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Abstract
We investigate hide-and-seek games on complex networks using a random 
walk framework. Specifically, we investigate the efficiency of various degree-
biased random walk search strategies to locate items that are randomly hidden 
on a subset of vertices of a random graph. Vertices at which items are hidden 
in the network are chosen at random as well, though with probabilities that 
may depend on degree. We pitch various hide and seek strategies against 
each other, and determine the efficiency of search strategies by computing 
the average number of hidden items that a searcher will uncover in a random
walk of n steps. Our analysis is based on the cavity method for finite single 
instances of the problem, and generalises previous work of De Bacco et al 
(2015 J. Phys. A: Math. Theor. 48 205004) so as to cover degree-biased 
random walks. We also extend the analysis to deal with the thermodynamic 
limit of infinite system size. We study a broad spectrum of functional forms 
for the degree bias of both the hiding and the search strategy and investigate 
the efficiency of families of search strategies for cases where their functional 
form is either matched or unmatched to that of the hiding strategy. Our results 
are in excellent agreement with those of numerical simulations. We propose 
two simple approximations for predicting efficient search strategies. One is 
based on an equilibrium analysis of the random walk search strategy. While not 
exact, it produces correct orders of magnitude for parameters characterising 
optimal search strategies. The second exploits the existence of an effective 
drift in random walks on networks, and is expected to be efficient in systems
with low concentration of small degree nodes.
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1. Introduction

There are many real-life scenarios where one party attempts to hide information that is desired 
by another party. Examples include hiding confidential information at a node in a computer 
cluster, hiding an item at a physical site, and trying to keep an object safe from a potential 
attack on a group of sites. The party hiding the information could have good or bad intention. 
E.g. they could be storing personal information, and the searcher could be a hacker trying to 
locate and exploit it; conversely, the hider could be stashing away stolen goods, and the seeker 
a police force looking for it.

The above scenarios have been formalised by an agent-based game called hide-and-seek. 
In an abstract formulation, there are two agents, a hider and a searcher, and a sample space 
formalised as a network. The hider conceals a given set of items on a subset of vertices of the 
network. The searcher then tries to locate those objects by searching the network.

Hide-and-seek games are a form of search games [1, 2]—a broad term that is used to 
describe games that involve an agent searching for something in a sample space. A multitude 
of search games have been explored over the years and they find applications in many fields 
[1]. Search games can be applied for monitoring patrolling situations [3], controlling urban 
security [4], controlling contagion [5], and detecting malicious packets in computer networks 
[6]. Chapman et al [7] study hide-and-seek games to address issues in cyber security, and we 
draw inspiration from their work.

In the present paper we analyse hide-and-seek games from a random walk perspective. I.e. 
we shall not be specifically concerned with game theoretic aspects, such as existence or multi-
plicity of Nash equilibria. Rather we propose to analyse the efficiencies of families of random 
search strategies, formalised as degree-biased random walks, when applied to locate a set of 
items hidden in a network according to a probabilistic hiding strategy. We take the random 
hiding strategies to be degree-biased as well.

The problem of a random walker exploring a network has found applications in many 
fields [8], including diffusion [9], infection dynamics in social networks [10, 11], or in image 
segmentation [12].

Random walks have been studied extensively over the years. Indeed, as emphasised by 
Lovász [13], there is ‘not much difference between the theory of random walks on graphs and 
the theory of finite Markov chains’, and so it will not come as a surprise that properties of 
random walks in complex networks have been studied in their own right [13–18].

In order to analyse the efficiency of a random search strategy, we adapt a result of De Bacco 
et al [19] in which the average number of different vertices of a complex network visited by a 
random walker performing an unbiased n-step random walk is computed. We generalise their 
work by considering more general degree-biased transition probabilities and use this to assess 
the efficiency of a family of degree-biased random search algorithms to locate items that are 
randomly hidden on a subset of vertices of a random graph. We also extend the finite single 
instance analysis of [19] to cover the thermodynamic limit of infinite system size, using the 
method of [20] to isolate contributions of the giant component of the system.

We compute, analyse and compare search efficiencies across a broad spectrum of search 
and hiding strategies. We explore a few basic types of graphs in the configuration model class, 
namely Erdős–Rényi graphs, random regular graphs, and scale-free graphs. The principal rea-
son for including the latter in our analysis is that many technical, social and biological real-life 
networks are indeed thought to be scale-free [21]. We compare our results with those obtained 
using random walk simulations on large finite instances and find them in excellent agreement 
with those obtained using the theoretical tools developed in the present paper.
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The remainder of our paper is organised as follows. In section 2, we present the random 
walk framework in terms of which we are going to analyse the efficiency of random search 
strategies, as well as the families of degree-biased strategies for hiding and searching we will 
investigate. In section 3 we describe the method that we use for computing the efficiency of 
a searcher, both for large single instances (section 3.1) and in the thermodynamic limit of 
infinite system size (section 3.2). In section 4, we present and discuss the results obtained, and 
close with a summary and concluding remarks in section 5.

2. Random walk framework

2.1. Graphs, random search strategies and their analysis

We will investigate the efficiency of search strategies using random graphs as search spaces. 
A random graph G is defined by a set V  of vertices and a set E of edges represented by an 
adjacency matrix C  =  (cij), with its entries cij randomly taking the value 1 if nodes i and j  are 
connected by an edge, and 0 otherwise. We denote by N = |V| the number of vertices or nodes 
in the graph. We assume the networks to be undirected, so cij = cji for each pair of nodes (i, j), 
and that there are no self-loops in the system, hence cii  =  0 for all i.

Our analysis of the efficiency of random search strategies will be based on recent work 
of De Bacco et al [19] who analyse the average number Si(n) of different sites visited by a 
random walker starting on vertex i in a random walk of n steps, when n becomes large. They 
express Si(n) as

Si(n) =
�

j∈V
Hij(n), (1)

where Hij (n) denotes the probability of visiting node j  at least once in the first n time steps 
when the walker started at node i. They evaluate the large n asymptotics of this number in 
terms of its z-transform

Ŝi(z) =
∞�

n=0

Si(n)zn =
�

j∈V
Ĥij(z) . (2)

The z-transform Ĥij(z) in turn is expressed in terms of the z-transform of the n-step transition 
probability Gij(n) = (Wn)ij, with W  =  (Wij) denoting the matrix of probabilities for one-step 
transitions i → j . De Bacco et al [19] find

Ĥij(z) =
1

1 − z
Ĝij(z)

Ĝjj(z)
. (3)

In order to make this paper reasonably self-contained, we reproduce the key steps of this deri-
vation in appendix A. The large n asymptotics of Si(n) is then extracted by analysing the z → 1
asymptotics of its z-transform. The analysis in [19] covers the case where the random walker 
is performing an unbiased random walk, for which the probability of transitioning from node 
i to node j  is given by

Wij =
cij

ki
, (4)

where ki = |∂i| is the degree of node i, with ∂i denoting the set of the neighbours of node i.
Our analysis of the efficiency of random search strategies can fully utilise this theoretical 

framework. It only requires two extensions.
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The first is minor. We mark a subset of vertices of the graph as having items of interest hid-
den on them. To do so, we associate an indicator variable ξj with each site j  which designates 
whether an item is hidden on that node (ξj = 1), or not (ξj = 0). Then

Si(ξ, n) =
�

j∈V
Hij(n)ξj, (5)

with ξ = {ξ1, ξ2, ...., ξN}, will denote the average number of hidden items found in an n-step 
random walk starting at node i. Its large-n asymptotics will again be analysed in terms of 
the z → 1-asymptotics of its z-transform, which—using equations (2) and (3)—we see to be 
given by

Ŝi(ξ, z) =
1

1 − z

�

j∈V

Ĝij(z)

Ĝjj(z)
ξj . (6)

The second modification is concerned with looking at a wider family of random walk 
models. Rather than restricting the analysis to unbiased random walks, we will look at a large 
family of degree-biased random walks with one step transition matrices given by

Wij =
cijs(kj)

Γi
. (7)

Here s(k) is a function of the degree, which we will refer to as a search strategy. The constant 
Γi  is dictated by the normalisation requirement for transition probabilities, giving

Γi =
�

j∈V
cijs(kj) .

(8)

In order to evaluate (6), we need the z-transform of the matrix of n-step transition prob-
abilities. It is given by

Ĝ(z) =
�
I− zW

�−1
, (9)

with I denoting the N × N  identity matrix. We will refer to Ĝ(z) as the resolvent of W. The 
matrix W of one-step transition probabilities satisfies a detailed balance condition with the 
equilibrium distribution

πi =
1
Y
Γis(ki), with Y =

�

j∈V
s(kj)Γj . (10)

This can be used to express Ĝ(z) in terms of a symmetric matrix R̂(z) as

Ĝ(z) = D− 1
2 R̂(z)D

1
2 , (11)

where D = diag(Γis(ki)
�
, and

R̂(z) =
�
I− zD

1
2 WD− 1

2
�−1

. (12)

This matrix, the resolvent of W = D
1
2 WD− 1

2, is easily seen to be symmetric. The fact that Ĝ(z)
and R̂(z) are related by a similarity transformation can be exploited [19] to analyse Ĝ(z) via 
the spectral decomposition of R̂(z). One has

R̂(z) =
v1vT

1

1 − z
+

N�

ν=2

vνvT
ν

1 − zλν
≡ v1vT

1

1 − z
+ Ĉ(z), (13)
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where the λν and the vν are, respectively, the eigenvalues and eigenvectors of W . We have 
isolated the contribution of the Perron–Frobenius eigenvalue λ1 = 1 of W  (hence of W), and 
introduced Ĉ(z) to denote the contributions corresponding to the remaining eigenvalues. The 
(normalised) Perron–Frobenius eigenvector v1 of W  has entries

v1,i =
√
πi =

�
s(ki)Γi

Y
. (14)

Assuming that the graph G is connected, we know that the Markov chain described by W is 
irreducible, hence that the multiplicity of the largest eigenvalue is 1 and that λν < 1 for all 
ν �= 1 by the Perron–Frobenius theorem. In the z → 1 limit, the contribution from the second 
term of the RHS of equation (13) is therefore negligible in comparison to the contribution 
from the first term.

Following the reasoning of De Bacco et al [19], one can use this fact to determine the domi-
nant z → 1 asymptotics of Ŝi(ξ, z) in the large N limit (recall that |V| = N), and finds

Ŝi(ξ, z) ∼ 1
(1 − z)2Y

�

j∈V

s(kj)Γj

R̂jj
ξj, z → 1 . (15)

In equation (15), the N → ∞-limit is assumed to be taken, and we have introduced

R̂jj = lim
z→1

lim
N→∞

R̂jj(z) . (16)

For the sake of completeness, the key steps of this derivation are reproduced in appendix B.
Upon taking an inverse z-transform, the 1/(1 − z)2 divergence in equation (15) translates 

into a linear large-n behaviour of Si(ξ, n) of the form

Si(ξ, n) ∼ B n, n � 1, (17)

with

B =
1
Y

�

j∈V

s(kj)Γj

R̂jj
ξj . (18)

Once more it is assumed that the N → ∞-limit is taken in this expression. Note that Si(ξ, n)
is for large n independent of the starting vertex i. We will in what follows refer to the constant 
B as the search efficiency.

The non-trivial element in the evaluation of the search efficiency B is related to the R̂jj that 
appear in the result, which according to equation (12) are the diagonal elements of the inverse 
of a large matrix. We adopt the approach of [19] to evaluate these diagonal elements of inverse 
matrices in terms of single-site variances of a suitable multivariate Gaussian distribution, and 
use the cavity method to do this in practice for large systems. The method will be explained 
below in section 3. Before that, though, we turn to describing the hiding strategies that we 
consider in the present paper.

2.2. Hiding strategies

In order to be able to discuss the efficiency of search strategies, we also need to specify the 
strategies according to which items are hidden in a network. We shall take these hiding strate-
gies to be probabilistic as well. One of the simplest choices is unbiased random hiding, which 
can be characterised in terms of a Bernoulli distribution for the ξj as

S Pandey and R KühnJ. Phys. A: Math. Theor. 52 (2019) 085001
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p(ξj) = ρh δξj,1 + (1 − ρh) δξj,0 (19)

for 0 < ρh � 1. Here δa,b is the Kronecker–delta, i.e. δa,b = 1 if a  =  b, and δa,b = 0 if a �= b. 
The parameter ρh specifies the average fraction of vertices which have items hidden on them. 
As for search, we will look at a broader family of hiding strategies that are taken to be cor-
related with degree, i.e. we will choose

p (ξj = 1|kj = k) = ρh
h(k)
�h� , (20)

in which h(k) is a function of the degree, while �h� denotes the average of h(k) over the degree 
distribution p k, that is �h� = �

k pkh(k). In what follows, we will refer to the function h(k) as 
a hiding strategy. Note that for a given hiding strategy the range of achievable ρh is bounded, 
as one needs to ensure that

max
k

ρh
h(k)
�h� � 1 . (21)

In table 1 we list the families of degree biased hiding and search strategies that we will 
consider in the present paper, along with the parametrisations we use to explore each family. 
We have tried to cover the major functional forms for both hiding and search strategies.

We will investigate the effect of selecting a particular parameterised family of search strate-
gies for any of the given hiding strategies and look at the dependence of the search efficiency 
B on the parameters characterising the search strategy. We will explore both matched and mis-
matched combinations of hiding and search strategies. Results will be presented in section 4.

3. Evaluation of search efficiencies

In this section we turn to the actual evaluation of search efficiencies. As mentioned above, the 
non-trivial problem that must be solved in this evaluation is that of evaluating diagonal ele-
ments of the resolvent, i.e. diagonal element of an inverse of a large matrix.

We will perform our analysis both for single large instances of the problem by suitably 
adapting the cavity method developed for spectra of sparse symmetric random matrices [22], 
and in the thermodynamic limit by interpreting the self-consistency equations for the inverse 
cavity variances arising from the cavity analysis as stochastic recursions.

The single instance calculation, too, will very closely follow [19], implementing the two 
extensions required to handle the search aspect and the more general (degree biased) random 
walk models we are looking at in the present paper. The transition to the thermodynamic 
limit turns out to be non-trivial, though, and requires the introduction of an infinite family of 
(degree dependent) distributions of inverse cavity variances.

Table 1. Overview of the degree-biased hiding and search strategies and their 
paremetrisations investigated in the present paper.

Functional form Hiding Searching

Power-law h(k) = kβ s(k) = kα

Exponential h(k) = eβk s(k) = eαk

Logarithmic h(k) = log(1 + βkγh) s(k) = log(1 + αkγs)

S Pandey and R KühnJ. Phys. A: Math. Theor. 52 (2019) 085001
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Another theoretical problem that arises is related to the fact that, whereas the single-
instance cavity analysis is performed on a simply connected network (in the case of ran-
dom graph ensembles, on their giant component), the analysis of the thermodynamic limit, 
if naively performed, includes contributions from finite clusters of the system, which would 
have to give null-contributions to overall search efficiencies. We will utilise methods recently 
devised in [20], to obtain results for the thermodynamic limit which are properly restricted to 
the giant component.

3.1. Cavity method

The evaluation of the R̂jj appearing in equation (15) requires a matrix inversion (12), followed 
by taking suitable limits (16). The matrix inversion would be computationally expensive for 
large systems. It has been pointed out in the context of evaluating spectra of random matri-
ces [23] that expressing elements of inverse matrices as covariances of suitable multivariate 
Gaussians provides a simple method to compute inverse matrices, which is particularly effec-
tive for large sparse systems [22]. It was used in [19] to evaluate the average number of sites 
visited by an unbiased random walker.

For z  <  1 the matrix R̂(z) is positive definite, and so is its inverse. One can therefore evalu-
ate elements of R̂(z) as averages

R̂ij(z) = �xixj� (22)

over the multivariate Gaussian

P(x) =
1
Z

exp

�
−1

2
xTR̂−1(z)x

�

=
1
Z

exp

�
− 1

2

�

i,j∈V
xi

�
δij − zcij

�
s(ki)s(kj)

ΓiΓj

�
xj

�
.

(23)

To proceed it is advantageous [24] to rescale variables xi/
√
Γi → xi. Keeping the same sym-

bols for the rescaled variables, we have

P(x) =
1
Z

exp

�
− 1

2

�

i,j∈V
xi

�
Γi δij − z cij

�
s(ki)s(kj)

�
xj

�

=
1
Z

exp

�
− 1

2

�

i,j∈V
cij

�
1
2
�
x2

i s(kj) + x2
j s(ki)

�
− z

�
s(ki)s(kj) xixj

��

(24)
for their joint distribution, where we have inserted the definition of the Γi  in the second line 
and used the symmetry of the cij to express the resulting distribution in terms of an exponential 
of a manifestly symmetric quadratic form.

To evaluate the diagonal elements R̂jj in equation (15), one only needs single-site variances 
P(x), for which only single-site marginals of P(x) are needed. Following standard reasoning 
[19, 22, 24] one finds these as

Pi(xi) =

� � �

j∈V\i

dxj

�
P(x),

giving
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Pi(xi) ∝
� ��

j∈∂i

dxj

�
exp

�
−

�

j∈∂i

�
1
2
�
x2

i s(kj) + x2
j s(ki)

�
− z

�
s(ki)s(kj) xixj

��
P(i)(x∂i) . (25)

Here P(i)(x∂i) is the joint cavity marginal of the xj  on sites j  which are neighbours of node i on 

the graph with node i missing. On a locally tree-like graph one has P(i)(x∂i) �
�

j∈∂i

�
P(i)

j (xj)
�
, 

where ∂i denotes the set of neighbours of i and the P(i)
j (xj) are the single-site cavity marginals 

of xj . Hence the integrals in equation (25) factor, and

Pi(xi) ∝
�

j∈∂i

�
dxj exp

�
−1

2
�
x2

i s(kj) + x2
j s(ki)

�
+ z

�
s(ki)s(kj) xixj

�
P(i)

j (xj) .

(26)

Following the same line of reasoning for single-site cavity marginals P(i)
j (xj), we have

P(i)
j (xj) ∝

�

�∈∂j\i

�
dx� exp

�
−1

2
�
x2
�s(kj) + x2

j s(k�)
�
+ z

�
s(kj)s(k�) xjx�

�
P( j)
� (x�) . (27)

The system (27) of equations is self-consistently solved by Gaussians of the form

P(i)
j (xj) =

�
ω
(i)
j

2π
exp

�
−1

2
ω
(i)
j x2

j

�
, (28)

with ω(i)
j > 0, entailing that the inverse cavity variances need (in the limit z → 1) to satisfy 

the self-consistency equations

ω
(i)
j =

�

�∈∂j\i

�
s(k�)−

s(kj)s(k�)

ω
( j)
� + s(kj)

�
. (29)

With the P(i)
j (xj) Gaussian, the single site marginals Pi(xi) are also Gaussian. Denoting inverse 

single-site variances by ωi , we obtain these in terms of inverse cavity variances as

ωi =
�

j∈∂i

�
s(kj)−

s(ki)s(kj)

ω
(i)
j + s(ki)

�
. (30)

Equations (29) and (30) generalise those obtained in [19] to cover general degree-biased ran-
dom walk models.

Once equation (29) are solved for a given single instance of a graph, the inverse single-
site marginals can be computed. When evaluating the search efficiency B according to equa-
tion (18) we need to recall that the ωj  are inverse single site variances of rescaled variables 
xj/

�
Γj . We therefore have R̂jj = Γj/ωj, hence

B =
1
Y

�

j∈V
s(kj)ωj ξj . (31)

We will see in section 4 that, for sufficiently large systems, results obtained using the present 
approach agree very well with those of simulations. Before turning to results, however, we 
will first elaborate the theory for the limit of infinitely large systems.

S Pandey and R KühnJ. Phys. A: Math. Theor. 52 (2019) 085001
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3.2. Thermodynamic limit

In the thermodynamic limit, equation (29) can be interpreted as stochastic recursion relations 
for inverse variances of single-site cavity marginals. In what follows we will use these equa-
tions to obtain a system of self-consistency equations for the distributions of the inverse cavity 
variances for ensembles of random graphs in the configuration model class. It turns out that 
degree dependent families of such distributions are needed due to the node degrees appearing 
in equation (29). The resulting self-consistency equations for these distributions can be solved 
by a stochastic population dynamics algorithm [25]. The solution then determines the degree 
dependent distributions of inverse single site marginals needed to evaluate search efficiencies 
in the thermodynamic limit according to equation (31).

However, it turns out that the results of this approach cannot be directly compared to single 
large instance calculations or to simulations, which are usually performed by restricting atten-
tion to the (single) giant component of a graph, whereas standard random graph ensembles 
typically describe systems which—apart from the giant component—also contain finite clus-
ters. In section 3.2.3 below we will therefore introduce the necessary modifications which will 
allow one to compute search efficiencies of random walkers restricted to the giant component 
of random graph ensembles.

3.2.1. Distributions of inverse cavity variances. The self-consistency equation  (29) for the 

inverse cavity variances imply that ω(i)
j  depends on the node degree kj  of node j . Analogous 

degree dependences must therefore be expected for the ω( j)
�  appearing on the rhs of equa-

tion  (29). In the thermodynamic limit, we therefore need to self-consistently determine an 
entire family {π̃k(ω̃)}k�1 of degree-dependent distributions of inverse cavity variances ω̃ .

To evaluate these distributions, consider nodes of degree kj   =  k adjacent to some cav-

ity site i. The probability π̃k(ω̃) dω̃ that ω(i)
j ∈ (ω̃, ω̃ + dω̃] for some pair (i, j) of adjacent 

vertices with kj   =  k is obtained by summing over the probabilities of realisations of the rhs 

of (29) for all j  with kj   =  k, which give a value in that range. Recall that ω(i)
j  has contrib-

utions from all vertices adjacent to j , except i. Thus, considering nodes of degree k adjacent 
to a cavity, we shall denote the collection of degrees of the k  −  1 vertices (not including 
the cavity) connected to such a node by {kν � 1}k−1 = {kν � 1; ν ∈ {1, . . . , k − 1}}. In a 
configuration model, the probability of encountering such a collection of degrees of k  −  1 

neighbouring vertices is 
�k−1

ν=1
kν
c pkν , in which p k denotes the probability of having a vertex 

of degree k in the graph, so that k
c pk is the probability that a randomly chosen neighbour of a 

node has degree k, with c = �k� denoting the mean degree. Introducing the shorthand notation 
dπ̃kν (ω̃ν) = π̃kν (ω̃ν)dω̃ν, and defining

Ωk−1 ({ω̃ν , kν}|k) =
k−1�

ν=1

�
s (kν)−

s(k)s(kν)
ω̃ν + s(k)

�
, (32)

as a shorthand for a random realization of the rhs of (29) for kj   =  k we then have

π̃k (ω̃) =
�

{kν�1}k−1

� k−1�

ν=1

kν
c

pkν

� � � k−1�

ν=1

dπ̃kν (ω̃ν)
�
δ [ω̃ − Ωk−1 ({ω̃ν , kν}|k)] .

(33)
In equation (33) δ[. . . ] denotes the Dirac δ-distribution.

In a similar vein, the degree dependent distributions πk(ω) of inverse single-site variances 
of the rescaled Gaussian variables xj  are obtained from equation (30) as

S Pandey and R KühnJ. Phys. A: Math. Theor. 52 (2019) 085001
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πk (ω) =
�

{kν�1}k

� k�

ν=1

kν
c

pkν

� � � k�

ν=1

dπ̃kν (ω̃ν)
�
δ [ω − Ωk ({ω̃ν , kν}|k)] .

(34)
They can be evaluated once the solutions {π̃k(ω̃)} of equation (33) have been found. These 
distributions can be used to compute the search efficiency B from equation (31).

3.2.2. Search efficiencies. To evaluate search efficiencies, we rewrite equation (31) as

B =
1

Y/N

�
1
N

�

j∈V
s(kj)ωj ξj

�
, (35)

thereby highlighting the fact that it is a ratio of two terms, which—in the thermodynamic limit 
N → ∞—can both be evaluated by appeal to the law of large numbers. Recalling from equa-
tion (14) that the normalisation constant Y appearing in the Perron–Frobenius eigenvector v1

of R̂ gives

Y
N

=
1
N

�

j∈V
s(kj)Γj,

we find that this results in

B =
1
N

�

k

pk

�
s(k) E[ω|k] E[ξ|k]

�
(36)

as the limiting expression for the search efficiency. Here

E[ω|k] =
�

dπk(ω)ω

=
�

{kν�1}k

� k�

ν=1

kν
c

pkν

� � � k�

ν=1

dπ̃k(ω̃ν)
�
Ωk ({ω̃ν , kν}|k)

(37)

by equation (34), and we have

E[ξ|k] = ρh
h(k)
�h� (38)

from equation (20), while

N = lim
N→∞

Y
N

= c
��

k

k
c

pks(k)
�2

(39)

is the limiting value of the normalisation factor Y/N. We refer to appendix C for its evaluation.
The search efficiency B clearly has a natural decomposition in terms of contributions of 

vertices of different degree. It can be written as

B =
�

k�1

pkBk, (40)

where the k-dependent components Bk are given by

Bk =
1
N s(k)E[ω|k] E[ξ|k] . (41)
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They denote the fraction of sites of degree k on which items are found per unit time in the 
course of an n-step degree-biased random walk.

The reasoning in the present section does not properly take into account the fact that simu-
lations or single-instance cavity analyses are typically performed on graphs which consist of 
a single component, given that a random walker can only explore the graph component on 
which (s)he starts the search in the first place. If that component is one of the finite clusters, 
then only that finite cluster can be explored in the search so that the number of items found in 
a random walk will be finite, hence the efficiency of the search as defined by the number of 
items found per unit time in an n-step walk will tend to zero in the large-n limit. In the follow-
ing section we will discuss the modifications of the theory necessary to take into account the 
fact that only random searches on the giant component of a random graph will give a non-zero 
contribution to the search efficiency B.

3.2.3. Isolating giant component contributions. As we have just indicated, any node belong-
ing to one of the finite clusters would give a zero contribution to the search efficiency B in the 
thermodynamic limit, and only the nodes in the giant component are going to contribute to 
the result. It is therefore important to differentiate between the two and to be able to restrict 
results obtained for the search efficiency in the thermodynamic limit to contributions coming 
only from the giant component of the system.

In order to do this, we can follow [20], and supplement the recursions equation (29) for 
the inverse cavity variances and expression equation (30) for inverse single-site variances by 
analogous equations describing whether or not a site adjacent to a cavity belongs to the giant 
component of the system, and similarly whether a randomly selected site does or does not 
belong to the giant component.

This is achieved by introducing indicator variables ni for each node i which take the value 
1, if node i belongs to the giant component of a graph and 0, if it does not. In a similar vein, 

indicator variables n(i)
j  are introduced to express whether a node j  adjacent to a cavity site i 

does or does not belong to the giant component. For these we have

ni = 1 −
�

j∈∂i

�
1 − n(i)

j

�
(42)

n(i)
j = 1 −

�

�∈∂j\i

�
1 − n( j)

�

�
. (43)

The first of these equations states that node i belongs to the giant component of the graph if at 
least one of its neighbours is connected to the giant-component through a path not involving 
i, whereas the second equation expresses the same fact for a site adjacent to the node i on the 
cavity graph from which node i is removed.

In the thermodynamic limit equation (43) can once more be thought of as stochastic recur-
sions for random cavity indicator variables. For a node j  of degree kj   =  k adjacent to a cavity 
node i we now seek to determine the joint probability π̃k(ω̃, ñ) dω̃ that the inverse cavity vari-

ance ω(i)
j  falls into the infinitesimal interval (ω̃, ω̃ + dω̃] and that the cavity indicator variable 

n(i)
j  takes the value n(i)

j = ñ ∈ {0, 1}. As for equation (33), this joint probability is obtained by 

summing over the probabilities of all realisations of the rhs of equations (29) and (43) which 
give a value of the inverse cavity variance in that prescribed range and a value ñ for the cavity 
indicator variable. This gives
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π̃k (ω̃, ñ) =
�

{kν�1,ñν}k−1

� k−1�

ν=1

kν
c

pkν

� � � k−1�

ν=1

dπ̃kν (ω̃ν , ñν)
�
δ [ω̃ − Ωk−1 ({ω̃ν , kν}|k)]

× δñ,1−�k−1
ν=1(1−ñν)

.

(44)

In a similar vein we obtain the joint distribution πk(ω, n) for the inverse single-site variances 
ωi  and the single-site indicator variables ni from the solution of equation (44) as

πk (ω, n) =
�

{kν�1,ñν}k

� k�

ν=1

kν
c

pkν

� � k�

ν=1

dπ̃kν (ω̃ν , ñν) δ [ω − Ωk ({ω̃ν , kν}|k)]

× δn,1−�k
ν=1(1−ñν). (45)

The search efficiency B evaluated on the giant cluster can be written as

B =
1

Yg/Ng

�
1

Ng

�

j∈Vg

s(kj)ωj ξj

�
, (46)

where Vg is the set of nodes in the giant cluster, Ng is the number of nodes in the giant cluster 

and Yg =
�

j∈Vg
s(kj)Γj. In the thermodynamic limit, both the numerator and the denomina-

tor in this expression are once more evaluated by appeal to the law of large numbers. We will 
use a recent result of Tishby et al [26] about degree distributions conditioned on the giant 
component of random graphs to evaluate the denominator and use the πk(ω, n) in (45) to com-
pute conditional expectations of inverse single-site variances ω  conditioned on degree and on 
nodes belonging to the giant cluster

E[ω|k, n = 1] =
�

dπk(ω|1)ω

=
1
ρ

�

{kν�1,ñν}k

� k�

ν=1

kν
c

pkν

� � � k�

ν=1

dπ̃k(ω̃ν , ñν)
�
Ωk ({ω̃ν , kν}|k)

× δ1,1−�k
ν=1(1−ñν),

(47)

in which ρ  is the probability of a randomly chosen vertex to belong to the giant cluster. This 
gives

B =
1
Ng

�

k�1

p(k|1)
�
s(k)E[ω|k, n = 1]E(ξ|k)

�
, (48)

with p(k|1) denoting the degree distribution conditioned on the giant cluster [26], and

Ng =
c
ρ

�

k,k�

k
c

pk
k�

c
p�k s(k)s(k�)

�
1 − (1 − ρ̃)

k�+k−2�
(49)

giving the limiting value of Yg/Ng; its evaluation, following [26], is left to appendix C. In 
equation (49), ρ̃  denotes the probability of a random link pointing to nodes on the giant clus-
ter. These quantities can be easily evaluated using standard generating function techniques.

As before, the expression for the search efficiency restricted to the giant component has a 
natural decomposition into contributions of vertices of different degrees, that is,
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B =
�

k�1

p(k|1)Bk .

(50)
Here, the degree distribution appearing in equation (40) is replaced by the degree distribution 
conditioned on the giant component, and we have

Bk =
1
Ng

s(k)E
�
ω|k, n = 1

�
E
�
ξ|k

�
.

(51)
The self-consistency equation  (44) for the π̃k(ω̃, ñ) which are needed to evaluate search 

efficiencies in the thermodynamic limit are very efficiently solved using a stochastic popula-
tion dynamics algorithm. The new aspect in the present problem is that several such popula-
tions are needed to represent the π̃k(ω̃, ñ) for the different degrees k in the system.

3.3. Analytic results for random regular graphs

On random regular graphs, we have pk = δk,c. Hence there cannot be a non-trivial degree 
biased strategy, as the normalised matrix of transition probabilities is independent of the 
choice of s(k) = s(c) = s, and we are therefore looking at an unbiased random walk as the 
search strategy, and random hiding as the hiding strategy.

Given that all nodes (and all links) are equivalent in the thermodynamic limit, the solution 
of equations (32) and (33) is π̃c(ω̃) = δ(ω̃ − ω̄), with ω̄  satisfying

ω̄ = (c − 1)
�

s − s2

ω̄ + s

�
. (52)

The only non-zero solution to (52) is ω̄ = s(c − 2), where s = s(c). Using N = cs2 from 
equation (39), and inserting π̃c(ω̃) = δ(ω − ω̄) into equation (45) we have

E[ω|k] = E[ω|c] = cs
c − 2
c − 1

, (53)

and thus

B = ρh
c − 2
c − 1

. (54)

This result is independent of s as it should. The result was obtained in [19] from a single-
instance cavity analysis of the case ρh = 1, and is also consistent with earlier findings of [27] 
for random walks on Bethe lattices of connectivity c.

3.4. Approximations

In what follows we will look at two approximate descriptions of the hide and seek problem.
The first is based on comparing the equilibrium distribution of the random walker execut-

ing the search with the distribution characterising the location of hidden items on the network. 
While this equilibrium type analysis does not actually provide us with an estimate of the 
search efficiency, it will allow us to find parameter settings for the strategy of the searcher 
which will optimise the search efficiency for a given hiding strategy.

The second approximation is based on a so-called non-backtracking assumption and it 
will actually produce approximate values for search efficiencies. For reasons to be described 
below, we expect these approximations to become quite accurate in the limit where most ver-
tices of the system actually have large degrees.
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3.4.1. An analysis using equilibrium distributions. The analysis in the present section is based 
on the observation that a random walker starting her walk on any randomly chosen site of a 
network will—after only a few steps of the walk—very quickly ‘forget’ about any specific 
properties of the starting vertex and start visiting different vertices of the system with prob-
abilities given by the equilibrium probability of the random walker.

Let us denote by qs(k) the equilibrium probability of the random walker to visit a site of 
degree k, and by qh(k) the probability that a randomly selected site with an item hidden on 
it has degree k. Choosing parameters of the search strategy in such a way that qs is as close 
as possible to qh should then provide a good heuristic to optimise the efficiency of a search 
strategy.

From equation (20) we have

qh(k) = pk
h(k)
�h� ,

(55)
with �h� = �

k pkh(k) for the conditional probability that a site has degree k given that an item 
is hidden on it. In a similar fashion we have

qs(k) =
�

i∈V
πiδki,k = pk

ks(k)
�ks� (56)

for the probability that a random walker in equilibrium finds herself on a site of degree k.
A measure of the similarity of qs and qh is given by the Kullback–Leibler (KL) divergence 

between them, which is given by

KL(qs||qh) =

∞�

k=1

qs(k) log
�

qs(k)
qh(k)

�
=

∞�

k=1

ks(k)
�ks� pk log

�
ks(k)
�ks�

�h�
h(k)

�
. (57)

See e.g. [28], chapter 2. Minimising the KL divergence over any parameters characterising 
the search strategy is then expected to provide a good indication of the parameter setting 
for the most efficient search strategy within the parameterised family of strategies under 
consideration.

For power-law search s(k) = kα pitted against the power-law hiding strategy h(k) = kβ, the 
minimisation of the KL divergence can be done analytically, and it leads to

α = β − 1 (58)

for the exponent of the most efficient search strategy. We will see in the results section that the 
result is far from exact. The main reason is, of course, that the number of marked sites visited 
at least once is what matters for the search efficiency whereas the total frequency of visits 
(including repeated visits) to sites is the quantity determining the equilibrium distribution.

3.4.2. A non-backtracking approximation. On a network in which degrees are typically large, 
the probability of an unbiased random walker to return to the site from which she transitioned 
to the site she is currently on becomes small. This is because the probability of choosing any 
particular neighbour as the target of the next step, and thereby the probability of retracing the 
last step is inversely proportional to the degree of the site the random walker currently finds 
herself on, which is therefore small for a site with a large number of neighbours.

For a degree-biased random walker, this effect will persist unless the degree-bias in the 
transition probabilities is extremely strong (e.g. such that the walker almost always goes to 
the neighbouring site with the largest degree: one can easily convince oneself that in such a 
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situation there can be configurations of neighbouring sites at which the random walker could 
be trapped once it hits such a set of sites.).

Thus, assuming that back-tracking events are rare, a non-backtracking approximation can 
be formulated as follows. Denote by S(ξ, n) the average number of items found in an n-step 
walk. We suppress the index of site from which the walker started out its search, as we have 
learned above that for large n the search efficiency will be independent of the starting site. 
Assume that the random walker at the nth step of her walk visits the site j , coming from a site 
i, which is adjacent to j . If site j  is visited for the first time, the only chance to find additional 
items in the next step is not to backtrack on the previous step, but to visit sites � ∈ ∂j \ i . 
Taking averages over the sites, using the equilibrium distribution πi to give the probability that 
the walker found herself on site i in step n  −  1, and assuming that j  and its neighbours (apart 
from i) are being visited for the first time, we obtain

S(ξ, n + 1) = S(ξ, n) +
�

i∈V
πi

�

j∈∂i

Wij

�

�∈∂j\i

Wj� ξ� .
(59)

This recursion is easily solved. Taking S(ξ, 0) = 0 as the initial condition, we get

S(ξ, n) = B n, (60)

with

B =
�

i∈V
πi

�

j∈∂i

Wij

�

�∈∂j\i

Wj�ξ� .
(61)

Using the transition probabilities (7) and the resulting expression (10) for the equilibrium 
distribution we obtain

B =
1
Y

�

i∈V
s(ki)Γi

�

j∈∂i

s(kj)

Γi

�

�∈∂j\i

s(k�)
Γj

ξ� . (62)

Repeating the line of reasoning that lead to the expression (36) for search efficiencies in the 
thermodynamic limit, we can evaluate equation (62) in this limit. The resulting expression is

B =
c
N

�

k

k
c

pks(k)
�

k�

k�

c
pk�s(k�)

�

{kν}k�−1

� k�−1�

ν=1

kν
c

pkν s(kν)
� k�−1�

ν=1

s(kν)E[ξ|kν ]
s(k) +

�k�−1
ν=1 s(kν)

. (63)

We shall see in section 4.2 below that this approximation is remarkably efficient even for sys-
tems with moderate values of their mean degree.

4. Results

We now turn to results. We will evaluate search efficiencies for large finite systems using 
(i) the single-instance cavity approach described in section 3.1 and (ii) numerical simula-
tions. Search efficiencies in the thermodynamic limit will be analysed using (iii) the methods 
described in section 3.2. We will use these three approaches to explore how various search 
strategies fare against a range of hiding strategies. We shall find that there is an excellent 
agreement between results obtained using simulations and those obtained using either the 
single-instance cavity method or the method designed for the large system limit, provided the 
projection to the giant component described in section 3.2.3 is used in the thermodynamic 
limit, and finite single instances are sufficiently large.
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As mentioned in section 2.2, we cover several functional forms for the degree bias of both 
hiding and searching strategies, namely, power-law, exponential, and logarithmic strategies. 
We evaluate search efficiencies across the spectrum of functional forms used to describe hid-
ing and searching strategies and—for given functional forms—across parameter ranges char-
acterising them.

Finally we investigate search efficiencies for various graph types, including Erdős–Rényi 
graphs and scale-free graphs, and we assess the quality of our approximate approaches by 
comparing them with exact results.

4.1. Validating the theory

We begin by validating the theoretical approaches described in section 3, by comparing their 
results with those of stochastic simulations. We do this initially for complete occupancy 
ξi ≡ 1, where the number of different sites visited by a walker is a measure of network explo-
ration efficiency (rather than search efficiency).

Random networks of a sufficiently large size are generated, and n-step degree biased ran-
dom walks starting from a randomly chosen vertex on the giant cluster are simulated. The num-
ber of different sites visited is recorded. As noted in section 3 that number is for sufficiently 
large n expected to be independent of the starting vertex and S(n) ∼ Bn for 1 � n � N . We 
determine the exploration efficiency B by averaging over many realisations of the random 
walk and over many realisations of random graphs in the given ensemble. Alternatively, we 
compute the exploration efficiency B directly using the cavity method, averaging the results 
over the same set of graphs. The cavity method requires to solve equation (29) for single large 
instances. We found that for all cases considered in the present paper, this can very effectively 
be done by simple forward iteration.

For finite single instances we find that graph sizes N  =  6000 were sufficient to compare 
simulation results with those obtained via the cavity method on the one hand side, and with 
the thermodynamic limit results on the other hand side. All finite single instance results shown 
below will therefore have been obtained for systems of this size. The optimal n range for 
which the behaviour of S(n) can be fitted by a linear law has been determined by minimis-
ing χ2 in linear regression. Figure 1 shows the results of simulations and confirms the linear 
behaviour of S(n) for intermediate n. We found that 40 � n � 230 was an optimal range for 
the linear fit for this system, but observed that slightly narrower fitting ranges were required 
for other degree biases. From the simulations we determine B = 0.716 727 ± 0.000 203. This 
compares well with the analysis of B evaluated directly via the cavity approach, which gives 
B = 0.716 789 ± 0.000 210.

In figure 2, we compare the results of simulations with those obtained from the cavity anal-
ysis for degree-biased random walkers with power-law degree bias s(k) = kα for a range of α
values between α = −5 and α = +5, and we observe very good agreement between the two. 
The cavity method can therefore be safely used as a substitute of random walk simulations for 
computing exploration and search efficiencies. In figure 2 and below the symbols show the 
measured B values, while the connecting lines are guides to the eye. Errors of both simulation 
and cavity results are estimated to be O(10−4) for the exploration efficiencies presented in 
figure 2, and O(10−5) for the search efficiencies, so error bars are mostly significantly smaller 
than the symbols indicating B values. The same is true for results presented in the remainder 
of this paper.

The α dependence of B can be understood by noting that very negative α will force the 
walker to spend most of her time at low degree sites, which are themselves surrounded by low 
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degree sites, i.e. at the end of dangling chains in the graph, whereas very large positive α will 
entail that the walker is very likely to be found on sites with very high degrees that are them-
selves surrounded by high-degree nodes. Both extremes would prevent efficient exploration of 
the network, so large values of B are expected at intermediate α.

Figure 1. Behaviour of S(n) for a degree-biased random walker with degree bias 
following a power-law s(k) = kα with α = 1. The left panel displays both S(n) (lower 
curve) and Bn (upper curve), with B � 0.716 872 determined from simulations, as 
functions of Bn. The right panel shows the same results on a double-logarithmic plot. 
The behaviour of S(n) is well described by the linear law for not too large n. For larger n 
there is a clear crossover to sub-linear behaviour due to finite size effects. Results were 
obtained for Erdős–Rényi graphs of mean degree c  =  4. Simulations were performed on 
the giant component of graphs whose original size was N  =  6000. For c  =  4 the giant 
component occupies a fraction ρ � 0.98 of the entire system. Results of simulation runs 
are averaged over Ns  =  2000 random graph realisations.

Figure 2. Left panel: network exploration efficiency B of a power-law degree biased 
random walk s(k) = kα on Erdős–Rényi graphs of mean degree c  =  4. Right panel: 
search efficiency of a power-law degree biased random walk computed for power-law 
degree biased hiding with h(k) = k  for the case where a fraction ρh = 0.025 of sites 
have an item hidden on them. The connecting line is a guide to the eye. On the scale 
of the figure, results obtained from the cavity method are indistinguishable from those 
obtained from random walk simulations. The cavity results were obtained for giant 
components of systems of size N  =  6000, averaged over Ns  =  2000 random graphs.
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In figure 3, finally we compare results of the single-instance cavity approach performed on 
the giant component of random graphs with those obtained using the theory for the thermody-
namic limit. We see in figure 3 that there is an excellent agreement between results obtained 
via averaging cavity results over single large problem instances and results obtained in the 
thermodynamic limit, provided the projection onto the giant component described in sec-
tion 3.2.3 is performed.

If one were to perform simulations by randomly selecting a starting vertex from the entire 
system, the starting vertex would belong to the giant component with probability ρ , whereas 
with probability 1 − ρ it would belong to one of the finite clusters of the system. The contrib-
ution of the latter to search and exploration efficiencies is zero, so one would expect average 
efficiencies for the entire system to obey

B = ρBg + (1 − ρ)Bf = ρBg, (64)

with Bg and Bf  denoting search and exploration efficiencies corresponding to the giant comp-
onent and the finite clusters of the system, respectively.

Naïvely applying the thermodynamic limit theory of sections 3.2.1 and 3.2.2 does not 
produce this result (nor even B ∝ Bg with a proportionality constant that is independent of 
the search-strategy). The reason for this is that one of the key assumptions underlying the 
evaluation of search and exploration efficiencies along the lines described in section 3, viz. 
the fact that the Perron–Frobenius eigenvalue of the transition matrix is unique, ceases to be 
valid when the system contains several clusters and the random walk transition matrix is thus 
decomposable.

4.2. Hide and seek

We now look at pitting different hiding and searching strategies against each other. The main 
questions to be answered are concerned with identifying best search strategies (within a given 
family), when pitted against hiding strategies (again within a given family). Conversely, one 

Figure 3. Comparison of cavity and thermodynamic limit results for power-law biased 
random walk s(k) = kα on Erdős–Rényi networks of mean degree c  =  4. Left panel: 
network exploration efficiency computed for ξi ≡ 1. Right panel: search efficiency 
computed for degree biased power-law hiding with h(k) = k  for the case where a 
fraction ρh = 0.025 of sites has an item hidden on it. The cavity results were obtained 
for giant components of systems of size N  =  6000, averaged over Ns  =  2000 random 
graphs.
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might wish to identify the most efficient hiding strategy, when pitted against given search 
strategies.

Before presenting those results, let us point out though that the probability of hiding items 
in any of the degree biased hiding strategies is according to equation (20) proportional to the 
overall fraction ρh of sites with an item hidden on them. It is therefore expected, and explicitly 
borne out by equations (36) and (48) that search efficiencies in the large system limit will be 
proportional to ρh. We verify this explicitly in figure 4 by displaying the ratio B(ρh)/ρh as a 
function of search parameter α for power-law search pitted against a degree biased hiding 
strategy of the form h(k) = k . Note that B(ρh)/ρh > 1 for the optimal α value, implying that 
the searcher is able to exploit the degree bias of the hider to locate hidden items more effec-
tively than expected by the fraction of sites with items hidden on them. Unless stated other-
wise we have in what follows chosen ρh = 0.025 for the density of hidden items.

In figure 5 we investigate the search efficiency of power-law search (left panel) and of 
exponential search (right panel), when pitted against power-law hiding. We observe that there 
are optimal values of parameters of the search strategy which depend on the exponent char-
acterising the power-law hiding strategy. Optimal search efficiencies are comparable in both 
cases, though matched functional forms for the degree bias of hiding and searching gener-
ally perform slightly better than unmatched forms. The range of reasonably effective search 
parameters is narrower for the exponential family. This is easily understood as, for a given 
value of the bias parameter, exponential bias is generally more efficient in creating heteroge-
neity of transition rates than power-law bias.

Figure 6 displays the efficiencies of power-law search (left panel) and exponential search 
(right panel), when set against logarithmic hiding of the form h(k) = log(1 + βkγh) with 
γh = 1. In this figure we use the convention that β = 0 is meant to refer to unbiased hiding. 
Note that in both cases the searcher’s efficiency is always larger for degree-biased logarithmic 
hiding than for the unbiased hiding strategy with β = 0.

Figure 7 illustrates the decomposition of exploration efficiencies according to equation (51) 
into contributions Bk of vertices of different degree k encountered in a degree biased walk with 
power-law degree bias of the form s(k) = kα. Peak positions indicating the degrees of sites 
which give the largest contributions to network exploration efficiencies are increasing func-
tions of the bias parameter α of the random walker. Peak heights vary with α, with the largest 
peak height corresponding to the optimal exploration bias α � 1 as observed in figure 2.

Finally we address the question of the influence of the graph type on search or explora-
tion efficiencies. In figure 8 we look at exploration efficiencies of a degree biased random 
walker on Erdős–Rényi, scale-free, and random regular graphs, as well as on a real-world 
network—a symmetrized version of the Gnutella peer-to-peer file sharing network [29]. For 
the random regular graph, any form of degree bias is clearly ineffective and the exploration 
efficiency must obviously be independent of the value of a formal bias parameter, as indeed 
confirmed by the results. Results also confirm the analytic prediction B  =  2/3 obtained in 
equation (54) for the c  =  4 system. The Gnutella network has an average degree of c  =  4.819, 
slightly higher than the mean degree of the synthetic networks, yet close enough to make for 
a meaningful comparison. For this real-world network, we have performed additional tests to 
verify that results of the cavity analysis agree with those of numerical simulations. We found 
the agreement to be better than fractions of a per-cent. Results indicate that the degree bias is 
more effective in enhancing the exploration efficiency in the scale-free graph and the Gnutella 
network than in the Erdős–Rényi graph, which is presumably due to the greater heterogene-
ity of the degree distributions in the scale-free system and the Gnutella network. For the lat-
ter though, the slightly higher mean connectivity may have further contributed to improved 
exploration efficiency at most α values.
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We now turn to approximations. In figure 9, values of the KL divergence (57) as a function 
of the degree bias of the searcher are displayed together with the search efficiencies for the 
examples of power-law search set against random and power-law hiding. While low values 
of the KL divergence are a reasonable qualitative predictor for high search efficiencies, the 
relation is not quantitative. In fact the minimum of the KL divergence occurs at a value of α
which is approximately Δα � 2 below the value for which the search efficiency is maximised.

Figure 4. Efficiency of power-law search with s(k) = kα when set against power-law 
hiding of the form h(k) = kβ with β = 1. Shown are the ratios B(ρh)/ρh for various 
values of ρh in the allowed range defined by equation  (21), obtained by the single 
instance cavity method for the giant component of Erdős–Rényi graphs with c  =  4 
and N  =  6000, averaged over Ns  =  2000 instances. Curves lie on top of each other, 
verifying the expected proportionality.

Figure 5. Efficiency of power-law search with s(k) = kα (left panel) and of exponential 
search with s(k) = eαk  (right panel) as functions of α, when set against power-law 
hiding of the form h(k) = kβ for various β, and ρh = 0.025. In both panels, curves from 
bottom to top correspond to increasing values of the bias parameter β of the hiding 
strategy. Shown are single instance cavity results for the giant component of Erdős–
Rényi graphs with c  =  4 and N  =  6000, averaged over Ns  =  2000 instances.
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A discrepancy between the bias values which minimise the KL divergence and which max-
imise the values of the search efficiency is of course not unexpected, as the KL divergence 
is based on equilibrium considerations whereas the search efficiency is a manifestly non-
equilibrium measure, as it does not account for (the frequency of) multiple visits of any given 
site, which is a characteristic equilibrium property.

In figure 10 we investigate the power of the non-backtracking approximation for network 
exploration and search efficiencies. We expect this approximation to be efficient in networks 

Figure 6. Efficiency of power-law search with s(k) = kα (left panel) and exponential 
search with s(k) = eαk  (right panel) set against logarithmic hiding of the form 
h(k) = log(1 + βk) for various β, and ρh = 0.025, with β = 0 meant to refer to 
unbiased random hiding. In both panels, curves from bottom to top correspond to 
increasing values of the bias parameter β of the hiding strategy. Shown are single 
instance cavity results for the giant component of Erdős–Rényi graphs with c  =  4 and 
N  =  6000, averaged over Ns  =  2000 instances.

Figure 7. Decomposition of the network exploration efficiency B into k-dependent 
contributions for a range of bias parameters of the random walker with power-law bias 
of the form s(k) = kα. Shown are result obtained using population dynamics for the 
giant component of Erdős–Rényi graphs with mean degree c  =  4.
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in which there are very few sites with low degrees, such as large mean degree Erdős–Rényi 
graphs. Our results show that the non-backtracking approximation is highly efficient qualita-
tively in that it predicts optimal search and exploration parameters very accurately already for 
a c  =  4 Erdős–Rényi graph. While the actually predicted search and exploration efficiencies 

Figure 8. Comparison of network exploration efficiencies for four different graph 
types using the cavity method. Parameters are N  =  6000, and c  =  4 for Erdős–Rényi 
and regular random graphs; for the scale-free graph we chose γ = 2.65, with kmin = 2, 
kmax = 400 giving a mean connectivity c  =  3.905. Finally the Gnutella network is a 
peer-to-peer file sharing network [29], consisting of N = 36 682 nodes, from which 
we have created an undirected version by symmetrising the links. Its average degree is 
c  =  4.819. The degree distribution of the Gnutella network exhibits two regimes with 
distinct power law behaviours, viz. 1 � k � 9 where pk ∝ k−1.74, and 11 � k � 40
where pk ∝ k−4.91. Curves with peak heights from bottom to top correspond to the 
Erdős–Rényi, the scale-free and the Gnutella network, respectively. As expected there 
is no effect of degree bias on the exploration efficiency for the random regular graph.

Figure 9. Search efficiency and KL divergence displayed as functions of the bias 
parameter α for power-law search s(k) = kα, set against random hiding (left panel) and 
power-law hiding h(k) = kβ, with β = 1 (right panel). In both panels, values of search 
efficiencies are displayed on the left axis, and those for KL divergences on the right 
axis. Search efficiencies were obtained using cavity for Erdős–Rényi graphs of size 
N  =  6000, with c  =  4 and ρh = 0.025, averaged over Ns  =  2000 samples.
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are for such a low mean degree system still O(25%) off the mark, the approximation improves 
markedly across the entire α range studied in the system with a (still moderate) mean con-
nectivity c  =  8. The approximation is therefore remarkably powerful, given that it is fairly 
straightforward, and in fact conceptually and technically much simpler than the full solution.

5. Summary and discussion

We have studied the efficiency of random search strategies to locate items hidden on a subset 
of vertices of complex networks, using a random walk framework. We assumed that items are 
hidden according to stochastic, degree biased strategies. In order to evaluate search efficien-
cies we adapt a result of De Bacco et al [19] in which the average number of different vertices 
of a complex network visited by random walker performing an unbiased n-step random walk 
is computed, generalising their work by considering more general degree biased transition 
probabilities.

We use the cavity method to compute diagonal elements of resolvents needed for the evalu-
ation of network exploration and search efficiencies for large single problem instances. We 
also derive results for search efficiencies valid in the thermodynamic limit N → ∞ of infinite 
system size. This requires the solution of a degree dependent family of non-linear integral 
equations for inverse cavity variances. Their solution is obtained using a suitably adapted ver-
sion of the population dynamics algorithm of Mèzard and Parisi [25].

It turns out that the naïve derivation, based on simply re-interpreting finite-instance 
self-consistency equations  for inverse cavity variances as stochastic recursions in the ther-
modynamic limit does not accurately capture results valid for the giant component in the 
thermodynamic limit. The theory needs to be supplemented by degrees of freedom capturing 

Figure 10. Network exploration efficiency of a degree-biased random walker with 
degree bias following a power-law s(k) = kα as a function of the bias parameter α (left 
panel). Efficiency of power-law search with s(k) = kα, set against power-law hiding 
h(k) = kβ, with β = 1 as a function of the bias parameter α (right panel). In both panels 
we compare results obtained via population dynamics for the thermodynamic limit 
with those of the non-backtracking approximation described in section 3.4, The upper 
pair of curves in the left panel was computed for Erdős–Rényi graphs of mean degree 
c  =  8, whereas the lower pair of curves shows results for Erdős–Rényi graphs of mean 
degree c  =  4. The same trend is observed in the right panel, except for a small range of 
positive α values where the non-backtracking approximation predicts larger values of 
exploration efficiencies for the c  =  4 system than for the c  =  8 system.
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whether sites do or do not belong to the giant cluster, as proposed in [20] in the context of 
sparse random matrix spectra.

With this amendment, we find that results obtained using the cavity method for the giant 
components of large single instances of size N  =  6000 are already in excellent agreement with 
those obtained for the giant cluster in the thermodynamic limit, and both are in turn in excel-
lent agreement with those of stochastic random walk simulations.

We found that search and network exploration efficiencies have a natural decomposition in 
terms of degrees of sites contributing to the overall result, and we provided such a deconvolu-
tion of the network exploration efficiency by degree for the example of a random walker with 
a power-law degree bias. It is fairly easy to see that this type of deconvolution could be carried 
out beyond degree, thereby identifying local environments (such as degree and the collection 
of degrees in the first coordination shell) that are most conducive to network exploration or 
search.

We have looked at various parameterised families of degree biased search algorithms and 
degree biased hiding strategies, namely power-law, exponential, and logarithmic families, as 
described in table 1. Whatever the hiding strategy, we find—for each family of search strate-
gies—a unique intermediate value of the parameter characterising the search strategy that can 
be considered as optimal in the sense that it maximises the search efficiency. An analogous 
statement can be made for the network exploration efficiency. Qualitatively this could be 
understood by recalling that extreme values of the search parameter tended to imply that a 
degree biased random walker would spend most of her time at very low or very high degree 
sites, with both extremes not being conducive to efficient search or exploration.

We verified that search efficiencies were proportional to the density of items hidden in the 
network, and we observed that normalised search efficiencies B(ρh)/ρh could be larger than 
1 if there was a sufficiently strong degree bias in the hiding strategy which could be exploited 
to boost search.

Pitting matched and unmatched functional forms of hiding and search strategies against 
each other, we always observed that the optimal search strategy in matched families slightly 
outperformed the most efficient search strategy when the functional forms of hiding and 
search strategies were unmatched.

We also used equilibrium dynamics consideration to locate efficient values for search 
parameters by looking at the Kullback–Leibler distance between the distribution of degrees the 
random walker visits in equilibrium and the distribution of degrees with items hidden on them. 
The other approximation we looked into is a so-called non-backtracking approximation. It is 
based on the intuition that random walks on networks experience an effective drift away from 
the starting vertex, which becomes very effective if vertices typically exhibit large degrees. 
In such a situation one can evaluate search efficiencies assuming that—locally—every non-
backtracking step explores unseen parts of the network. We expect this approximation to be 
efficient in situations where networks have few low degree sites, and we demonstrated that it 
was surprisingly effective on Erdős–Rényi graphs even with modest mean degrees.

When comparing network exploration efficiencies for different graph types, we observed 
that, in an intermediate α range of power-law bias of the random walker, exploration on scale-
free graphs is more efficient than on Erdős–Rényi graphs, as a degree biased walker can make 
more efficient use of the large degree of heterogeneity of vertex degrees in scale-free graphs 
than of the rather small degree of heterogeneity present on Erdős–Rényi networks. Large posi-
tive and large negative biases tend to localise the walker (near a set of nodes or sets of nodes) 
with either high or low degree vertices, leading to a reduction in exploration of search efficien-
cies. For the random regular graph, any degree bias is ineffective hence the search efficiency 
is found to be independent of the degree bias α as expected.
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The hide and seek scenarios so far considered either did or did not have an item hidden on 
a vertex. It is easy to see that efficiencies can be computed with graded values attached to the 
items hidden on each site.

Our analysis has been restricted to computing average search and exploration efficiencies. 
Clearly, from a security point of view discussed in the introduction it would be interesting to 
compute distributions of search efficiencies, in order to assess, for instance, the likelihood of 
conducting unusually efficient, or unusually in-efficient searches. This would be par ticularly 
relevant if one were to insist on locating all items hidden in the net and would thus have 
determine the cover-time [15], though not for the entire network but for a specified subset of 
vertices. Such questions are for the time being outside the reach of our methods. They could, 
of course, always be addressed using simulations.

We have so far not dealt with proper game theoretical questions such as with the existence 
and characterisation of Nash equilibria in the present problem, or with the possibility of agents 
learning efficient search strategies, either on the fly or in repeated instances of the game. 
Analogous problems can be posed for the hider, who could update their hiding strategy in 
repeated instances of the game, by observing the efficiency of any strategy used by the seeker.

We intend to address some of these questions in future publications.
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Appendix A. Random walk analysis

In what follows we briefly summarise the key elements of the derivation of equation  (15) 
which forms the basis of the evaluation of search efficiencies, closely following [19].

The average number Si(ξ, n) of marked sites visited in an n-step random walk, given by 
(5), is expressed in terms of the probabilities Hij(n) of visiting node j  at least once in the first 
n time steps when starting at node i. The Hij(n) can in turn be decomposed according to the 
time m of the last visit to j  as

Hij (n) =
n�

m=0

Gij(m)qjj(n − m), (A.1)

in which qjj(n  −  m) denotes the probability for a walker who started at node j  not to return to 
node j  in n  −  m steps, and Gij(m) = (Wm)ij is the m-step transition probability from i to j . The 
convolution structure of the above expression entails

Ĥij(z) = Ĝij(z)q̂jj(z) (A.2)

for its z-transform. The qjj(n) are in turn related with first passage probabilities Fjj(n) via

qjj(n − 1)− qjj(n) = Fjj(n),

from which, with qjj(0)  =  1 and Fjj(0)  =  0, one obtains

q̂jj(z) =
1 − F̂jj(z)

1 − z
. (A.3)
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From

Gij(n) = δijδn0 +
n�

m=0

Fij(m)Gjj(n − m) (A.4)

finally one gets

Ĝjj(z) =
1

1 − F̂jj(z)
, (A.5)

and thus

Ĥij(z) =
1

1 − z
Ĝij(z)

Ĝjj(z)
,

(A.6)
from which the z-transform of the number of items found in an n-step walk is obtained as

Ŝi(ξ, z) =
1

1 − z

�

j∈V

Ĝij(z)

Ĝjj(z)
ξj .

(A.7)
This is equation (6) in section 2.

Appendix B. Spectral analysis

To evaluate Ŝi(ξ, z) further one uses equation (11) and the spectral decomposition (13),

R̂(z) =
v1vT

1

1 − z
+

N�

ν=2

vνvT
ν

1 − zλν
≡ v1vT

1

1 − z
+ Ĉ(z), (B.1)

of R̂(z). Using equation  (14) for the components of the Perron Frobenius eigenvector and 
Ĝjj(z) = R̂jj(z) one has

Ŝi(ξ, z) =
1

1 − z

�

j∈V

�
s(kj)Γj

R̂jj(z)Y(1 − z)
+

�
s(kj)Γj

s(ki)Γi
Ĉij(z)

s(kj)Γj

Y(1−z) + Ĉjj(z)

�
ξj, (B.2)

where, following [19], we have used the spectral decomposition (B.1) of R̂jj(z) in the denomi-
nator of the second contribution within the square brackets in (B.2). Noting that Y ∝ N, the 
second contribution can be argued to be negligible in the limit of large system size N → ∞
and z → 1 (in this order; see [19], whereas the first contribution gives

Ŝi(ξ, z) ∼ 1
(1 − z)2Y

�

j∈V

s(kj)Γj

R̂jj
ξj, z → 1, (B.3)

i.e. equation (15), where it is assumed that

R̂jj = lim
z→1

lim
N→∞

R̂jj(z) = lim
z→1

Ĉjj(z) (B.4)

exists.

S Pandey and R KühnJ. Phys. A: Math. Theor. 52 (2019) 085001



27

Appendix C. Normalization factors

Here we describe the evaluation of the normalisation constants which appear in the expres-
sions for the search and exploration efficiencies B in equations (35) and (46).

Looking at the normalisation constant Y/N in equation (35),

Y
N

=
1
N

�

i∈V
s(ki)Γi, (C.1)

we evaluated it in the thermodynamic limit N → ∞ as a sum of averages by appeal to the law 
of large numbers (LLN). This gives Y/N → N  as N → ∞, with

N =
�

k

pks(k)E
�
Γi

���ki = k
�
, (C.2)

which is further evaluated as

N =
�

k

pks(k)E

��

j∈∂i

E
�
s(kj)

���ki = k
��

=
�

k

pks(k)

�
k
�

k�
p(k�|k)s(k�)

�
=

�

k

pks(k)

�
k
�

k�

k�

c
p�ks(k�)

�
, (C.3)

where we have used the fact that, for configuration model networks, the probability p(k�|k)
that a site with degree k� is adjacent to a site with degree k does not depend on k, and is given 

by p(k�|k) = k�
c p�

k  in the last step. This is equation (39).
The evaluation of Yg/Ng in equation  (46) follows the same pattern, except for two cru-

cial modifications. First, the degree distribution p k used above needs to be replaced by the 
degree distribution p(k|n = 1) conditioned on the giant cluster. Second, the giant cluster of 
a configuration model network is not a configuration model itself, so the conditional prob-
ability p(k�|k, n = 1) that a vertex of degree k� is adjacent to a degree k site on a giant cluster 
does depend on the degree k. We can use results of Tishby et al [26] who recently provided a 
comprehensive analysis of the micro-structure of the giant component of configuration model 
networks, including the two ingredients needed here.

We have

Yg

Ng
=

1
Ng

�

i∈Vg

s(ki)Γi, (C.4)

where Ng is the size of the giant component. In the thermodynamic limit Ng = ρN → ∞ we 
have Yg/Ng → Ng by the LLN, where

Ng =
�

k

p(k|n = 1)s(k)E

��

j∈∂i

E
�
s(kj)

���ki = k, n = 1
��

=
�

k

p(k|n = 1)s(k)

�
k
�

k�
p(k�|k, n = 1)s(k�)

�
. (C.5)

Using

p(k|n = 1) =
1
ρ

�
1 − (1 − ρ̃)k

�
pk (C.6)
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and

p(k�|k, n = 1) =

�
1 − (1 − ρ̃)

k�−1
(1 − ρ̃)k−1

1 − (1 − ρ̃)k

�
k�

c
p�k (C.7)

from [26], in which ρ  is the percolating fraction, and ρ̃  is the probability that a neighbour of a 
randomly selected vertex is on the giant component of the system, we obtain

Ng =
c
ρ

�

k,k�

k
c

pk
k�

c
p�k s(k)s(k�)

�
1 − (1 − ρ̃)

k�+k−2
�

. (C.8)

This is equation (49).
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