Of Brains and Markets

Jonathan Khedair and Reimer Kühn
work done in part with Kartik Anand, Deutsche Bundesbank

Disordered Systems Group
Department of Mathematics
King’s College London

London Mathematical Finance Seminar
UCL, 22 Nov. 2018
Outline

1 Setting the Scene
 - Of Markets . . .
 - Geometric Brownian Motion
 - Stepping Back – A Gedanken-Experiment
 - . . . and Brains

2 Analysis
 - Generating Functionals
 - Separation of Time-Scales — Stationarity

3 Results

4 Inference

5 Summary
Aim of the talk

Attempt to rationalise phenomenology of market dynamics.

Not prediction!
Outline

1 Setting the Scene
 - Of Markets . . .
 - Geometric Brownian Motion
 - Stepping Back – A Gedanken-Experiment
 - . . . and Brains

2 Analysis
 - Generating Functionals
 - Separation of Time-Scales — Stationarity

3 Results

4 Inference

5 Summary
Stylized Facts of Market Dynamics

- Fat tailed (leptocurtic) return distributions
- Fast decorrelation of asset returns
- Slow decorrelation of absolute returns
- Long range correlations of volatility (volatility clustering).
Of Markets . . .

- Stylized Facts of Market Dynamics
 - Fat tailed (leptocurtic) return distributions
 - Fast decorrelation of asset returns
 - Slow decorrelation of absolute returns
 - Long range correlations of volatility (volatility clustering).

S&P 500 return distributions

(Gopikrishnan et al PRE, 1999)
Stylized Facts of Market Dynamics

- Fat tailed (leptocurtic) return distributions
- Fast decorrelation of asset returns
- Slow decorrelation of absolute returns
- Long range correlations of volatility (volatility clustering).

Auto-correlations of returns and absolute returns

(Gopikrishnan et al. PRE, 1999)
Of Markets . . .

- **Stylized Facts of Market Dynamics**
 - Fat tailed (leptocurtic) return distributions
 - Fast decorrelation of asset returns
 - Slow decorrelation of absolute returns
 - Long range correlations of volatility (volatility clustering).

![Daily S&P 500 Logarithmic Returns](chart.png)
Geometric Brownian Motion

- Geometric Brownian motion model (GBM)

\[\text{d}S_i(t) = S_i(t)[\mu_i \text{d}t + \sigma_i \text{d}W_i(t)] \]

exhibiting

- Gaussian log-return distributions
- log-prices follow diffusive motion with drift
- no correlations of volatility

- Is the “harmonic oscillator” of Financial Mathematics.
- Is at the heart of the Black-Scholes option pricing method.
- Does not reproduce the key empirical facts of market dynamics.
- Yet, with modifications still widely used in financial industry.
Fixes

- **Phenomenological**
 - Replace Brownian (Gaussian) increments in GBM by fat tailed increments (e.g. Lévy: Mantegna and Stanley, 1994)
 - Add evolution of volatilities ⇒ ARCH/GARCH/stoch. volatility (Engle, 1982; Engle and Bollerslev, 1986; Heston, 1993)

- ...
 - Typically single asset descriptions; no systemic perspective.

- **Agent based models**
 - e.g. Minority Game (Challet and Zhang, 1997)
 - Percolation models (Stauffer et al 1998, Cont and Bouchaud 2000)
 - Ising models of interacting agents (Iori, 1999; Da Silva Stauffer 2001)

- ...
 - All need fine-tuning of parameters to reproduce stylized facts.

- **Somehow unsatisfactory.**
Stepping Back – A Gedanken-Experiment

- **Question**
 Can we, just by looking at the basic structure of the problem of describing market dynamics, obtain guidance about fundamental properties any good model of market dynamics should have?

- To answer this question, let us perform a Gedanken-Experiment. It runs like this:

- Suppose I knew everything about markets, and when I say this, I mean really everything!
Stepping Back – A Gedanken-Experiment

- I would write down the complete set of dynamical equations describing all processes governing a market.

 (basic economic laws, influence of supply and demand, effect of regulatory frameworks, psychology of traders, financial positions of trading agents, laws of order book dynamics, \ldots).

- Suppose that I would integrate out all degrees of freedom from my equations, except prices of assets traded in the market.

- Which properties would the reduced model necessarily have?

- It would

 - exhibit interactions between prices
 - exhibit a non-Markovian dynamics

\[\Rightarrow: \] Formulate the simplest model with these properties.

Starting Point — GBM

- Recall GBM

\[dS_i(t) = S_i(t)\left[\mu_i dt + \sigma_i dW_i(t)\right] \]

- Transform to log-prices \(u_i(t) = \log\left[\frac{S_i(t)}{S_{i0}}\right] \). Gives

\[du_i(t) = I_i dt + \sigma_i dW_i(t) \]

with (lto) \(I_i = \mu_i - \frac{1}{2} \sigma_i^2 \).
A Minimal Model of Interacting Prices – iGBM

Generalization

\[d u_i(t) = I_i dt + \sigma_i dW_i(t) \]
\[+ \left[-\kappa_i u_i(t) + \sum_j J_{ij} \bar{g}_j(t) + \sigma_0 u_0(t) \right] dt , \]

\[\bar{g}_j(t) = \int_0^t M(t - s) g(u_j(s)) \]

\[\Leftrightarrow\] interacting geometric Brownian motion model (iGBM),

with

- the \(\kappa_i\) producing a mean reversion effect,
- the \(J_{ij}\) describing strengths of interactions between assets,
- the \(g = g(\cdot)\) denoting non-linear functions (e.g. sigmoid) describing the nature of the feedback,
- the \(u_0(t)\) assumed to be a slow process describing the evolution of macro-economic conditions (model as slow OU process)
iGBM and Neural Networks — Brains and Markets

- iGBM and Neural Networks

\[d u_i(t) = I_i dt + \sigma_i dW_i(t) \]
\[+ \left[-\kappa_i u_i(t) + \sum_j J_{ij} \bar{g}_j(t) + \sigma_0 u_0(t) \right] dt. \]

\[\bar{g}_j(t) = \int_t^t M(t - s) g(u_j(s)) \]

- Describes dynamics of a network of graded response neurons, with
 - the \(u_i \) denoting trans-membrane voltages,
 - the \(\kappa_i \) describing leakage across the membrane,
 - the \(J_{ij} \) denoting synaptic couplings,
 - the \(g(\cdot) \) being nonlinear functions (e.g. sigmoid) which describe the firing-rate of the neuron as a function of trans-membrane voltage,
 - the \(I_i \) describing external signals.
 - the function \(u_0(t) \) representing the effect of neuro-modulators.
Brains and Markets

- What we know..
 - iGBM is spin-glass like model (soft SK) with time-varying magnetic fields.
 - For symmetric couplings Lyapunov function for noisless dynamics (Hopfield 1984)
 - ... with a very large number of meta-stable states (Waugh et al, 1990, Fukai and Shiino 1990)
 - Phase diagrams for Hebb-Hopfield couplings (RK, S. Bös, JL van Hemmen 1991+93)
 - Self-consistent analysis for non-symmetric couplings (Shiino & Fukai 1992)
 - For fully asymmetric couplings, noiseless dynamics is chaotic (Sompolinsky, Chrisanti & Sommers 1988, Molgedey, Schuchart & Schuster 1992)
 - Captures market phenomenology (RK, P. Neu 2008)

- Analysis so far: Markovian approximation; $\bar{g}_j(t) = g(u_j(t))$
Outline

1 Setting the Scene
 - Of Markets . . .
 - Geometric Brownian Motion
 - Stepping Back – A Gedanken-Experiment
 - . . . and Brains

2 Analysis
 - Generating Functionals
 - Separation of Time-Scales — Stationarity

3 Results

4 Inference

5 Summary
Analysis — Generating Functionals

- Use generating functionals \(n_i(t) = g(u_i(t)) \)

\[
Z[\ell|u_0] = \left\langle \exp \left\{ -i \int dt \sum_i \ell_i(t)n_i(t) \right\} \right\rangle,
\]

- Averaging over couplings maps problem onto a family of effective single node problems,

\[
\dot{u}_\vartheta(t) = -\kappa u_\vartheta(t) + I + J_0 m(t) + \sigma_0 u_0(t) \\
+ \alpha J^2 \int_0^t ds G(t, s) n_\vartheta(s) + \phi_\vartheta(t),
\]

with \(\vartheta \equiv (I, \kappa, \sigma) \) used as shorthand for site-random quanities. Here \(\phi_\vartheta \) is couloured noise with

\[
\left\langle \phi_\vartheta(t) \right\rangle = 0 \\
\left\langle \phi_\vartheta(t) \phi_{\vartheta'}(s) \right\rangle = \delta_{\vartheta,\vartheta'} \left[\sigma^2 \delta(t - s) + J^2 q(t, s) \right].
\]

Order-parameters are coupled through a set of self-consistency equations.
Self-Consistency Equations

- Self-consistency equations, \((n_\vartheta(t) = g(u_\vartheta(t)))\)

\[
m(t) = \left\langle \frac{\langle n_\vartheta(t) \rangle_{\phi_\vartheta}}{\delta \phi(s)} \right\rangle_{\vartheta},
\]

\[
q(t, s) = \left\langle \frac{\langle n_\vartheta(t) n_\vartheta(s) \rangle_{\phi_\vartheta}}{\delta \phi(s)} \right\rangle_{\vartheta},
\]

\[
G(t, s) = \left\langle \frac{\langle n_\vartheta(t) \rangle_{\phi_\vartheta}}{\delta \phi(s)} \right\rangle_{\vartheta}.
\]

- Inner averages over noise \(\phi_\vartheta\) evaluated using path-integral techniques (with an action that is a functional of \(m, q, \text{ and } G\)).
Assume macro-economic process $u_0(t)$ changes slowly: e.g.

$$du_0 = -\gamma u_0 dt + \sqrt{2\gamma} dW_0 , \quad \gamma \ll 1 ,$$

...so that the system becomes statistically stationary at given u_0

Derive FPEs for stationary states $\Rightarrow u_\varphi$ OU process

$$m = \left\langle \left\langle g(\bar{u}_\varphi + \sigma_{u\varphi} x) \right\rangle_x \right\rangle_\varphi ,$$

$$q(\tau) = \left\langle \left\langle g(\bar{u}_\varphi + \sigma_{u\varphi} x) \ g(\bar{u}_\varphi + \sigma_{u\varphi} y) \right\rangle_{xy} \right\rangle_\varphi ,$$

$$\chi = \left\langle \left\langle g'(\bar{u}_\varphi + \sigma_{u\varphi} x) \right\rangle_x \right\rangle_\varphi ,$$

$$\hat{C}(0) = \int_{-\infty}^{+\infty} d\tau \left[q(\tau) - q \right] ,$$

in which $q = \lim_{\tau \to \infty} q(\tau)$, and χ is an integrated response.

For details, see K Anand, J Khedair, and RK, PRE 97 052312 (2018).
Outline

1 Setting the Scene
 - Of Markets . . .
 - Geometric Brownian Motion
 - Stepping Back – A Gedanken-Experiment
 - . . . and Brains

2 Analysis
 - Generating Functionals
 - Separation of Time-Scales — Stationarity

3 Results

4 Inference

5 Summary
System exhibits a glassy phase in large parts of parameter space (sufficiently small J_0/J, sufficiently small noise $\sigma_i \equiv \sigma$).

FM-SG boundary for $I \sim \mathcal{N}(0, \sigma^2_I)$, $u_0 = 0; J = 0.5$, $\alpha = 0.5$ $\sigma = 0.1$.
Return Distributions

- Compute distribution of returns

\[\Delta u_\vartheta \equiv u_\vartheta(t) - u_\vartheta(t') \]

in the quasi-stationary regime \(\gamma |t - t'| \ll 1 \).

- For individual \(u_\vartheta \) find

\[\Delta u_\vartheta \sim \mathcal{N} \left(0, \frac{\sigma^2}{\kappa} \left(1 - e^{-\kappa |t-t'|} \right) \right). \]

- Time-scales (i) short: \(\kappa |t - t'| \ll 1 \), (ii) medium: \(\kappa |t - t'| = \mathcal{O}(1) \), (iii) long: \(\kappa |t - t'| \gg 1 \).

- Assuming the \(\kappa \) are \(\Gamma \)-distributed

\[P(\kappa) = \frac{1}{\kappa_0 \Gamma(\nu)} \left(\frac{\kappa}{\kappa_0} \right)^{\nu-1} \exp(-\kappa/\kappa_0), \]

distribution of returns over \(\vartheta \)-ensemble (i.e. the market) long times:

\[p(\Delta u) = \frac{\sqrt{\kappa_0}}{\sqrt{2\pi\sigma^2}} \frac{\Gamma(\nu + \frac{1}{2})}{\Gamma(\nu)} \left(1 + \frac{\kappa_0 (\Delta u)^2}{2\sigma^2} \right)^{-\left(\nu + \frac{1}{2}\right)}. \]

\(\Rightarrow \) fat power-law tails.
Return Distributions

- Distribution of returns

Distribution of returns for $\kappa_0 |t - t'| = 20$. $J_0 = J = \alpha = 0.5$, long time asymptotics (full line) and numerical evaluation (dashed), $\nu = 1$.

$\text{Distribution of returns for } \kappa_0 |t - t'| = 20. J_0 = J = \alpha = 0.5$, long time asymptotics (full line) and numerical evaluation (dashed), $\nu = 1.$
Collective Pricing

- Quasi-stationary equilibrium log-prices \bar{u}_{ϑ} determined by collective effects

Distributions of equilibrium log-prices. Left: Non-interacting system Right: Interacting system. Narrow blue curves $\kappa = 0.5$, $u_0 = 0.1$, Wider set of curves: $\kappa = 0.2$ and $u_0 = 0.1$ for the nearly symmetric (black) curves; $u_0 = 0.5$ for the more asymmetric (red) curves. Overall Γ distributed κ with $\nu = 1$ and $\kappa_0 = 0.2$. Interacting system $J_0 = J = \alpha = 0.5$
Volatility Clustering and Metastability

- Embed attractors of known structure

\[
J_{ij} \rightarrow J_{ij} + \frac{1}{N} \sum_{\mu=1}^{p} \xi_{i}^{\mu} \xi_{j}^{\mu}
\]

\[
m_{\mu}(t) = \frac{1}{N} \sum_{i} \xi_{i}^{\mu} g(u_{i}(t))
\]

Top: changes of the market index for \(\Delta t = 25 \). Bottom: overlaps with three unbiased random patterns embedded in a system of \(N = 50 \) assets, with \(\gamma = 10^{-4} \).
Outline

1. Setting the Scene
 - Of Markets . . .
 - Geometric Brownian Motion
 - Stepping Back – A Gedanken-Experiment
 - . . . and Brains

2. Analysis
 - Generating Functionals
 - Separation of Time-Scales — Stationarity

3. Results

4. Inference

5. Summary
Simple ML Approach

- Use model to test inference algorithms and identify strengths/weaknesses
- In second step apply to real data (S & P 500)
- Log-likelihood

$$\mathcal{L} = \sum_{i,t} \frac{1}{2\sigma_i^2} \left[\dot{u}_i - f_i(u(t)) \right]^2$$

with

$$f_i(u(t)) = -\kappa_i u_i + I_i + \sum_j J_{ij} g(u_j) + \sigma_0 u_0$$

Parameters $\theta = \{\kappa_i, I_i, J_{ij}\}$

- Use stochastic gradient descent or data batches to solve $\nabla_\theta \mathcal{L} = 0$.
 Second method gives linear equations with coefficients determined by various sample-correlations.
- Issues: (i) sampling noise, (ii) non-ergodicity of the dynamics.
ML equations require inversions of various correlation matrices that are estimated, sampling noise \Rightarrow random Matrices. Shown are (left) spectra of estimated correlation matrices $C_{ij} = \langle \delta g(u_i) \delta g(u_j) \rangle$, compared with Marčenko Pastur law, (middle) corresponding scatter-plots of \hat{J} vs. J_{true} and (right) MP law and learnability of first principal component of C-matrix. Here $N = 125$, and $\alpha = N/T$.

\[\alpha = \frac{N}{T} = \frac{30}{36} \]
Issue (ii): Non-Ergodicity

- System dynamics is non-ergodic.
- Learning couplings requires to sample sufficiently many ergodic components.
- For fixed data sample size this depends on ergodic time-scale γ^{-1}.

(Left): Normalized error of couplings in gradient descent learning as function of number of iterations for various γ. (Right): Scatter plots of estimated vs initial couplings for a partially learnt situation ($\gamma = 0.001$) and a fully learnt situation ($\gamma = 0.01$). Parameters are $N = 125$ and $T = 10^4$.
Learning the interactions — Synthetic Data

Scatter plots of estimated vs true couplings. Parameters are and Left: partially learnt couplings ($\gamma = 10^{-4}$); right: fully learnt couplings ($\gamma = 0.1$). Parameters: $N = 100$, $T = 10^6$
Real-Data — Tentative

- Lots of issues (splits, discontinued trading, outlisting)
- So far no jumps in model; but can set up inference nonetheless: (jumps don’t affect estimates of couplings, drifts, mean-reversions)
- Inferred model reproduces some global properties of real data, such as distributions of log-returns, spectra of correlation matrices of return with reasonable accuracy

(Left): Spectrum of correlation matrix of true returns and of correlation matrix of returns generated from inferred model.
(Right): distribution of normalized true log-returns compared with distribution generated from inferred model. $N = 200$, $\alpha = 0.03$. Define u_0 as projection of $u(t)$ on first principal component v_1 of $C^{uu} = (\langle \delta u_i \delta u_j \rangle)$.
Real-Data — Market States?

(Top): Overlap of market state with 3 selected singular vectors of the inferred interaction matrix as a function of time for a 5y period. (Bottom): Concurrent changes of the index. The period includes two major restructurings overlapping with the Draghi speech 26/07/12 and with the flash crash of 24/08/15.
Outline

1 Setting the Scene
 - Of Markets . . .
 - Geometric Brownian Motion
 - Stepping Back – A Gedanken-Experiment
 - . . . and Brains

2 Analysis
 - Generating Functionals
 - Separation of Time-Scales — Stationarity

3 Results

4 Inference

5 Summary
Summary

- Argued
 - that market model formulated in terms of asset prices should exhibit interactions between prices, which exhibit memory.
 - simplest interacting generalization of GBM has structure of a NN
- Expect generally many meta-stable phases.
- Different susceptibilities within phases entail different volatilities.
- Find key properties of market dynamics in (semi-)quantitative fashion.
- Fat tailed return distributions, non-trivial equilibrium pricing distributions
- Clear relation between volatilities and meta-stable states.
- Started inference (synthetic and real data)
 - issues of sampling noise and non-ergodicity
 - real data reasonably well reproduced by simple inferred model
 - of use for risk-management?