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Abstract – We compute spectra of large stochastic matrices W , defined on sparse random graphs
in the configuration model class, i.e. on graphs that are maximally random subject to a given
degree distribution. Edges (i, j) of the graph are given positive random weights Wij > 0 in such a
fashion that column sums are normalized to one. We compute spectra of such matrices both in the
thermodynamic limit, and for single large instances. Our results apply to arbitrary graphs in the
configuration model class, as long as the mean vertex degree remains finite in the thermodynamic
limit. Edge weights Wij can be largely arbitrary but we require the Wij to satisfy a detailed
balance condition, or in other words that the Markov chains described by them are reversible.
Knowing the spectra of stochastic matrices is tantamount to knowing the complete spectrum
of relaxation times of stochastic processes described by them, so our results should have many
interesting applications for the description of relaxation in complex systems. Contributions to the
spectral density related to extended states can be disentangled from those related localized states
allowing time scales associated with transport processes and those associated with the dynamics
of local rearrangements to be differentiated.

Copyright c© EPLA, 2015

There are numerous processes, both natural and artifi-
cial, which can be understood in terms of random walks on
complex networks [1–3], including the spread of diseases
in social networks [4,5], the transmission of information in
communication networks (e.g. [6]), search algorithms [7,8],
the out-of-equilibrium dynamics of glassy systems at low
temperatures as described in terms of hopping between
long-lived states in state space [9–11] and —in a similar
spirit— the dynamics of major conformational changes in
macro-molecules [12], or cell-signalling through protein-
protein interaction networks [13], to name but a few. For
reviews that cover several of these topics, see, e.g., [14–16].

The purpose of the present letter is to use random ma-
trix theory to contribute to the understanding of systems
of this type. We compute spectra of transition matrices
for discrete Markov chains describing stochastic dynam-
ics in complex systems. We construct these in terms of
sparse random graphs in such a way that an edge (i, j) in
a graph corresponds to a possible transition j → i, with
the edge weight Wij > 0 quantifying the associated tran-
sitions probability, requiring

∑

i Wij = 1 for all j. We
are interested in the limit, where the number N of pos-
sible states becomes large, with the average number of

possible transitions at each state remaining finite in the
thermodynamic limit (N → ∞).

Given a time-dependent probability vector p(t) =
(pi(t)), we have an evolution equation of the form

p(t + 1) = Wp(t). (1)

The condition Wij ≥ 0 for all (i, j) and the column
sum constraint together entail that the spectrum of W
is contained in the unit disc of the complex plane,
σ(W ) ⊆ {z; |z| ≤ 1}. If W satisfies a detailed bal-
ance condition with an equilibrium distribution, pi =
peq

i , such that Wijpj = Wjipi for all pairs (i, j), then
W can be symmetrized by a similarity transformation

—Wij = p
−1/2
i Wijp

1/2
j = Wji— implying that the spec-

trum of W is real, and σ(W ) ⊆ [−1, 1].

Our main interest here is the relation between eigenval-
ues of W and relaxation times of the Markov chain it de-
scribes. It is easily understood by following the evolution
of an initial probability vector p(0) over t time steps, i.e.

by considering p(t) = W t
p(0). Using a spectral decom-

position of W , and assuming the system to be irreducible
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and free of cycles, one obtains

p(t) = p
eq +

∑

α( �=1)

λt
α vα

(

wα, p(0)
)

, (2)

where we have used that 1 = λ1 > |λα| for α �= 1, given the
assumptions [17], and where vα and wα denote the right
and left eigenvectors of W , respectively, with v1 = p

eq,
and w1 = (1, . . . , 1). Equation (2) relates relaxation times
of the system to eigenvalues of W via τα = −1/ ln |λα| for
α �= 1.

We construct random stochastic matrices in terms of un-
normalized transition matrices Γ = (Γij) = (cijKij), with
connectivity matrix elements cij ∈ {0, 1} (and cii = 0)
specifying the network structure of possible transitions,
and positive edge weights Kij > 0, and setting Wij =
Γij/Γj if Γj ≡

∑

i Γij �= 0, and Wii = 1 for isolated
sites for which Γi = 0. The present investigation will
be restricted to the case where W satisfies a detailed bal-
ance condition, and can thus be symmetrized by a simi-
larity transformation, as discussed above. The spectrum
of fully connected matrices of this type was shown to con-
verge to a semi-circular law [18] in the large system limit,
and to a circular law, if the detailed balance condition is
dropped [19]. Asymptotic results related to the circular
law were obtained for Erdős-Rényi graphs with mean con-
nectivity diverging in the thermodynamic limit [20]. While
there are some recent related results concerning spectra
of graph Laplacians (e.g., [21–23]), solutions do involve
mean-field [21] or large mean degree [22] approximations,
or rely on a strictly self-similar construction of the un-
derlying graph [23]. We are not aware of general exact
solutions of the spectral problem for Markov matrices or
their corresponding master-equation operators.

We follow [24] and express the spectral density ρW (λ)
of the stochastic matrix W in terms of a derivative

ρW (λ) = − lim
ε→0

2

πN
Im

∂

∂λ
log ZW (λ), (3)

of the logarithm of a Gaussian integral

ZW (λ) =

∫ N
∏

i=1

dui
√

2π/i
exp

{

−iHW (λε, u)
}

(4)

defined in terms of the quadratic form

HW (λε, u) =
1

2

∑

i,j

(

λεδij − Wij

)

uiuj , (5)

with λε = λ − iε. Here, W is the symmetrized version of
W , obtained via a similarity transform that involves the
equilibrium distribution p

eq as discussed above. The rep-
resentation (3) allows one to interpret the spectral density
as a sum over single-site variances

ρW (λ) = Re
1

πN

∑

i

〈u2
i 〉 (6)

of the complex Gaussian measure

PW (u) =
1

ZW
e−iHW (λε,u). (7)

Here and in what follows we shall omit explicitly writing
the limε→0, and take it to be understood.

In the thermodynamic limit, the spectral density is ex-
pected to be non-random and is obtained by averaging
eq. (3) over the matrix ensemble in question, using the
replica method to perform averages as proposed in [24],
and taking the limit N → ∞. Methods developed in [25]
can be used to efficiently deal with the sparsity of the
ensemble of matrices considered in the present letter.
Alternatively, one can analyse single large instances using
a cavity approach proposed in [26] to obtain the single-
instance spectral density in terms of variances of single-site
marginals. In the thermodynamic limit, recursion relations
for the cavity variances obtained within that approach
can be interpreted as stochastic recursions, allowing to
formulate self-consistency relations for their distributions,
which turn out to be equivalent to those obtained using
replica. This is the approach we shall briefly outline in
what follows.

In order not to overburden the present exposition with
technicalities, we shall restrict our attention here to cases
where the unnormalized transition matrix Γ is symmetric,
in which case the symmetrized normalized Markov matrix
is of the form

Wij =
Γij

√

ΓiΓj

(8)

for Γij > 0, hence Γi > 0 and Γj > 0, and Wii = 1 for
isolated sites.

To obtain the single-site marginals of (7) required to
evaluate ρW (λ) according to (6), we have to distinguish
between single-site marginals on isolated sites, which are
of the form P is

i (ui) ∝ e− i

2
(λε−1) u2

i , and those for sites that
are not isolated.

On the latter, we perform a transformation of variables,
ui√
Γi

→ ui in eqs. (4) and (7). This step turns out to

be crucial to avoid having to average over sets of corre-
lated variables when obtaining ensemble results valid in
the thermodynamic limit later on. In terms of the trans-
formed variables, we have

ρW (λ) = pN (0)δ(λ − 1) + Re
1

πN

∑

i

Γi〈u
2
i 〉, (9)

with pN (0) = N is

N denoting the fraction of isolated sites,
and only non-isolated sites with Γi > 0 contributing to
the second sum.

The remainder of the analysis closely follows [26]. It is
based on the observation that single-site marginals of (7)
will be Gaussian, that these can be expressed in terms
of Gaussian cavity marginals, and that one can derive
self-consistency equations for the complex (inverse) cavity
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variances {ω
(i)
j } of these, which read

ω
(i)
j = iλε Γj +

∑

ℓ∈∂j\i

K2
jℓ

ω
(j)
ℓ

. (10)

These are exact on trees; for finitely coordinated ran-
dom graphs in the configuration model class they become
asymptotically exact in the thermodynamic limit. They
can be solved iteratively on large single instances. Inverse
variances of single-site marginals can be expressed in terms

of solutions of (10) as ωi = iλε Γi +
∑

j∈∂i K2
ij/ω

(i)
j . In

terms of these, we have

ρW (λ) = pN (0)δ(λ − 1) + Re
1

πN

∑

i

Γi

ωi
. (11)

Specializing to the case of unbiased random walk, we have
Γij = cij , hence Γj = kj and Wij = cij/

√

kikj for non-
isolated sites, where ki and kj are degrees of vertices i
and j. In this case, eqs. (10), (11) readily lend themselves
for averaging over a graph ensemble in the thermodynamic
limit, giving rise to an integral equation for a probability
density function π(ω) for inverse cavity variances of a form
similar to those obtained earlier [25]. We will not produce
equations for this special case here but instead refer to a
forthcoming extended version of the present letter [27].

For Markov processes other than the unbiased random
walk, straightforward averaging of cavity recursions over
the ensemble of Markov matrices is prevented by the fact
that the Kjℓ in (10) are not independent due to column
sum constraints, in a way that extends beyond degree.
In order to deal with this issue we return to the Gaus-
sian integral in terms of which the problem was origi-
nally formulated, and rewrite the quadratic form (using
transformed variables on non-isolated sites) as HW =
1
2

∑is
i (λε − 1)u2

i + 1
2

∑

i,j cij [
1
2λεKij(u

2
i + u2

j) − Kij uiuj ].
Using this setup, one easily obtains the following

reformulated recursion for inverse variances of cavity
marginals:

ω
(i)
j =

∑

ℓ∈∂j\i

(

iλεKjℓ +
K2

jℓ

ω
(j)
ℓ + iλεKjℓ

)

. (12)

This version can be averaged over the ensemble of random
matrices in question which gives rise to a self-consistency
equation for cavity variances which is structurally very
similar to that obtained for the case of unbiased random
walks,

π(ω) =
∑

k≥1

p(k)
k

c

∫ k−1
∏

ν=1

dπ(ων)
〈

δ(ω − Ωk−1)
〉

{Kν}
(13)

albeit with a very different expression for the Ωk−1, viz.

Ωk−1 =
k−1
∑

ν=1

(

iλεKν +
K2

ν

ων + iλεKν

)

. (14)
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Fig. 1: (Colour on-line) Top panel: spectral density of the tran-
sition matrix for an unbiased random walk on an Erdős-Rényi
graph of mean coordination c = 2, comparing results of nu-
merical diagonalization of an ensemble of 1000×1000 matrices
(blue dashed curve) and analytic results obtained via popula-
tion dynamics (red solid curve). Bottom panel: relaxation time
distribution for this system (green dashed curve); red vertical
lines separate a central part of the relaxation time spectrum
corresponding to extended modes from regions corresponding
to localized modes at small and large τ . Isolated δ-peaks in
the central part of the spectrum also correspond to localized
modes.

It is efficiently solved using a population dynamics algo-
rithm. In terms of its solution, the spectral density in the
thermodynamic limit is given by

ρ(λ) = p(0)δ(λ − 1)

+
1

π
Re

∑

k≥1

p(k)

∫ k
∏

ν=1

dπ(ων)

〈

∑k
ν=1 Kν

Ωk

〉

{Kν}
. (15)

Finally, given the relation between eigenvalues of a tran-
sition matrix and relaxation times of the stochastic process
it describes, we can translate spectral densities into spec-
tra of relaxation times. Using the notation ρλ and ρτ to
distinguish eigenvalue densities and relaxation time distri-
butions, we have

ρτ (τ) =
[

ρλ(e−1/τ ) + ρλ(−e−1/τ )
] e−1/τ

τ2
. (16)

Figure 1 shows the spectrum of the transition matrix
for an unbiased random walk on an Erdős-Rényi graph
of mean connectivity c = 〈k〉 = 2, comparing results
obtained for the thermodynamic limit with simulations

60003-p3



Reimer Kühn

averaged over 5000 realizations of 1000 × 1000 matrices,
showing excellent agreement —with analytic results lying
virtually on top of simulation results— except that our
population dynamics algorithm picks up many more of the
localized states which appear as δ-peaks in the diagram.
The bottom panel shows the relaxation time spectrum cor-
responding to the density of states via (16). We note that
the relaxation time spectrum for this system is very broad,
with significant contributions over more than four orders
of magnitude in relaxation times. As explained in [25]
one can identify contributions to the spectral density cor-
responding to extended and localized states and we use
this in the second panel of fig. 1 to separately exhibit the
contribution of the extended modes to the relaxation time
spectrum, demonstrating that both very fast and very slow
modes correspond to localized states in the system.

In the eigenvalue density itself these features are a
consequence of the existence of mobility edges at ±λc

with λc ≃ 0.986, with states corresponding to eigenval-
ues |λ| ≥ λc forming bands localized modes (with large
relaxation times), whereas a very narrow band of local-
ized states for very small λ at |λ| � 1.4 × 10−2 gives rise
to localized modes with very short relaxation times.

In fig. 2 we present results for systems with unnor-
malized transition matrix elements taking the form of
Kramers transition rates Γij = cije

−β(Vij−Ej), with bar-
rier heights Vij randomly chosen from an exponential dis-
tribution of mean 1; the distribution of initial energies is
arbitrary, as initial energies cancel in properly normalized
stochastic matrices, so that Wij = cije

−βVij /
∑

i cije
−βVij .

Systems of this type were studied within a heterogeneous
mean-field approximation to dynamics in [11], generaliz-
ing earlier work [9,10] to include barrier height distribu-
tions and incompletely connected networks of traps. Two
aspects are particularly notable: i) as β is increased, the
spectral density gives more weight to regions near λ = ±1,
i.e. to slow modes; ii) the narrow region of localized states
near λ = 0 broadens considerably, as β is increased from 2
to 5, implying that many more modes have become lo-
calized. Both features have their analogies in the relax-
ation time spectra, the latter implying in particular that
the lower cutoff of the relaxation time distribution cor-
responding to extended modes is being shifted to larger
τ by roughly an order of magnitude as β is increased.
Once more, we found excellent agreement with simulation
results (not shown).

For the unbiased random walk problem on a regular
random graph with p(k) = δk,c, the integral equation for
the distribution of inverse cavity variances is solved by a
δ-function, π(ω) = δ(ω − ω̄), giving rise to a quadratic
self-consistency equation ω̄ = iλεc + c−1

ω̄ for ω̄; its solu-
tion allows one to obtain a closed-form expression for the
spectral density

ρ(λ) =
c

2π

√

4 c−1
c2 − λ2

1 − λ2
, (17)
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Fig. 2: (Colour on-line) Spectra (first row) and relaxation time
distributions (second row) for transition matrices with Kramers
transition rates on an Erdős-Rényi graph of mean coordina-
tion c = 2; shown are results obtained via population dynam-
ics, separately for the total density of states (green dashed
curve) and the density of extended states (red solid lines). Left
column: β = 2. Right column: β = 5.

which is readily recognised as a variant of the Kesten-
McKay distribution [28], adapted to capture the spectral
problem of the Markov transition matrix for an unbiased
random walk on random regular graphs. The same result
is found to provide an accurate approximate description
for Erdős-Rényi random graphs at large mean degree c, for
which the degree distribution becomes sharply peaked at
the mean degree c. The approximation becomes asymp-
totically exact as c → ∞, where fluctuations of the de-
gree distribution become negligible, and (17) approaches
a semicircular law.

An analogous line of reasoning allows to obtain the spec-
tral density for more general Markov matrices on Erdős-
Rényi and random regular graphs in the large-c limit. In
this case, the ansatz π(ω) = δ(ω − ω̄) gives rise to a self-
consistency equation for ω̄ of the form

ω̄ ≃ c

[

iλε〈K〉 +

〈

K2

ω̄ + iλεK

〉

]

(18)

obtained by referring to the law of large numbers (LLN)
allowing one to replace Ωk−1 in (14) by a sum of averages.
In terms of its solution ω̄, we can once more invoke the
LLN in the expression for the spectral density

ρ(λ) ≃
1

π
Re

[

〈K〉

iλε〈K〉 +
〈

K2

ω̄+iλεK

〉

]

=
1

π
Re

[

c〈K〉

ω̄

]

. (19)

Note that this requires (and entails self-consistently) that
ω̄ ∝ 〈K〉 for the spectral density to be independent of the
K-scale. Moreover, for large c we have ω̄ ∼ c which allows
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Fig. 3: (Colour on-line) Spectral density of the transition ma-
trix with Kramers transition rates with β = 2 on an Erdős-
Rényi graph for large values of the mean coordination c.
Shown are analytic results obtained via population dynamics
(green dashed curve), the analytical approximation based on
eqs. (18), (19) (red solid curve), as well as the semi-circular
approximation (20) (blue dashed curve). Left panel: c = 20;
right panel: c = 100.

us to approximate (18) by a quadratic equation; its solu-
tion, when inserted into the final equation for the spectral
density, gives rise to a Wigner semi-circular distribution
of the form

ρ(λ) =
c

2π

〈K〉2

〈K2〉

√

4〈K2〉

c〈K〉2
− λ2. (20)

This expression, too, is invariant under rescaling of the
edge weights Kij as it should, because K scales are imma-
terial in normalized Markov transition matrices. As shown
in fig. 3 the analytical large c approximation based on
eqs. (18), (19) is very reasonable already for c as small as
c = 20, and becomes remarkably accurate for c = 100 or
larger.

In summary, we computed spectra of random stochas-
tic matrices defined in terms of random graphs as well
as the relaxation time spectra of the Markov chains de-
scribed by these matrices. We need to assume that the
transition matrices satisfy a detailed balance condition or,
in other words, that the Markov chains under considera-
tion are reversible. We expect our methods and results to
be of interest for the study of a broad range of relaxation
phenomena in complex systems.

Apart from the detailed balance condition, our solution
is valid for graphs in the configuration model class with ar-
bitrary degree distributions, provided only that the mean
degree remains finite in the thermodynamic limit. As in
the case of adjacency matrices and weighted graph Lapla-
cians our approach is easily generalized to systems exhibit-
ing modular or small-world properties [29]. We expect
that a solution for general asymmetric stochastic matrices
will be obtainable along the lines of [30].

Of particular relevance is the possible appearance of
localized states in systems of the type described in the
present letter. Referring to eq. (2), one can indeed argue
that most modes corresponding to localized states will not
contribute to the relaxation dynamics, if initial conditions

are themselves localized, an issue we have not seen sys-
tematically investigated in the literature.
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