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We provide an explicit solution of the problem of level-set percolation for multivariate Gaussians defined in
terms of weighted graph Laplacians on complex networks. The solution requires an analysis of the heterogeneous
microstructure of the percolation problem, i.e., a self-consistent determination of locally varying percolation
probabilities. This is achieved using a cavity or message passing approach. It can be evaluated, both for single
large instances of locally treelike graphs, and in the thermodynamic limit of random graphs of finite mean degree
in the configuration model class.
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Introduction. At its core, percolation describes a geomet-
ric phase transition, at which as a function of the relative
density of existing links in a lattice or a graph—either by
construction or after random removal of a subset of edges
or vertices—the system either decomposes into a collection
of finite clusters of contiguously connected vertices, or on
the contrary exhibits a so-called giant connected component
(GCC) that occupies a finite fraction of vertices in the large
system limit [1]. Apart from an intrinsic interest in percolation
transitions and the critical singularities associated with them,
they are of relevance in many other contexts. For example,
below the percolation threshold, where a system consists of
a collection of finite isolated clusters, diffusive or hopping
transport via edges of a graph is clearly impossible, and such
systems would therefore be insulators. In a different context,
the size of a susceptible-infected-recovered (SIR) epidemic
can be mapped on the size of its GCC in a percolation problem
where edge retention probabilities are given by probabilities
of transmitting a disease before recovery [2–5]. This con-
nection has been exploited to formulate effective vaccination
strategies for diseases spreading through contact networks
(e.g., Refs. [6–8]). More generally, percolation has been stud-
ied to assess the robustness of complex networks, both natural
and artificial, against random failures of their components
or against targeted attacks (e.g., Refs. [9–11]). At a more
fundamental level, a nonpercolating system cannot support
stable phases with spontaneous macroscopic long-range order
at any nonzero temperature (see, for example, Ref. [12]), and
it has been argued that gene regulatory networks would for the
same reasons not be able to support multicellular life, if they
were composed of small independent clusters of interacting
genes [13,14].

There is a version of the percolation problem which is
of a radically different nature than the case of independent
Bernoulli percolation just described. It is concerned with the
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distribution of sizes of contiguous clusters, over which a ran-
dom field exceeds a given level h. It can be brought to bear
on the analysis of electron localization in amorphous solids
[15,16], or of statistical properties of landscape topography
[16,17], and it could be of use to assess risk of damage due
to randomly varying levels of contaminants. It has been stud-
ied over continuous spaces (Rd ) [18–24], over lattices (Zd )
[23,25–28], or over random graphs [29–36]. Because of cor-
relations between values of a random field at different points
in space the problem is much harder than that of independent
Bernoulli percolation. In Zd , though not in the case studied
in the present Letter, those correlations are in fact even long
range. Early on, Molchanov and Stepanov [18,25] disproved
the naive intuition according to which there would always
exist a finite critical level hc, above which all contiguous
clusters for which the random field exceeds the level h > hc

would be bounded, whereas for h < hc there would be an
extensive giant connected component (referred to as hGCC in
what follows) over which the random field exceeds the level h.
While a range of important results about level-set percolation
have been obtained over the years, including existence (e.g.,
Refs. [18,19,23–27,29]) and sharpness [23] of the percolation
transition, uniqueness (e.g., Ref. [31]) and extensivity of the
hGCC (e.g., Refs. [33,35,36]) in the percolating phase, as well
as critical exponents of the transition on transient graphs (e.g.,
Refs. [34,36]), significant gaps remain. For example, despite
recent intense activity and considerable progress in the study
of level-set percolation on random graphs [29–36], explicit
solutions of this problem that go beyond a characterization
of the near critical regime on regular trees do to the best our
knowledge still elude us, in contrast to the case of Bernoulli
percolation on random graphs, for which full solutions are
meanwhile textbook material (e.g., Refs. [37–39]). The pur-
pose of the present Letter is to fill this gap.

Level-set percolation for Gaussian free fields on random
graphs. We consider a (random) graph of N vertices on which
a multivariate Gaussian field is defined via
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with μ � 0 and Ki j = Kji > 0 for vertices of the network
connected by an edge, and zero otherwise. In Eq. (1), the first
sum in the exponential is over all N vertices of the graph,
while in the double sum, both sums are over all N vertices
of the graph. That double sum is indeed a quadratic form of a
weighted graph Laplacian �(K ) with edge weights {Ki j}, i.e.,

1

4

∑
i, j

Ki j (xi − x j )
2 = −1

2

∑
i, j

�
(K )
i j xix j . (2)

The positivity of the nonzero edge weights is needed to keep
the Gaussian normalizable also in the μ = 0 case, in which the
field is referred to as massless. For the analysis of level-set
percolation on random graphs, it turns out to be essential
to be able to characterize its heterogeneous microstructure,
i.e., the node-dependent probabilities of vertices in the graph
to belong to the hGCC. This can be done by adapting an
approach developed in Refs. [40,41]. It is based on cavity or
message passing ideas specifically designed to analyze prob-
lems on locally treelike graphs. As we are only interested in
heterogeneous percolation probabilities, a somewhat simpler
version outlined, e.g., in Refs. [42,43], can be used.

For a node i to belong to the hGCC, the Gaussian field
at i must itself exceed the specified level, i.e., xi � h, and
it must be connected to the hGCC via at least one of its
neighbors. Introducing indicator variables ni ∈ {0, 1} which
signify whether i is (ni = 1) or is not (ni = 0) in the hGCC,
we require

ni = χ{xi�h}

⎡
⎣1 −

∏
j∈∂i

(
1 − χ{x j�h}n

(i)
j

)
⎤
⎦, (3)

in which the characteristic function χ{xi�h} expresses the fact
that the Gaussian field at i must itself exceed the specified
level, i.e., xi � h, while the second factor expresses the fact
that i is connected to the hGGC via at least one neighbor. This
requires that for at least one j ∈ ∂i the Gaussian field must
exceed the specified level (x j � h), and it must be connected
to the hGCC via one of its neighbors other than i (on the cavity
graph G(i) from which i and the edges connected to it are
removed); this is expressed by the cavity indicator variable
n(i)

j taking the value n(i)
j = 1.

For the cavity indicator variable n(i)
j to take the value 1, it is

required that on G(i) the node j is itself connected to the hGCC
via at least one of its neighbors other than i. This entails that

n(i)
j = 1 −

∏
�∈∂ j\i

(
1 − χ{x��h}n

( j)
�

)
. (4)

Averaging Eqs. (3) and (4) over possible realizations of the
Gaussian field x with the joint probability density function
(PDF) described by Eq. (1) is facilitated by the fact that—
conditioned on xi—the averages over the (χ{x j�h}n

(i)
j ) j∈∂i in

Eqs. (3) factor in j, if the graph in question is a tree, and that
such factorization becomes asymptotically exact on locally
treelike graphs in the thermodynamic limit. Analogous fac-
torization is possible for averages over the (χ{x��h}n

( j)
� )�∈∂ j\i

in Eqs. (4), when conditioned on x j .

Performing the average over the Gaussian field x in this
way, we obtain gi = Ex[ni] = Exi [Ex[ni|xi]] from Eq. (3) as
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by factorization of conditional expectations. Here, we use the
notation Ex[·] to denote an expectation evaluated over the
multivariate Gaussian defined on the graph, and Exi [·] to de-
note an expectation evaluated over the single node marginal of
xi, while Ex[·|{�}] and Exi [·|{�}] denote analogous conditional
expectations, conditioned with respect to the event {�} Then,
using further conditioning, we have

Ex
[
χ{x j�h}n

(i)
j

∣∣xi
] = Ex j

[
χ{x j�h}|xi

]
Ex

[
n(i)

j

∣∣{x j � h}, xi
]

= Hj (h|xi )g
(i)
j , (6)

where we have introduced

Hj (h|xi ) = Ex j

[
χ{x j�h}

∣∣xi
]

(7)

and

g(i)
j = Ex

[
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j

∣∣{x j � h}]. (8)

In Eq. (8) we have used the fact that for conditional expec-
tations of observables such as n(i)

j pertaining to the cavity

graph Ex[n(i)
j |{x j � h}, xi] = Ex[n(i)

j |{x j � h}]. Putting things
together, we have
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with ρh
i = Exi [χ{xi�h}].

Following an entirely analogous line of reasoning and us-
ing the same sequence of conditionings, we can evaluate the
g(i)

j defined in Eq. (8) by evaluating the conditional average of

n(i)
j using Eq. (4), giving

g(i)
j = 1 − Ex j

⎡
⎢⎣

∏
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(
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( j)
�

)
∣∣∣∣∣∣∣
{x j � h}

⎤
⎥⎦. (10)

Equations (9) and (10) for gi and g(i)
j can be evaluated, once

single-site marginals and joint densities on adjacent sites of
the Gaussian field defined by Eq. (1) are known; the latter are
required to evaluate the conditional probabilities Hj (h|xi ) de-
fined in (7) [and similarly the H�(h|x j ) appearing in Eq. (10)],
while the former are required to evaluate xi expectations in
Eqs. (9) and x j expectations in Eqs. (10), respectively. They
are obtained by their own cavity-type analysis, which has
in fact been performed in Ref. [44] for single-site marginals
of harmonically coupled systems on random graphs, and
in Refs. [45,46] in the context of the spectral problem of
sparse symmetric random matrices. All that is needed are the
(Gaussian) single-site marginals Pi(xi ) of P(x), as well as the
corresponding single-site cavity marginals P(i)

j (x j ) for j ∈ ∂i
on the cavity graph G(i), in terms of which joint densities
on adjacent sites are easily obtained. Key identities needed
in the analysis are reproduced in the Supplemental Material
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[47]. Single-site marginals and single-node cavity marginals
are fully characterized by their inverse variances (or preci-
sions) ωi and ω

(i)
j , respectively. The latter are obtained by

solving the system (4) of cavity self-consistency equations in
the Supplemental Material [47]. Hj (h|xi ) and the H�(h|x j )
can be expressed in closed form in terms of error functions,
but the conditional xi expectation of the product in Eq. (9)
and similarly the conditional x j expectation of the product in
Eq. (10) will have to be evaluated numerically.

With all ingredients fully defined, Eqs. (10) constitute a set
of coupled self-consistency equations for the g(i)

j . They can be
solved iteratively at given level h on large instances of locally
treelike (random) graphs, starting from random initial con-
ditions. Using the solutions, one obtains the node-dependent
percolation probabilities gi from Eqs. (9).

The value of the percolation threshold follows from a lin-
ear stability analysis of Eqs. (10). They are always solved
by g(i)

j ≡ 0. This solution becomes unstable, indicating the
percolation transition, where the largest eigenvalue of the
Hessian of the right-hand side of Eq. (10) evaluated at g(i)

j ≡ 0
exceeds 1. The Hessian is a weighted version of a so-called
nonbacktracking matrix, with nonzero elements

B(i j),( j�) = Ex j [H�(h|x j )|{x j � h}] (11)

for j ∈ ∂i and � ∈ ∂ j \ i, and B(i j),(k�) = 0 otherwise. Per-
forming an appropriately adapted weakly nonlinear expansion
of Eqs. (10) as in Ref. [41], one obtains site-dependent perco-
lation probabilities to linear order in hc − h as

gi � α(hc − h)
∑
j∈∂i

v
(i)
j , (12)

where v = (v(i)
j ) is the Frobenius right eigenvector of cor-

responding to the largest eigenvalue λmax(B)|h=hc = 1 of the
nonbacktracking matrix (11) evaluated at hc, normalized such
that ||v||1 = 1, and α is an amplitude given in Eq. (24) of the
Supplemental Material, which also includes a derivation of the
O[(hc − h)2] contribution to gi [47].

Thermodynamic limit. For random graphs in the config-
uration model class, i.e., graphs that are maximally random
subject to a given degree distribution pk = Prob(ki = k), one
can analyze the level-set percolation problem in the ther-
modynamic limit of infinite system size. Assuming that a
limiting probability law for the joint distribution of the cavity
probabilities g(i)

j and the cavity precisions ω
(i)
j exists, proba-

bilistic self-consistency compatible with the self-consistency
equations (10) for the g(i)

j and with Eqs. (4) of the Supple-

mental Material [47] for the ω
(i)
j entails a self-consistency

equation for the joint PDF π̃ (g̃, ω̃), which is documented
as Eq. (13) of the Supplemental Material. It is efficiently
solved by a population dynamics algorithm. The limiting PDF
of local percolation probabilities is then evaluated from its
solution.

In Fig. 1, we present an example of a distribution of level-
set percolation probabilities for a system with a fat-tailed
degree distribution, which shows that the theoretical analyses
agree very well with a numerical simulation. Simulations are,
of course, affected by sampling fluctuations and by finite-
size effects (creating details depending on the specific single
realization of the generated random graph), while the single

FIG. 1. Distribution π (g) or local percolation probabilities for
a random graph with power-law degree distribution k ∼ k−3 for
2 � k � 100 at h = −1 and μ = 0.1. We compare (i) results of a
numerical simulation of a single instance of a graph of N = 50 000
vertices, averaging over 5000 realizations of Gaussian field configu-
rations to obtain the PDF of the gi (yellow dots), with (ii) results of
a single instance cavity analysis for the same graph (red solid line),
and (iii) the result of an analysis in the thermodynamic limit (black
solid line).

instance cavity analysis is only affected by finite-size effects.
Further results, both for different systems and a range of val-
ues for the level h, can be found in the Supplemental Material
[47]. Remarkably, as also documented in the Supplemental
Material [47], for a massless Gaussian field the marginal
node-dependent precisions ωi turn out to be a very precise,
although not exact, predictor for the node-dependent percola-
tion probabilities gi = gi(h) at a given level h, which appears
to be independent of the graph type. This is particularly inter-
esting as gi are much harder to evaluate than ωi. However, that
almost perfect correlation is lost for fields with nonzero mass
μ > 0. Results for systems with nonuniform edge weights Ki j

will be presented and discussed in an extended version of this
Letter.

Random regular graphs. Specializing to random regular
graphs (RRGs) with uniform couplings, more explicit results
can be obtained. The key observation is that in the ther-
modynamic limit all nodes and all edges of the system are
equivalent. Hence the self-consistency equation for the uni-
form cavity precisions on a RRG of degree c (or cRRG) reads

ω̃ = μ + (c − 1)
Kω̃

K + ω̃
. (13)

This equation is solved by

ω̃± = 1
2 [μ + K (c − 2) ±

√
[μ + K (c − 2)]2 + 4Kμ], (14)

the relevant (physical) solution being ω̃ = ω̃+. This entails a
self-consistency equation for the uniform cavity percolation
probabilities g(i)

j ≡ g̃ of the form

g̃ = 1 − Ex[(1 − H (h|x)g̃)c−1|{x � h}], (15)

in which Ex[·] denotes an expectation over the generic single-
node marginal of the RRG, for which x ∼ N (0, 1/ω), with

ω = μ + c
Kω̃

K + ω̃
(16)
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FIG. 2. Percolation probability g as a function of the level h for
cRRGs with c = 4, 12, and 20. The steepness of the curves increases
with c. Critical levels hc as obtained from Eq. (17) are indicated
as vertical dashed lines. For the three values of c shown here, they
decrease with increasing c, and they agree perfectly with results of a
numerical solution of Eq. (15).

the uniform single-node precision on the cRRG, while H (h|x)
is a conditional expectation of the type defined in Eq. (7),
evaluated on the cRRG. Equation (15) is a simple scalar
equation for g̃ which is easily solved numerically. It always
has the trivial solution g̃ = 0, which becomes unstable below
a critical value hc of the level h which follows from a linear
stability analysis of Eq. (15) and is given as the solution
of

(c − 1)Ex[H (h|x)|{x � h}] = 1. (17)

From the solution of Eq. (15) at h < hc one obtains

g = ρh(1 − Ex[ (1 − H (h|x)g̃)c|{x � h}]), (18)

with ρh = Ex[χ{x�h}] as the value of the percolation proba-
bility at level h. Percolation probabilities thus computed as
functions of the level h are shown in Fig. 2 for cRRGs with
uniform K = 1 and μ = 0 for three different values of c � 4.
For the range of c values shown, critical percolation thresholds
hc are decreasing with increasing c, but, as shown in Fig. 3 of
the Supplemental Material, there is nonmonotonicity of hc as
a function of c in the range c ∈ {3, 4, 5}.

Summary and discussion. In this Letter we presented an
explicit solution of the problem of level-set percolation of

Gaussian free fields on locally treelike random graphs, both
for finite large instances and in the thermodynamic limit of
infinite system size for random graphs in the configuration
model class with finite mean degree. The former requires the
simultaneous solution of a set self-consistency equations for
locally varying single-node cavity percolation probabilities
g(i)

j and for the locally varying single-node cavity precisions

ω
(i)
j . The latter instead requires solving a nonlinear integral

equation for their joint PDF π̃ (g̃, ω̃). Though we have re-
stricted ourselves to a uniform mass parameter μ, such a
restriction is not a matter of principle and can easily be
relaxed. We found our results to be in excellent agreement
with simulations. Simplifications are possible in the case of
RRGs for which the uniform single-node cavity percolation
probabilities g(i)

j ≡ g̃ are obtained as solutions of a single
scalar equation, from which in turn the uniform percolation
probability g is easily evaluated using a single scalar equation.
While our methods are nonrigorous, they are expected to be
exact in the large system limit, a fact that should be amenable
to rigorous proof.

The methods and heuristics used in the present Letter
could be useful for the analysis of wider classes of level-set
percolation problems. For instance, it is relatively straight-
forward to reformulate our methods to analyze level-set
percolation of local fields for disordered Ising models defined
on random graphs and thereby to level-set percolation for
single-node magnetizations. Generalizing our methods to gen-
uinely continuous multivariate non-Gaussian distributions,
while in principle in reach of our methods, is significantly
harder as it requires to replace the self-consistency equa-
tions for single-node cavity precisions by self-consistency
equations for distributions of entire effective single-node cavity
potentials (see Ref. [44]). It would also be interesting to in-
vestigate whether the approach of Ref. [41], which is capable
of giving distributions of the sizes of finite clusters, both in
the nonpercolating and in the percolating phase can be carried
over to the present case of level-set percolation. Another, as
yet unsolved, problem concerns the stability analysis of the
integral equation (13) of the Supplemental Material, which
could in principle allow one to obtain critical percolation
levels hc for configuration model networks directly in the
thermodynamic limit. We hope to address some of these open
problems in the near future.
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