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We present a solution of the problem of level-set percolation for multivariate Gaussians defined in terms of
weighted graph Laplacians on complex networks. It is achieved using a cavity or message passing approach,
which allows one to obtain the essential ingredient required for the solution, viz. a self-consistent determination
of locally varying percolation probabilities. The cavity solution can be evaluated both for single large instances
of locally treelike graphs, and in the thermodynamic limit of random graphs of finite mean degree in the
configuration model class. The critical level hc of the percolation transition is obtained through the condition
that the largest eigenvalue of a weighted version B of a nonbacktracking matrix satisfies λmax(B)|hc = 1. We
present level-dependent distributions of local percolation probabilities for Erdős-Rényi networks and and for
networks with degree distributions described by power laws. We find that there is a strong correlation between
marginal single-node variances of a massless multivariate Gaussian and local percolation probabilities at a given
level h, which is nearly perfect at negative values h, but weakens as h ↗ 0 for the system with power-law degree
distribution, and generally also for negative values of h, if the multivariate Gaussian acquires a nonzero mass. The
theoretical analysis simplifies in the case of random regular graphs with uniform edge weights of the weighted
graph Laplacian of the system and uniform mass parameter of the Gaussian field. An asymptotic analysis reveals
that for edge weights K = K (c) ≡ 1 the critical percolation threshold hc decreases to 0, as the degree c of the
random regular graph diverges. For K = (c) = 1/c, however, the critical percolation threshold hc is shown to
diverge as c → ∞.
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I. INTRODUCTION

The present paper is about the problem of Gaussian level-
set percolation on complex networks. It is concerned with the
distribution of sizes of contiguous clusters over which a multi-
variate Gaussian defined on the vertices of a network exceeds
a given level h, and in particular with the question whether,
for a given level h, there exists a giant connected component
of such vertices (referred to as hGCC in what follows) that
occupies a finite fraction of vertices in the large system limit.
Intuitively, one would expect that there would always exist
a finite critical level hc, above which all contiguous clusters
for which the Gaussian exceeds the level h � hc would be
bounded, whereas for h < hc there would be an hGCC on
which the components of the Gaussian exceed the level h.
Key objectives of the Gaussian level-set percolation problem
then are (i) to find the critical level hc for a given network
and a given multivariate Gaussian defined on it, and (ii) to
determine the fraction of nodes in the hGCC for h < hc. A
moment of reflection shows that for complex networks with
nondegenerate degree distributions, and thus usually locally
varying Gaussian marginal densities, the probabilities of ver-
tices of a network to belong to an hGCC, would themselves be
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locally varying (for h < hc). It turns out that analytic control
over the locally varying local percolation probabilities is key
to a full solution of the problem.

Level-set percolation of multivariate distributions is to be
contrasted with the simpler case of independent Bernoulli
percolation which is concerned with the question whether—
as a function of the relative density of existing links in a
lattice or a graph, either by construction or after random
independent removal of a subset of edges or vertices—the
system either decomposes into a collection of finite clusters,
or on the contrary exhibits a connected component (GCC)
that occupies a finite fraction of vertices in the large system
limit (see, e.g., Refs. [1,2]). Because of the probabilistic in-
dependence of vertex or edge removal in the case of standard
independent Bernoulli percolation, the problem is much sim-
pler than the case of level-set percolation of random fields, as
correlations between values of a multivariate distribution at
different vertices of a graph imply that level-set percolation
is in fact a version of correlated Bernoulli vertex percolation.
The correlations that are present in the case of level-set perco-
lation are the key ingredient that make the problem so much
harder than independent Bernoulli percolation. They also en-
tail that the phenomenology of the problem is richer and
may well defy simple intuition built on independent Bernoulli
percolation. Indeed, early on Molchanov and Stepanov [3,4]
disproved, for instance, the naive intuition mentioned above,
according to which there would always exist a finite crit-
ical level hc separating the percolating phase from the
nonpercolating phase.
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Level set percolation has in the past been studied in
the continuum (Rd ) [3,5–10], on hypercubic lattices (Zd )
[4,9,11–13], and on random graphs [14–21]. Because of the
correlations in the problem much less is known about it than
about standard Bernoulli percolation. The additional difficulty
created by these correlations notwithstanding, a number of
key properties of Gaussian level-set percolation have been
established over the years. Among them are existence (e.g.,
Refs. [3–5,9–12,14]) and sharpness of the percolation transi-
tion in Rd [9] and in Zd [22]. An overview of critial properties
of percolation models with long range correlations, including
Gaussian Level-Set percolation in Zd , is in Ref. [23]. In the
case of random graphs, uniqueness [16] and extensivity of the
hGCC [18,20,21] in the percolating phase, as well as critical
exponents of the transition on transient graphs [19,21] have
also recently been added to the set of known results. However,
a lot still remains open. In particular, explicit solutions of
the problem that go beyond a characterization of the near
critical regime [19,21] have to the best our knowledge un-
til recently been unavailable, in marked contrast to the case
of independent Bernoulli percolation on random graphs, for
which full solutions are meanwhile textbook material (e.g.,
Refs. [24–26]). In very recent shorter version of the present
paper [27], we managed to fill exactly this gap. The purpose
of the present paper is to expand on the details of the solution,
and to present and discuss a number of additional results.

The remainder of the paper is organized as follows. In
Sec. II we introduce Gaussian level-set percolation in for-
mal terms and describe its analysis for single large instances
of locally treelike graphs using a cavity or message-passing
approach. This includes obtaining the critical percolation
threshold hc for a given problem through a stability analysis
of the cavity equations as well as an asymptotic analysis of
locally varying percolation probabilities in the vicinity of the
percolation transition. Section III describes the probabilistic
self-consistency argument that allows one to obtain a solution
of the level-set percolation problem in the thermodynamic
limit of infinite system size for random graphs in the con-
figuration model class. Simplified equations for macroscopic
level-dependent percolation probabilities are obtained for the
special case of random regular graphs. We present and analyze
our main results in Sec. IV. Section V finally contains a
summary and discussion. Some technical parts of the theory
are relegated to Appendices.

II. GAUSSIAN LEVEL-SET PERCOLATION
ON COMPLEX NETWORKS

A. The Problem

We consider a (random) graph of N vertices i =
1, 2, . . . , N , on which a multivariate Gaussian is defined via

P(x) = 1

Z
e−S(x) , (1)

in which S (x) quadratic in the xi, i.e.,

S (x) = 1

2

∑
i

μix
2
i + 1

4

∑
i, j

Ki j (xi − x j )
2, (2)

with μi � 0 and Ki j = Kji > 0 for vertices of the network
connected by an edge, and Ki j = Kji ≡ 0 otherwise. The μi

are referred to as mass parameters, which, unlike in the shorter
version [27] of this paper, we allow to be locally varying.
For μi ≡ 0 the field is referred to as massless. The positivity
of the nonzero edge weights is needed to keep the Gaussian
normalizable also in the massless case μi ≡ 0. In Eq. (2), the
first sum is over all N vertices of the graph, while both sums
in the double sum are over all N vertices of the graph. The
double sum in Eq. (2) is a quadratic form of a weighted graph
Laplacian �(K ) with edge weights {Ki j}, i.e.,

1

4

∑
i, j

Ki j (xi − x j )
2 = −1

2

∑
i, j

�
(K )
i j xix j . (3)

The analysis of level-set percolation on random graphs
requires evaluating locally varying node-dependent probabil-
ities of vertices of the graph to belong to the hGCC. This is
achieved by adapting an approach developed in Refs. [28,29].
It is based on cavity or message passing ideas specifically
designed to analyze problems on locally treelike graphs.
As for the time being we are only interested in evaluating
heterogeneous percolation probabilities rather than also clus-
ter size distributions, a simpler version described, e.g., in
Refs. [30,31] can be used.

B. Single instance cavity analysis

For a node i to belong to the hGCC, the multivariate Gaus-
sian at i must itself exceed the specified level, i.e., xi � h,
and it must be connected to the hGCC via at least one of its
neighbors. Introducing indicator variables ni ∈ {0, 1} which
signify whether i is (ni = 1) or is not (ni = 0) in the hGCC,
one can express this logic as

ni = χ{xi�h}

⎛
⎝1 −

∏
j∈∂i

(
1 − χ{x j�h}n

(i)
j

)⎞⎠. (4)

In this equation the first factor, i.e., the characteristic function
χ{xi�h}, expresses the fact that the component xi of the multi-
variate Gaussian must itself exceed the specified level, while
the second factor expresses the fact that i is connected to the
hGGC via at least one neighbor. This in turn requires that for
at least one j ∈ ∂i the multivariatee Gaussian must exceed the
specified level (x j � h), and that it must be connected to the
hGCC via one of its neighbors other than i (on the cavity graph
G(i) from which i and the edges connected to it are removed);
this is expressed by the cavity indicator variable n(i)

j taking the

value n(i)
j = 1.

For the cavity indicator variable n(i)
j to take the value 1, it

is required that on G(i) the node j is itself connected to the
hGCC via at least one of its neighbors (other than i). This is
expressed by the condition

n(i)
j = 1 −

∏
�∈∂ j\i

(
1 − χ{x��h}n

( j)
�

)
. (5)

Equations (5) constitute a set of self-consistency equa-
tions (one equation for each edge (i, j) of the graph) that
allow one to self-consistently determine the values of the {n(i)

j }
for a given graph and a given realization of the multivariate
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Gaussian. Solutions are very efficiently obtained by forward
iteration from random initial conditions. From the solution,
one can then evaluate the ni from Eq. (4). They indicate
whether nodes are or are not on the hGCC of the network for
that realization of the multivariate Gaussian

Node-dependent percolation probabilities at level h are
obtained by averaging Eqs. (4) over all realizations of the
multivariate Gaussian x with joint PDF described by Eqs. (1)
and (2), i.e., by evaluating gi = Ex[ni] for all vertices i of
the graph, in which Ex[·] denotes an expectation evaluated
over the multivariate Gaussian defined on the graph. Due to
correlations between the xi, the expectation of the product
over neighbors of i in Eq. (4) does not factor in j, even on
a tree. The standard simplifying feature that facilitates cavity
analyses on trees or on locally treelike systems is thus, at first
sight, not available in the present case. Averaging Eqs. (4) is,
however, facilitated by the fact that—conditioned on xi—the
averages over the (χ{x j�h}n

(i)
j ) j∈∂i in Eqs. (4) do factor in j,

if the graph in question is a tree, and that such factorization
becomes asymptotically exact on locally treelike graphs in the
thermodynamic limit. Analogous factorization is possible for
averages over the (χ{x��h}n

( j)
� )�∈∂ j\i in Eqs. (5), when condi-

tioned on x j .
Performing the average over the Gaussian field x in this

way, we obtain gi = Ex[ni] = Exi [Ex[ni|xi]] from Eq. (4) as

gi = Exi

⎡
⎣χ{xi�h}

⎛
⎝1 −

∏
j∈∂i

(
1 − Ex

[
χ{x j�h}n

(i)
j

∣∣xi
])⎞⎠

⎤
⎦ (6)

by factorization of conditional expectations, where Exi [·] de-
notes an expectation evaluated over the single node marginal
of xi. Then, using further conditioning, we have

Ex
[
χ{x j�h}n

(i)
j

∣∣xi

]
= Ex j

[
χ{x j�h}

∣∣xi
]

×Ex
[
n(i)

j

∣∣{x j � h}, xi
]

= Hj (h|xi ) g(i)
j , (7)

where we have introduced

Hj (h|xi ) = Ex j [χ{x j�h}|xi] (8)

and

g(i)
j = Ex

[
n(i)

j

∣∣{x j � h}]. (9)

In Eq. (9) we have used the fact that for conditional expec-
tations of observables pertaining to the cavity graph such as
n(i)

j we have Ex[n(i)
j |{x j � h}, xi] = Ex[n(i)

j |{x j � h}]. Putting
things together, we obtain

gi = ρh
i

⎛
⎝1 − Exi

⎡
⎣∏

j∈∂i

(
1 − Hj (h|xi )g

(i)
j

)∣∣∣∣∣∣ {xi � h}
⎤
⎦

⎞
⎠, (10)

with ρh
i = Exi [χ{xi�h}].

Following an entirely analogous line of reasoning and us-
ing the same sequence of conditionings, we can evaluate the
g(i)

j defined in Eq. (9) by evaluating the conditional average of

n(i)
j using Eq. (5), giving

g(i)
j = 1 − Ex j

⎡
⎣ ∏

�∈∂ j\i

(
1 − H�(h|x j )g

( j)
�

)∣∣∣∣∣∣ {x j � h}
⎤
⎦. (11)

Equations (10) and (11) for the gi and the g(i)
j can be evaluated,

once single-site marginals and joint densities on adjacent sites
of the Gaussian field defined by Eqs. (1) and (2) are known;
the latter are required to evaluate the conditional probabilities
Hj (h|xi ) defined in Eq. (8) [and similarly the H�(h|x j ) appear-
ing in Eq. (11)], while the former are needed to evaluate xi

expectations in Eqs. (10) and x j expectations in Eqs. (11), re-
spectively. They are—for large, heterogeneous locally treelike
random graphs—most efficiently obtained by their own cavity
type analysis, which has in fact been performed (directly in the
thermodynamic limit) in Ref. [32] for single-site marginals
of harmonically coupled systems on random graphs, and
in Refs. [33,34] in the context of the spectral problem of
sparse symmetric random matrices. All that is needed are the
(Gaussian) single-site marginals Pi(xi ) of P(x), as well as the
corresponding single-site cavity marginals P(i)

j (x j ) for j ∈ ∂i
on the cavity graph G(i), in terms of which joint densities
on adjacent sites are easily obtained. Key identities needed
in the analysis are reproduced Appendix A of this paper.
Single-site marginals and single-site cavity marginals are fully
characterized by their inverse variances (or precisions) ωi and
ω

(i)
j , respectively. The latter are obtained by solving the sys-

tem (A4) of cavity self-consistency equations in Appendix A,
while the former can be evaluated in terms of the ω

(i)
j . The

Hj (h|xi ) and the H�(h|x j ) can be expressed in closed form in
terms of error functions, but the conditional xi expectation
of the product in Eq. (10) and similarly the conditional x j

expectation of the product in Eq. (11) will have to be evaluated
numerically.

With all ingredients thus available, Eqs. (11) constitute
a set of coupled self-consistency equation for the g(i)

j . They
can be solved iteratively at given level h on large instances
of locally treelike (random) graphs, starting from random
initial conditions. Using the solutions, one obtains the node-
dependent percolation probabilities gi from Eqs. (10).

C. Percolation threshold and near-critical solution

The value of the percolation threshold follows from a linear
stability analysis of Eqs. (11). These equations always allow
the trivial solution g(i)

j ≡ 0. This solution becomes unstable,
indicating the percolation transition, where the the largest
eigenvalue of the Hessian of the right-hand side (r.h.s.) of
Eqs. (11) evaluated at g(i)

j ≡ 0 exceeds 1. The Hessian is a
weighted version of a so-called nonbacktracking matrix, with
nonzero elements

B(i j),( j�) = Ex j [H�(h|x j )|{x j � h}] (12)

for j ∈ ∂i and � ∈ ∂ j \ i, and B(i j),(k�) = 0 otherwise.
For h � hc it is expected that the cavity probabilities g(i)

j ,
hence the site-dependent percolation probabilities gi will be
small. As shown in the Supplemental Material of Ref. [27],
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they are to first order in hc − h given by

gi � α(hc − h)
∑
j∈∂i

v
(i)
j , (13)

where v = (v(i)
j ) is the Frobenius right eigenvector corre-

sponding to the largest eigenvalue λmax(B)|h=hc
= 1 of the

nonbacktracking matrix (12) evaluated at hc, normalized s.t.
||v||1 = 1, and α is an amplitude.

III. THERMODYNAMIC LIMIT

A. Probabilistic self-consistency

For random graphs in the configuration model class, i.e.,
the class of graphs that are maximally random subject to a

given degree distribution pk = Prob(ki = k), one can analyze
the level-set percolation problem in the thermodynamic limit
of infinite system size. We will first describe the analysis
for homogeneous mass parameters μi ≡ μ and thereafter in-
troduce the modifications needed to capture node-dependent
mass parameters μi.

Assuming that a limiting probability law for the joint distri-
bution of the cavity precisions ω

(i)
j and the cavity probabilities

g(i)
j exists, probabilistic self-consistency compatible with the

self-consistency equations (A4) for the ω
(i)
j and with Eqs. (11)

for the g(i)
j allows one to obtain the PDF π̃ (g̃, ω̃) as follows.

One averages the right hand sides of Eqs. (A4) and (11)
over all realizations for which ω

(i)
j ∈ (ω̃, ω̃ + dω̃] and g(i)

j ∈
(g̃, g̃ + dg̃] (see, e.g., Ref. [29] for a similar line of reasoning)
to obtain

π̃ (g̃, ω̃) =
∑

k

k

〈k〉 pk

∫ [
k∏

�=1

dπ̃ (g̃�, ω̃�)dρK (K�)

]
δ(ω̃ − �k−1)δ

(
g̃ −

(
1 − Ex

[
k−1∏
�=1

(1 − H�(h|x) g̃�)

∣∣∣∣∣{x � h}
]))

, (14)

in which

�q = �q({ω̃�}) = μ +
q∑

�=1

K�ω̃�

K� + ω̃�

(15)

and

H�(h|x) = Ex�
[χ{x��h}|x] = H

(√
K� + ω̃�

(
h − K�x

K� + ω̃�

))
(16)

is the probability that the multivariate Gaussian on the �th node adjacent to a node with Gaussian component x (to which it is
coupled via K�) does itself exceed the value h. In Eq. (14), k

〈k〉 pk is the probability for a random neighbor of a node to have degree
k, and the expectation w.r.t. x is evaluated for x ∼ N (0, 1/�k ), while ρK (·) is the PDF of the K�. Moreover, we have introduced
the shorthand dπ̃ (g̃�, ω̃�) = dg̃�dω̃� π̃ (g̃�, ω̃�), and similarly dρK (K�) = dK�ρK (K�). Equation (14) is very efficiently solved by
a population dynamics algorithm. From the solution we obtain

π (g, ω) =
∑

k

pk

∫ [
k∏

�=1

dπ̃ (g̃�, ω̃�)dρK (K�)

]
δ(ω − �k )δ

(
g − ρh

(
1 − Ex

[
k∏

�=1

(1 − H�(h|x) g̃�)

∣∣∣∣∣{x � h}
])

(17)

for the limiting joint distribution of single-site percolation probabilities gi and single site precisions ωi. In this equation ρh =
Ex[χx�h], and we once more have x ∼ N (0, 1/�k ).

If mass parameters μi are indeed heterogeneous, one starts from the assumption that a limiting law dπ̃ (ω̃, g̃, μ) =
dπ̃ (ω̃, g̃|μ)dρ(μ) exists, with ρ(·) the PDF of the locally varying mass parameters. One then obtains the joint PDF π̃ (ω̃, g̃, μ)
in the same manner as before in the simpler version with homogeneous mass parameters, giving a modified probabilistic
self-consistency equation of the form

π̃ (g̃, ω̃, μ) = ρ(μ)
∑

k

k

〈k〉 pk

∫ [
k∏

�=1

dπ̃ (g̃�, ω̃�, μ�)dρK (K�)

]
δ(ω̃ − �k−1)

× δ

(
g̃ −

(
1 − Ex

[
k−1∏
�=1

(1 − H�(h|x) g̃�)

∣∣∣∣∣{x � h}
]))

. (18)

Thus, it turns out that the conditional PDF π̃ (ω̃, g̃|μ) is formally expressed by the r.h.s. of the simpler self-consistency
equation (14) for homogeneous mass parameters, if the π̃ (g̃�, ω̃�) in Eq. (14) are interpreted as the (ω̃�, g̃�)-marginals of the
π̃ (ω̃�, g̃�, μ�). From the solution of Eq. (18) we obtain

π (g, ω, μ) = ρ(μ)
∑

k

pk

∫ [
k∏

�=1

dπ̃ (g̃�, ω̃�, μ�)dρK (K�)

]
δ(ω − �k )δ

(
g − ρh

(
1 − Ex

[
k∏

�=1

(1 − H�(h|x) g̃�)

∣∣∣∣∣{x � h}
])

(19)

as the joint pdf of local percolation probabilities, precisions and mass parameters.
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B. Random regular graphs

Specializing to random regular graphs (RRGs) with uni-
form couplings, more explicit results can be obtained. The
key observation is that in the thermodynamic limit all nodes
and all edges of the system are equivalent. Hence the self-
consistency equation for the uniform cavity precisions on a
RRG of degree c (or cRRG) reads

ω̃ = μ + (c − 1)
Kω̃

K + ω̃
. (20)

This equation is solved by

ω̃± = 1
2 [μ + K (c − 2) ±

√
[μ + K (c − 2)]2 + 4Kμ], (21)

the relevant (physical) solution being ω̃ = ω̃+. This entails a
self-consistency equation for the uniform cavity percolation
probabilities g(i)

j ≡ g̃ of the form

g̃ = 1 − Ex[(1 − H (h|x) g̃)c−1|{x � h}], (22)

in which H (h|x) is a conditional expectation of the type de-
fined in Eq. (8), evaluated on the cRRG, and x ∼ N (0, 1/ω),
with

ω = μ + c
Kω̃

K + ω̃
= ω̃ + Kω̃

K + ω̃
(23)

the uniform single-site precision on the cRRG. Equation (22)
is a simple scalar equation for g̃ which is easily solved numer-
ically. It always has the trivial solution g̃ = 0, which becomes
unstable below a critical value hc of the level h wich follows
from a linear stability analysis of Eq. (22) and is given as the
solution of

(c − 1)Ex[H (h|x)|{x � h}] = 1. (24)

This equation has to be solved numerically. In the limit of
large c, however, it is possible to provide an asymptotic ex-
pansion for the solution hc in closed form. It is performed in
Appendix B, both for the case K = K (c) = 1 and for K =
K (c) = 1/c.

For K = K (c) = 1 we obtain

hc �
√

2

μ + c − 1
[y0 + o(y0)], (25)

with y0 = ln ( c−1
2
√

π
) defined in Eq. (B7). Thus, hc ↘ 0 as c →

∞ in this case.
For K = K (c) = 1/c, however, the result is

hc �
√

2

μ + (c − 1)/c
[y0 + o(y0)], (26)

hence hc diverges as c → ∞.
From the solution of Eq. (22) at h < hc one obtains

g = ρh(1 − Ex[(1 − H (h|x) g̃)c|{x � h}]), (27)

with ρh = Ex[χ{x�h}] as the value of the percolation probabil-
ity g at level h < hc.

IV. RESULTS

In what follows we present results obtained for the
Gaussian level-set percolation problem for random graphs

FIG. 1. Distribution π (g) or local percolation probabilities for a
shifted Poisson degree distribution k ∼ 2 + Poiss(1) at h = 0 and
μ = 0.1. We compare (i) results of a numerical simulation of a single
instance of a graph of N = 50 000 vertices, averaging over 5000
realizations of Gaussian field configurations to obtain the PDF of the
gi (yellow dots), with (ii) results of a single instance cavity analysis
for the same graph (red solid line), and (iii) the result of an analysis
in the thermodynamic limit (black solid line).

in the configuration model class. Given the huge number of
possible variations of parameters and parameter combinations
that could be contemplated, the results presented below can of
course only illustrate general trends and not be exhaustive.
We begin by presenting results for systems uniform mass
parameters μi ≡ μ and homogeneous edge weights Ki j ≡ 1
and thereafter briefly illustrate the effect of heterogeneous
mass parameters and edge weights.

A. Testing the theory

In Fig. 1, we present a distribution of level-set percolation
probabilities for a system with a shifted Poisson degree distri-
bution with kmin = 2 and 〈k〉 = 3, which demonstrates that the
theoretical analyses agree very well with a numerical simula-
tion. Simulations are, of course, affected by finite-size effects
(creating details depending on the specific single realization
of the generated random graph) and by sampling fluctuations
(that are created by approximating average local percolation
probabilities using empirical averages over a finite sample of
Ns = 5000 realizations of the multivariate Gaussian, which
are themselves generated through a Metropolis Monte-Carlo
procedure), while the single instance cavity analysis is only
affected by finite-size effects.

B. PDFs of local percolation probabilities

Figure 2 shows the distribution π (g) of local percolation
probabilities for a massless Gaussian field at levels h = −1,
h = −0.5, h = 0, and h = 0.25 on an Erdős-Rényi (ER) graph
of mean degree 〈k〉 = 2 and for a system with power-law
degree distribution pk ∼ k−3 for 2 � k � 125 in the thermo-
dynamic limit. In the ER case, the original graph contains
finite components, generating a δ peak at 0 in π (g), whereas
in the latter it does not. In both cases, the center of mass,
i.e., the average percolation probability of the distributions
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FIG. 2. Top panel: Distribution π (g) of local percolation proba-
bilities at levels h = −1 (blue), h = −0.5 (red), h = 0 (green), and
h = 0.25 (cyan) from right to left for an ER graph with mean degree
2, evaluated in the thermodynamic limit. Bottom panel: distributions
for the same values of h are displayed for a graph with power-law
degree distribution, pk ∼ k−3 for 2 � k � 125.

decreases with increasing value of h as expected, with 〈g〉 �
0.60, 0.46, 0.25 and 0.13 at h = −1.0,−0.5, 0, and h = 0.25,
respectively for the ER2 graph, and 〈g〉 � 0.87, 0.70, 0.39,
and 0.17 at these h values for the system with power-law
degree distribution. However, the shape of the distributions
also changes markedly with the level h, thus carrying infor-
mation that goes far beyond the respective average percolation
probabilities.

To provide a more global—albeit qualitative—view of
level set percolation, heat-maps of distributions of local
percolation probabilities together with mean percolation prob-
abilities for a range of values of the level h are displayed for
the same systems in Fig. 3. The critical level hc is hc � 0.52
for massless Gaussians defined on the ER-2 graph, and hc �
0.47 for massless Gaussians on a graph with power-law degree
distribution, pk ∼ k−3 for 2 � k � 125.

C. Correlations between marginal variances and local
percolation probabilities

In Fig. 4 we display scatter-plots of marginal level-set per-
colation probabilities gi versus marginal Gaussian precisions
ωi at various values for the level h, again for an ER graph with
mean degree 2 (blue dots), and for a graph of the same size

FIG. 3. Top panel: Heat-map of the distribution π (g) of local
percolation probabilities for massless Gaussian field on an ER graph
with mean degree 2, evaluated in the thermodynamic limit. Bottom
panel: heat-map for a massless Gaussian field on a graph with power-
law degree distribution, pk ∼ k−3 for 2 � k � 125. Values of π (g)
are nonlinearly transformed according to π (·) → √

π (·)/(0.4 +√
π (·)) because of their large dynamical range, to achieve a good

resolution also at low values of π (g). Mean percolation probabilities
〈g〉 > as functions of the level h are for both cases shown as solidl
red lines.

with power-law degree distribution pk ∼ k−3 for 2 � k � 125
(red dots). The results suggest that there is a remarkably strong
correlation between the gi and the ωi values, which is almost
perfect for negative h values but weakens (at small ωi values)
for the system with power-law degree distribution as h ↗ 0.
The strong correlation between the two at negative h appears
to be even insensitive to the underlying graph structure, with
the curves for the graph with power-law distributed degrees
overlapping with those for the ER graph, but extending them
to larger ω and g values. The second panel shows that the
nearly perfect correlation between the gi and the ωi for the
Erdős-Rényi graph is also weakened if the Gaussian field
acquires a nonzero mass μ > 0.

D. Effect of randomly varying
mass parameters and random couplings

Results so far reported were obtained for systems with ho-
mogeneous mass parameters μi ≡ μ and uniform couplings
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FIG. 4. Top panel: Scatter-plot of local level set percolation prob-
abilities gi at levels h = −1.0, h = −0.5, h = −0.25, h = 0, and
h = 0.25 (top to bottom) against local single node precisions ωi for a
massless Gaussian field defined on an ER graph of size N = 100 000
with mean degree 2 (blue dots), and for a graph of the same size with
power-law degree distribution pk ∼ k−3 for 2 � k � 125 (red dots).
Bottom panel: For h = −0.5 the data for the massless Gaussian field
on the ER graph of mean degree 2 (blue dots) are displayed together
with data obtained for a system of the same type, but now for a
Gaussian field with mass parameter μ = 0.1 (cyan dots).

Ki j ≡ K = 1. In what follows we briefly look at the effect of
introducing randomly varying mass parameters μi and ran-
domly varying edge weights Ki j .

Replacing a homogeneous mass parameter μ by exponen-
tially distributed mass parameters μi of the same mean has a
barely detectable effect if μ is small compared to the value
of the (uniform) coupling Ki j ≡ 1. For example (not shown),
for μ = 0.1 the effect of introducing exponentially varying
masses of the same mean is barely detectable on a graph of
the PDF of locally varying percolation probabilities. However,
as shown in Fig. 5 for a larger values of μ = 0.5, replacing
a homogeneous mass parameter by exponentially distributed
mass parameters of the same mean does have a clearly no-
table smoothing effect on π (g). Introducing heterogeneity
of the edge weights, by replacing them with exponentially
distributed weights of the same mean 1 has a significantly
stronger smoothing effect, while adding heterogeneity of the
μi to the heterogeneity of the edge weights does not have a
very strong additional smoothing effect.

FIG. 5. Distribution π (g) of local percolation probabilities for an
ER-2 graph at level h = −0.5 for a system (i) with homogeneous
mass parameter μ = 0.5 and homogeneous edge parameters Ki j ≡ 1
(black solid curve), (ii) a system with exponentially distributed μi

of mean 0.5, but homogeneous edge parameters Ki j ≡ 1 (red dotted
curve), (iii) a system with μi ≡ 0.5 and exponentially distributed
edge weights Ki j of mean 1 (blue dashed curve), and (iv) a system
where both the μi and the Ki j are exponentially distributed with
means 0.5 and 1 (green dot-dashed curve), respectively.

E. Results for random regular graphs

In random regular graphs, all nodes and all edges are
equivalent, and as a result there are no local variations of
percolation probabilities. We show percolation probabilities
as functions of the level h for cRRGs with uniform couplings
K = 1 and μ = 0 for six different values of c � 4 in Fig. 6.
For the range of c values shown critical percolation thresholds
hc are decreasing with increasing c, but, as shown in Fig. 7
there is nonmonotonicity of hc as a function of c in the range
c ∈ {3, 4, 5}.

FIG. 6. Percolation probability g as a function of the level h for
cRRGs with μ = 0, K = K (c) ≡ 1 and c = 4, 12, 20, 50, 100, and
200 (red, green, blue, cyan, magenta, and black curves, respectively).
The steepness of the curves increases with c. Critical levels hc as
obtained from Eq. (24) are indicated as asterisks. For the six values
of c shown here, they decrease with increasing c, and they agree
perfectly with results of a numerical solution of Eq. (22).
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FIG. 7. Degree-dependent critical thresholds hc for
cRRGs with μ = 0, K = K (c) ≡ 1 and c ∈ {3, 4, 5, 6, 7, 8,

9, 10, 12, 14, 16, 18, 20, 50, 100, 200, 500, 1000, 2000} (blue dots),
with solid blue line as a guide to the eye. For the larger degrees
c � 20 in this list, results of the asymptotic analysis of Eq. (24) are
shown as well: red crosses show hc0, i.e., the lowest order of the
asymptotic expansion of hc described by Eqs. (B9) and (B10) while
yellow asterisks represent hc1 which includes the first subdominant
corrections (with dashed red and yellow lines as guides to the eye).

Results for c � 20 agree almost perfectly with the find-
ings of the asymptotic analysis of Eq. (24) performed in
Appendix B. They show that hc ↘ 0, as c → ∞. At first sight
the results of Fig. 6 suggest that the percolation transition
itself becomes discontinuous in the large-c limit. Upon closer
inspection, however, this is seen to be an artifact of the fact
that hc ↘ 0, as c → ∞. Plotting percolation probabilities as
a function of the proper scaling variable (h − hc)/hc reveals
that the transition remains continuous at large c as shown in
Fig. 8. In that Figure the point (h − hc)/hc = −1 corresponds
to h = 0. Results indicate the emergence of a limiting scaling
function as c → ∞. It turns out (not shown) that the corre-
sponding scaled plots for the case K = 1/c are for the c values
presented here virtually indistinguishable from those of the
case K (c) ≡ 1 presented in Fig. 8, although in that case the

FIG. 8. Percolation probability g as a function of the scaling
variable (h − hc )/hc for cRRGs with μ = 0, K = K (c) ≡ 1, and
c = 1000, 2000, 5000, 10 000, 20 000, 50 000, and 100 000, with the
steepness of the curves increasing with c.

critical percolation threshold diverges, whereas it converges
to 0 for the the case with K (c) ≡ 1 shown here.

V. SUMMARY AND DISCUSSION

In the present paper we presented a full solution of the
problem of level-set percolation of Gaussian free fields on
locally treelike random graphs. Our solution is based on a
cavity or message passing approach and can be evaluated both
for finite large instances and in the thermodynamic limit of
infinite system size for random graphs in the configuration
model class with finite mean degree. Finite single instance
solutions require the simultaneous solution of a set self-
consistency equations for locally varying single-node cavity
percolation probabilities g(i)

j and for the locally varying sin-

gle node cavity precisions ω
(i)
j , with solutions of the former

depending on solutions of the latter. The solution in the ther-
modynamic limit instead requires solving a nonlinear integral
equation for their joint PDF π̃ (g̃, ω̃) derived form a probabilis-
tic self-consistency arguments (in case of homogeneous mass
parameters μi ≡ μ) and for the joint PDF π̃ (g̃, ω̃, μ) (in case
of locally varying mass parameters). We found our results to
be in excellent agreement with simulations.

It is worth pointing out that the probabilistic self-
consistency conditions describing the Gaussian level-set
percolation problem do not allow one to extract a self-
consistency condition for the average cavity percolation
probability 〈g̃〉 and thereby the average 〈g〉 of the locally
varying percolation probability, in marked contrast to the case
of independent Bernoulli percolation on random graphs. In the
present case, therefore, analytic control over locally varying
(cavity) percolation probabilities is essential for the analysis
of the problem, whereas in the case of independent Bernoulli
percolation it could be seen as merely providing a more de-
tailed level of analysis.

Distributions of level-dependent local percolation proba-
bilities were obtained both for Erdős-Rényi graphs and for
graphs with a fat tailed degree distribution described by a
power law, and they were found to exhibit a considerable
amount of structure. We believe that this structure can to
some extent be rationalized in terms of distributions of local
environments of nodes in a manner analogous to the much
simpler case of independent Bernoulli percolation [29]. We
note, however, that the shape of these distributions markedly
changes with the level h, entailing that the relation between
their structure and the distribution of local environments is
less direct than in the case of Bernoulli percolation. We
therefore leave a closer investigation of this issue to future
publications. Not unexpectedly, some of the structure ex-
hibited by the distributions of local percolation probabilities
disappears upon introducing locally varying mass parameters
{μi} or heterogeneous couplings {Ki j}.

A remarkable and unexpected finding concerns the very
strong correlation between marginal precisions ωi and level-
dependent local percolation probabilities gi in the case of a
massless Gaussian field, which for negative values of the level
h is almost perfect and appears to be insensitive even to the
underlying graph structure. However, this almost perfect cor-
relation is weakened for networks with power-law distributed
degrees, if the level h at which the gi are evaluated approaches
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zero, or in general, if the Gaussian field acquires a nonzero
mass.

Simplifications in the analysis are possible in the case of
cRRGs for which the level-dependent uniform single-node
cavity percolation probability g(i)

j ≡ g̃ is obtained as solution
of a single scalar equation, from which in turn the uniform
percolation probability g is easily evaluated. Asymptotic anal-
ysis reveals that for K = K (c) = 1 the critical percolation
threshold hc approaches 0 in the large c limt, while hc diverges
in this limit if edge weights are scaled as K = K (c) = 1/c.

While our methods are nonrigorous, they are expected to
be exact in the large system limit. Indeed, in cases where
this could be investigated, self-consistency equations obtained
using the decorrelation assumption of the cavity approach for
locally treelike systems in the large system limit agree with
those obtained using a saddle point approximation for the
evaluation of a partition function known to be exact in the
thermodynamic limit [32–34].

Some of the methods and heuristics used in the present
paper should be useful for the analysis of wider classes of
level-set percolation problems. For instance, generalizing our
methods to continuous multivariate nonGaussian distributions
described, e.g., in terms of Gibbs distributions with pair in-
teractions including anharmonicities is in principle in reach
of our methods. However, the analysis will be significantly
more complex, as it requires to replace the self-consistency
equations for single node cavity precisions by self-consistency
equations for entire functions, viz. effective single-node
cavity potentials (see Ref. [32]) in the case of a large finite
instance analysis, while it requires to solve a nonlinear integral
equation for the self-consistent distribution of these functions
in the thermodynamic limit. However, it should be relatively
straightforward to reformulate our methods to analyze, e.g.,
level-set percolation of local fields for disordered Ising models
defined on random graphs, and thereby to level-set percolation
for single-node magnetizations.

Beyond generalizations of this type, it would also be inter-
esting to investigate, whether the approach of Ref. [29] which
is capable of giving distributions of the sizes of finite clusters,
both in the nonpercolating and in the percolating phase, can
be carried over to the present case of (Gaussian) level-set
percolation. Another as yet unsolved problem concerns the
stability analysis of the integral equation (14), which could in
principle allow one to obtain critical percolation levels hc for
configuration model networks directly in the thermodynamic
limit.

In the context of statistical inference, level-set percolation
could be used to assess the damage due to some form of
contaminant spreading through a network, in cases where
actual damage only occurs above a certain concentration of
the contaminant.

We hope to address some of these problems in the near
future.

APPENDIX A: GAUSSIAN IDENTITIES

Averages and conditional averages of indicator functions
as they appear in the theory require evaluating expectations
over node-dependent single-site marginals of the multivariate
Gaussian defined by Eqs. (1) and (2), as well as averages

over conditional distributions of these Gaussians, when condi-
tioned w.r.t. the value of the Gaussian on a neighboring vertex.

Their evaluation uses cavity type reasoning of the same
form used to compute single-node marginals and self-
consistency equations for single-node cavity marginals as
used before in the context of the theory of harmonically cou-
pled systems on graphs [32] or the theory of sparse random
matrix spectra [33,34]. We collect key identities here.

For a free multivariate Gaussian field on a graph with joint
Gaussian density given by Eqs. (1) and (2), all marginals are
themselves Gaussian, and of the form

Pi(xi ) = 1

Zi
exp

(
−1

2
ωix

2
i

)
, (A1)

with Zi = √
2π/ωi and ωi denoting their precisions (inverse

variances). On a tree, and approximately on a locally treelike
graph, we have

Pi(xi ) ∝ e− 1
2 μix2

i

∏
j∈∂i

∫
dx j e− 1

2 Ki j (xi−x j )2
P(i)

j (x j ), (A2)

in which the P(i)
j (x j ) are the marginals of the x j , j ∈ ∂i, on

the cavity graph G(i). Given that the cavity marginals must
themselves be Gaussian, and denoting by ω

(i)
j their preci-

sions, performing the x j integrals in Eq. (A2) entails that the
marginal precisions ωi are given by [32–34]

ωi = μi +
∑
j∈∂i

Ki jω
(i)
j

Ki j + ω
(i)
j

, (A3)

with the ω
(i)
j still to be determined. Following an analogous

line of reasoning for the P(i)
j (x j ), one can conclude that the

ω
(i)
j must satisfy the self-consistency equations

ω
(i)
j = μ j +

∑
�∈∂ j\i

Kj�ω
( j)
�

Kj� + ω
( j)
�

. (A4)

Equations (A3) and (A4) are exact on trees and become
asymptotically exact on locally tree like graphs in the thermo-
dynamic limit. Generalizing the line of reasoning underlying
Eq. (A2) to bivariate Gaussian marginals for two adjacent
nodes i and j on the graph, one obtains

Pi j (xi, x j ) ∝ exp

(
−1

2

(
μix

2
i + μ jx

2
j

) − 1

2
Ki j (xi − x j )

2

)

×
∏

�∈∂i\ j

∫
dx� exp

(
−1

2
Ki�(xi − x�)2

)
P( j)

� (x�)

×
∏

�′∈∂ j\i

∫
dx�′ exp

(
−1

2
Kj�′ (x j − x�′ )2

)

× P(i)
�′ (x�′ ). (A5)

Using once more the Gaussian nature of the cavity marginals
involved and performing the Gaussian integrals in Eq. (A5)
allows one, using Eq. (A4) both for ω

( j)
i and ω

(i)
j , to
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obtain

Pi j (xi, x j )

= 1

Zi j
exp

(
−1

2
Ki j (xi − x j )

2 − 1

2
ω

( j)
i x2

i − 1

2
ω

(i)
j x2

j

)

(A6)

for the joint marginal, in which

Zi j =
√

(2π )2(
Ki j + ω

( j)
i

)(
Ki j + ω

(i)
j

) − K2
i j

(A7)

is determined by normalization. After dividing this result by
the marginal density Pi(xi ) one obtains conditional distribu-
tions from the joint pdf Eq. (A6) as

Pj (x j |xi ) = 1√
2π

Ki j+ω
(i)
j

× exp

⎛
⎝−1

2

(
Ki j + ω

(i)
j

)(
x j − Ki jxi

Ki j + ω
(i)
j

)2
⎞
⎠.

(A8)

The above results allow one to evaluate

ρh
i = Exi [χ{xi�h}] = H (

√
ωih) (A9)

and similarly

Hj (h|xi ) = Ex j [χ{x j�h}|xi]

= H

(√
Ki j + ω

(i)
j

(
h − Ki jxi

Ki j + ω
(i)
j

))
, (A10)

where

H (z) =
∫ ∞

z

dx√
2π

exp

(
−1

2
x2

)
= 1

2
erfc(z/

√
2). (A11)

With these results, all ingredients of the self-consistency equa-
tions (11) as well as expressions for the local percolation
probabilities gi given by Eq. (10) of this paper are well defined
once a solution to Eqs. (A4) for the ω

(i)
j has been obtained.

APPENDIX B: LARGE-c ASYMPTOTICS
OF THE PERCOLATION THRESHOLD ON cRRGs

Here we provide an asymptotic analysis of Eq. (24) for the
critical threshold hc of the level-set percolation transition on
cRRGs, i.e., of

(c − 1)Ex[H (h|x)|{x � h}] = 1. (B1)

This equation requires that

H (h|x) = H

(√
K + ω̃

[
h − Kx

K + ω̃

])
, (B2)

with ω̃ = ω̃+ given by Eq. (21) must be small in that part of
the domain {x � h} from which the x expectation in Eq. (B1)
derives its dominant contributions, which in turn requires√

K + ω̃ h � 1. Assuming that in that domain we also have
Kx/

√
K + ω̃ � 1, we can perform a Taylor expansion of

H (h|x). To first order in x, it reads

H (h|x) � H (
√

K + ω̃ h) − Kx e− 1
2 (K+ω̃)h2

√
2π (K + ω̃)

. (B3)

This allows us to evaluate Ex[H (h|x)|{x � h}], using x ∼
N (0, 1/ω) with ω given by Eq. (23), and thereby to rewrite
Eq. (B1) to this order in the Taylor expansion as

(c − 1)

[
H (

√
K + ω̃ h) + 1

H (
√

ω h)

K e− 1
2 ωh2

√
2πω

e− 1
2 (K+ω̃)h2

√
2π (K + ω̃))

]
� 1. (B4)

As our assumption
√

K + ω̃ h � 1 implies
√

ω h � 1, we can
use large-argument expansions for the complementary error
functions in terms of which the H (·) appearing in Eq. (B4)
are defined to rewrite Eq. (B4) as

(c − 1)
e− 1

2 (K+ω̃)h2

√
2π (K + ω̃))h

(1 + Kh2) � 1. (B5)

Using the shorthand y = 1
2 (K + ω̃)h2, we recast this into an

equation for y, viz.,

y � ln

(
c − 1

2
√

π

)
− 1

2
ln(y) + ln

(
1 + 2Ky

K + ω̃

)
. (B6)

Introducing

y0 = ln

(
c − 1

2
√

π

)
(B7)

and noting that y0 → ∞ as c → ∞, it is straightforward to
convince oneself that the solution of Eq. (B6) satisfies

y = y0 + o(y0), (B8)

provided that K/(K + ω̃) � 1 for c � 1. The solution in-
cluding the o(y0) correction is most conveniently found by
iteration using

yn � y0 − 1

2
ln(yn−1) + ln

(
1 + 2Kyn−1

K + ω̃

)
, n = 1, 2, . . . .

(B9)

The corresponding approximations for critical values are then

hcn =
√

2

K + ω̃
yn for n = 0, 1, 2, . . . . (B10)

054312-10



GAUSSIAN LEVEL-SET PERCOLATION ON COMPLEX … PHYSICAL REVIEW E 110, 054312 (2024)

It remains to check, whether the assumptions made
on the way are all self-consistenly satisfied. Details, in-
cluding in particular the asymptotic behavior of hc it-
self, will clearly depend on whether the uniform edge
weight K is or is not scaled with the degree c of
the cRRG. We will consider the two different conven-
tions which are commonly made, viz., K = K (c) ≡ 1 and
K = K (c) = 1/c in turn.

For K = K (c) ≡ 1, we have ω̃ � μ + c − 2 � 1 as c �
1. To satisfy

√
K + ω̃ h � 1 for h � hc, we thus need

that hc � 1/
√

K + ω̃, which is clearly satisfied by the
hcn of Eq. (B10), given that indeed K/(K + ω̃) � 1 for
c � 1 in this case and therefore yn = y0 + o(y0) � 1 for
c � 1. Noting further that ω � μ + c − 1 � 1 as c � 1,
and that sizable contributions to the conditional expecta-
tion in Eq. (B1) can only come from x = O(1/

√
ω) � 1,

we also satisfy the assumption Kx/
√

K + ω̃ � 1 on which
the utility of the first-order Taylor expansion (B3) depends.
Hence, all assumptions made on the way are self-consistently

satisfied and

hcn → 0, as c → ∞ (B11)

in this case.
For K = K (c) = 1/c, however, we have ω̃ � μ + c−2

c =
O(1) and thus K + ω̃ � μ + c−1

c = O(1) as c � 1. To satisfy√
K + ω̃ h � 1 for h � hc, we now need that hc � 1 for c �

1. The requirement that Kx/
√

K + ω̃ � 1 needed for the util-
ity of the first-order Taylor expansion is now trivially satisfied
for any x = O(1) and thus also for x = O(1/

√
ω) given that

ω � μ + c−1
c = O(1) as c � 1. As before, K/(K + ω̃) � 1

for c � 1 in this case and therefore yn = y0 + o(y0) → ∞ as
c → ∞, hence

hcn → ∞, as c → ∞ (B12)

by Eq. (B10). Once more, therefore, all assumptions made
on the way for the asymptotic analysis are self-consitently
satisfied in this case.
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