approximation that can be considered as controlled, it is
harder to assess the accuracy of this approximation in the
case of the R matrix in (17). Finally, both the rectangular
window approximation iii) and the decorrelation approx-
imation iv) are largely uncontrolled. Thus all elements of
our analysis clearly deserve further scrutiny, and improve-
ment where possible. For the time being they derive their
ultimate justification mainly through the excellent results
they produce —even, as we have seen, for α as large as
0.8. A fuller account of our results, including in particular
more detailed results on the quality of our approximations
in the tail regions of large and small eigenvalues, as well
as a proper quenched calculation will appear in a longer
journal article.
Our numerical evidence very strongly suggests that the

scaling result (24) itself is indeed exact, as long as the

true functional form for the spectral density ρ
(0)
α of sample

auto-covariances for i.i.d. random variables is used, rather
than our analytical approximation (25). We have elements
of an independent proof of scaling which we intend to
publish in a forthcoming paper.
In the α→ 0 limit, random fluctuations in sample

auto-covariance matrices will be suppressed and these
matrices will thus be arbitrarily close to Toeplitz form,
with their symbol given by the Fourier transform Ĉ(q)
of the true auto-covariance functions. For such matrices
Szegö’s theorem can be invoked to describe the limiting
spectral density in terms of the integral representation (8)
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with â(q)≡ Ĉ(q). Using properties of the Dirac δ-function
(and Ĉ(q) = Ĉ(−q)) the result can be written in terms of
the scaling form (24), with

ρ
(0)
0 (λ) = δ(λ− 1). (27)

This form of ρ
(0)
0 is indeed the correct α→ 0 limit of the

spectral density for auto-covariance matrices of i.i.d. data
(of zero-mean and unit variance), which establishes that
scaling is exact in the α→ 0 limit. Our scaling result (24)
could thus be thought of as a generalization of Szegö’s
theorem for randomly perturbed Toeplitz matrices; for
α→ 0 it recovers the Szegö result because the scaling
function (25) then converges to (27). We have checked that
scaling as in (24) also holds for sample auto-covariance
matrices which, as in [18], are constructed as (random)
Toeplitz matrices from the start, albeit with different
forms for the scaling functions.
Judging from the impact which results for spectral prop-

erties of (Wishart-Laguerre) sample covariance matrices
have had, we believe our results to hold significant poten-
tial for applications in a wide variety of fields, including
time series analysis, information theory, signal processing,
or finance.
Specifically for time series analysis [1] our results could

be used to provide estimates for parameters governing
auto-regressive processes, including in particular reliable
estimates for the order of the process generating a given
data sequence. Alternatively, they could be used as an
independent systematic tool to correct for finite sample
effects in estimating Fourier transforms Ĉ(q) of auto-
covariance functions, which could then feed into similarly
correcting estimated bounds for one-step prediction errors
for stationary processes, and so on.
In information theory [22], spectral properties of auto-

covariance matrices are used to estimate both, entropy
rates and Shannon rate-distortion functions of stationary
Gaussian processes, and as in the case of time series
analysis our tools could conceivably help to systematically
correct for errors in these estimates that are induced by
finite sample effects.
In finance one could contemplate a translation of

Markowitz portfolio optimization into the time domain,
looking at optimal liquidation strategies for a single asset
across a given time window, and utilizing knowledge
about spectral properties of sample auto-covariance
matrices in a manner analogous to the uses of spectral
theory of Wishart matrices for the standard portfolio
optimization advocated in [16,17].
Finally, the natural next methodical step is to generalize

our results to sample covariance matrices for multiple
time series, for which sample covariance matrices will be
randomly perturbed block-Toeplitz matrices, and we have
indeed been able to make first promising steps in that
direction [23].

∗ ∗ ∗

It is a pleasure to thank K. Anand, L. Dall’Asta and
P. Vivo for illuminating discussions on the occasion of a
visit of RK to the ICTP at Trieste, which triggered the
present investigation.

REFERENCES

[1] Hamilton J. D., Time Series Analysis (Princeton
University Press, Princeton, NJ) 1994.

[2] Mehta M. L., Random Matrices, 3rd edition (Elsevier,
Amsterdam) 2004.

[3] Akemann G., Baik J. and Francesco P. D. (Editors),
The Oxford Handbook of Random Matrix Theory (Oxford
University Press, Oxford) 2011.

[4] Wishart J., Biometrika, 20A (1928) 32.
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