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Abstract. We review the theory of neural networks, as it has emerged in the last
ten years or so within the physics community, emphasizing questions of biological
relevance over those of importance in mathematical statistics and machine learning
theory.

1 Introduction

Understanding at least some of the functioning of our own brain is certainly
an extraordinary scientific and intellectual challenge and it requires the com-
bined effort of many different disciplines. Each individual group can grasp
only a limited set of aspects, but its particular methods, questions and re-
sults can influence, stimulate and hopefully enrich the thoughts of others.
This is the frame in which the following contribution, written by theoretical
physicists, should be seen.

Statistical physics usually deals with large collections of similar or iden-
tical building blocks, making up a gas, a liquid or a solid. For the collective
behavior of such an assembly most of the properties of the individual elements
are only of marginal relevance. This allows to construct crude and simplified
models which nevertheless reproduce certain aspects with extremely high
accuracy. An essential part of this modeling is to find out which of the prop-
erties of the elements are relevant and what kind of questions can or cannot
be treated by such models. The usual goal is to construct models as simple
as possible and to leave out as many details as possible, even if they are
perfectly well known. The natural hope is that the essential properties can
be understood better on a simple model. This, on the other hand, seems
to contrast the ideals of modeling in other disciplines and this can severely
obstruct the interdisciplinary exchange of thoughts.

Our brain (Braitenberg and Schiiz, 1991) is certainly not an unstructured
collection of identical neurons. It consists of various areas performing special
tasks and communicating along specific pathways. Even on a smaller scale it
is organized into layers and columns. Nevertheless the overwhelming majority
of neurons in our brain belongs to one of perhaps three types. Furthermore,
on an even smaller scale, neurons seem to interact in a rather disordered
fashion, and the pathways between different areas are to some degree diffuse.
Keeping in mind that models of neural networks with no a priori structure
are certainly limited, it is of interest to see how structures can evolve by
learning processes and what kind of tasks they can perform.
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Over the last ten or more years, abstract and simplified models of brain
functions have been a target of research in statistical physics (Amit, 1989;
Hertz et al., 1991). A model of an associative memory was proposed by Hop-
field in 1982, following earlier work by Caianello and Little. This model is not
only based on extremely simplified neurons (McCulloch-Pitts, 1943), it also
serves a heavily schematized task, the storage and retrieval of uncorrelated
random patterns. This twofold idealization made it, however, tractable and
accessible for quantitative results. In the meantime there have been many
extensions of this model, some of which will be discussed later on. One of
the essential points of this model is the fact that information is stored in
a distributed fashion in the synaptic connections among the neurons. Each
synapse carries information about each pattern stored, such that destruction
of part of the synapses does not destroy the whole memory. The storage of
a pattern requires a learning process which results in a modification of the
strength of all synapses. The original model was based on a simple learning
rule, essentially the one proposed by Hebb, which is in a sense a neuronal
manifestation of Pawlow’s ideas of conditional reflexes. Regarding learning,
again more sophisticated rules have been investigated and are discussed later.

Even restricting ourselves to this kind of models, we can sketch only a
small part of what has been worked out in the past, and only small parts also
of the progress in getting those models closer to biology. It is interesting to
note that artificial neural nets, in the form of algorithms or hardware, have
found many technical applications. This aspect will, however, be left aside
almost completely.

Before entering the discussion of learning or memory, we want to give a
brief overview over the biological background of neurons, their basic func-
tioning and their arrangement in the brain (Braitenberg and Schiiz, 1991;
Abeles, 1991).

2 Biological vs. Formal Neural Nets

2.1 Biological Background

A typical neuron, e.g. a pyramidal cell (see Fig. 1 next page), consists of the
cell body or soma; extending from it there is a branched structure of about
2 mm diameter, called dendrite, and the nerve fiber or axon, which again
branches and can have extensions reaching distant parts of the brain. The
branches of the axon end at so called synapses which make contact to the
dendrites of other neurons. There are of course also axons coming in from
sensory organs or axons reaching out to the motor system. Compared to the
number of connections within the brain, their number is rather small. This
amazing fact indicates perhaps that the brain is primarily busy analyzing the
sparse input or shuffling around internal information.

The main purpose of a neuron is to receive signals from other neurons,
to process the signals and finally to send signals again to other cells. What
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happens in more detail is the following. Assume a cell is excited, which means
that the electrical potential across its membrane exceeds some threshold. This
creates a short electric pulse, of about 1 msec duration, which travels along
the axon and ultimately reaches the synapses at the ends of its branches.
Having sent a spike, the cell returns to its resting state. A spike arriving at
a synapse releases a certain amount of so called neuro—transmitter molecules
which diffuse across the small gap between synapse and dendrite of some
other cell. The neuro—transmitters themselves then open certain channel pro-
teins in the membrane of the postsynaptic cell and this finally influences the
electrical potential across the membrane of this cell. The neuro—transmitters
released from pyramidal cells have the effect of driving the potential of the
postsynaptic cell towards the threshold, their synapses are called excitatory.
There are, however, also inhibitory cells with neuro—transmitters having the
opposite effect. The individual changes of the potential caused by the spikes
of the presynaptic cells are collected over a period of about 10 msec and if
the threshold is reached the postsynaptic cell itself fires a spike. Typically
100 incoming spikes within this period are necessary to reach this state.

Dendrite

Soma

Axon

Fig. 1. Schematic view of a neuron

The human brain contains 10! to 10'! neurons and more than 10'* synap-
tic connections among them. The neurons are arranged in a thin layer of about
2 mm on the surface, the cortex, and each mm? contains typically 10° such
cells. This means that the dendritic trees of these cells penetrate each other
and form a dense web. Part of the axons of these cells again project onto the
dendrites in the immediate neighborhood and only a fraction reaches more
distant regions of the brain. This means that on a scale of a few mm?3 more
than 10° neurons are tightly connected. This does not imply that more dis-
tant regions are weakly coupled. The huge amount of white matter containing
axons connecting more distant parts only indicates the possibility of strong
interactions of such regions as well.

It is tempting to compare this with structures which we find within the
integrated circuits of an electronic computer. The typical size of a synapse is
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0.1 pm, whereas the smallest structures found in integrated circuits are about
five times as big. The packing density of synapses attached to a dendrite is
about 10° per mm?, whereas only 1/1000 of this packing density is reached
in electronic devices. A comparison of the computational power is also im-
pressive. A modern computer can perform up to 10° elementary operations
per sec. The computational power of a single neuron is rather low, but they
all work in parallel. Assuming that a neuron fires with a rate of 10 spikes
per sec, which is typical, and assuming that each spike transmitted through
a synapse corresponds to an elementary computation, we find a computing
power of about 10'® operations per second. These numbers have to be kept
in mind if we try to imitate brain functions with artificial devices.

2.2 Formal Neurons — Spikes vs. Rates

The actual processes going on when a spike is formed or when it arrives at a
synapse and its signal is transmitted to the next neuron, involve an interplay
of various channels, ionic currents and transmitter molecules. This should not
be of concern as long as we are interested only in the data processing aspects.
A serious question is, however, what carries the information? Is it a single
spike and its precise timing or is the information coded in the firing rates?
For sensory neurons the proposition of rate coding seems well established.
These neurons typically have rather high firing rates in their excited state.
For the brain this is much less clear since the typical spike rates are low and
the intervals between two successive spikes emitted by a neuron are longer or
at best of the order of the time over which incoming spikes are accumulated.
Nevertheless a spike rate coding is usually assumed for the brain as well. This
means that a rate has to be considered as an average over the spikes of many
presynaptic neurons rather than a temporal average over the spikes emitted
by a single cell. This is plausible, having in mind that typically 100 or more
arriving spikes are necessary to release an outgoing spike. This suggests for
the firing rate v; of a neuron 4

vi(t) =& ZWijVj(t)_ﬁ ; (1)

where 9 is some threshold and &(z) is some increasing function of z. The
simplest assumption is @(z) = 0 for x < 0 and &(z) = 1 for x > 0. This
model was first proposed by McCulloch and Pitts (1943). The quantity W;;
describes the coupling efficacy of the synapse connecting the presynaptic cell
J with the postsynaptic cell i. For excitatory synapses W;; > 0, and for
inhibitory synapses W;; < 0.

This model certainly leaves out many effects. For instance the assumption
of linear superposition of incoming signals neglects any dependence on the
position of the synapse on the dendritic tree.
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Investigating networks of spiking neurons, one has again designed simpli-
fied models. One of them is the integrate and fire neuron which mimics the
mechanism of spike generation at least in a crude way. It sums up incoming
signals by changing the membrane potential. As soon as a certain threshold
is reached, the neuron fires and the membrane potential is reset to its resting
value.

If rate coding is appropriate, results obtained for the first kind of net-
works should be reproduced by networks of spiking neurons as well. On the
other hand there are many questions which can only be taken up within the
framework of spiking neurons, for instance which role the precise timing of
spikes plays (Abeles, 1991) or whether the activity in a network with exci-
tatory couplings among its neurons can be stabilized by adding inhibitory
neurons (Amit et al., 1994; 1996).

2.3 Hebbian Learning — Sparse Coding

The most remarkable feature of neural networks is their ability to learn. This
is attributed to a certain plasticity of the synaptic coupling strengths. The
question is of course, how is this plasticity used in a meaningful way?

The basic idea proposed by Hebb (1949) actually goes back to the notion
of conditional reflexes put forward by Pawlow. Assume a stimulus A results
in a reaction R. If simultaneously with A a second stimulus B is applied, then
after some training stimulus B alone will be sufficient to trigger reaction R,
although this was not the case before training. Let A be represented by the
activity of a neuron £ and the reaction R by neuron ¢ becoming active. This
would be the case if the coupling W,y is sufficiently strong. Before training, the
stimulus B, represented by the activity of neuron j, is assumed not to trigger
the reaction R. That is, the coupling W;; is assumed to be weak. During
training with A and B present, the cells j and 4 are simultaneously active,
the latter being activated by cell £. Assume now that the synaptic strength
Wi; between neurons j and ¢ is increased, if both cells are simultaneously
active. Then, after some training, this coupling W;; will be strong enough to
sustain the reaction R without A being applied, provided B is present. This
is represented by the Hebb learning rule

AW;j o v; v; (2)

Most remarkably this learning rule does not require a direct connection be-
tween the cells £ and j representing the stimuli A and B. That is, the equiva-
lence of stimuli A and B has been learnt without any a priori relation between
A and B. What has been used is only the simultaneous occurrence of A and
B. Despite its simplicity this learning rule is extremely powerful.

It is not completely clear how such a change in the synaptic efficacies
is realized in detail, whether it is caused by changes in the synapse itself
or by changes in the density of receptor proteins on the membrane of the
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dendrite of the postsynaptic neuron. Nevertheless it is plausible at least in
the sense that this learning process depends only on the simultaneous state
of the pre- and postsynaptic cell. It is generally assumed that learning takes
place on a time scale much slower than the intrinsic time scale of a few msec
characteristic of neural dynamics.

We can now go one step further and consider the learning of more than one
pattern. A pattern is a certain configuration of active and inactive neurons.
A pattern, say u, is represented by a set of variables & for each pattern and
neuron. This means that in pattern p neuron i fires with a rate &'. In the
most simple case £ =1 if 7 is excited and &' = 0 otherwise. Having learnt a
set of patterns the couplings, according to the above learning rule, have the
values

Wij =W,y &l (3)
I

where W, has the meaning of a learning strength. Actually this learning
strength might also depend on the kind of pattern presented, for instance
on whether the pattern is new, unexpected, relevant in some sense or under
which global situation, attention, laziness or stress, it is presented. This can
lead to improved learning or suppression of uninteresting information.

The above learning rule is constructed such that, at least for W, > 0, only
excitatory couplings are generated. This is in accordance with the finding that
the pyramidal neurons have excitatory synapses only and that the plasticity
of the synapses is most pronounced in this cell type. This causes, on the other
hand, a problem. A network with excitatory synapses only would shortly go
into a state where all neurons are firing at a high rate. The cortex contains,
however, inhibitory cells as well. The likely purpose of these cells is to control
the mean activity of the network and to prevent it from reaching the unwanted
state of uniform high activity. A malfunctioning of this regulation is probably
the cause of epileptic seizures.

Actually the mean activity in our brain seems to be rather low. This
means that at a given time only a small percentage of the neurons is firing
at an elevated rate. Typical patterns are sparse, having many more 0’s than
1’s. This is a bit surprising since the maximal information per pattern is
contained in binary patterns with approximately equal number of 0’s and 1’s
and such symmetric coding is also used in our computers. Nevertheless there
are several good reasons for sparse coding, some of which will be discussed
later.

In the original Hopfield model the degree of abstraction is pushed a step
further. Here symmetric patterns with equal number of 0’s and 1’s are con-
sidered. This requires a modified learning rule. First of all the inactive state
is now represented by —1 rather than 0. With this modification the above
learning rule can again be used, but now the coupling strength can also be
weakened and the couplings can acquire negative values. Furthermore it is
assumed that each neuron is connected to every other neuron and that the
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couplings between two neurons have the same value in both directions. This
is certainly rather unrealistic in view of the biological background. Modi-
fied models with one or the other simplifying assumption removed have been
investigated as well. They show, however, quite similar behavior. This demon-
strates the robustness of the models with respect to modifications of details,
which might again serve as a justification of this simple kind of modeling.

2.4 Transmission Delays

The propagation of a spike along the axon, the transmission of this signal
across the synapse and the propagation along the dendrite take some time.
This causes some total delay 7;;, typically a few msec, in the transmission
of a signal from neuron j to neuron i. Incorporating this into eq.(1) yields a
modified form

vi(t) =& ZWijVj(t_Tij)_ﬁ . (4)

Aslong as we are interested in slow processes, this delay is of no relevance.
On the other hand it gives the opportunity to generate or learn sequences of
patterns evolving in time. This might be of relevance in processes like speech
generation or recognition, or in generating periodic or aperiodic motions.
Other proposals use this mechanism for temporal linking of different features
of the same object or for the segmentation of stimuli generated by unrelated
objects. Another mechanism which might play a role in this context is the
phenomenon of fatigue. This means that the firing rate of an excited neuron,
even at constant input, goes down after a while. The associated time scales
can vary from few msec up to minutes or hours. In any case there are several
mechanisms which can be used for the generation or recognition of temporal
structures and we are coming back to this point later.

The picture developed so far certainly leaves out many interesting and
important aspects. Nevertheless even this oversimplified frame allows to un-
derstand some basic mechanisms. On the other hand it is far from a descrip-
tion of the brain as a whole. What is certainly missing, is the structure on a
larger scale. In order to proceed in this direction one would have to construct
modules performing special tasks, like data preprocessing or memory, and
one would have to arrange for a meaningful interplay of those modules. This
is currently far beyond our possibilities, as we are lacking analytic tools or
computational power and, perhaps more importantly even, good questions
and well formalizable tasks to be put to such a modular architecture.

3 Learning and Generalization

Given that we interpret the firing patterns of a neural network as represent-
ing information, neural dynamics must be regarded as a form of information
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processing. Moreover, disregarding the full complexity of the internal dynam-
ics of single neurons, as we have good reasons to do (see Sec. 2.2), we find the
course of neural dynamics, hence information processing in a neural networks,
being determined by its synaptic organization.

Consequently, shaping the information processing capabilities of a neural
network requires changing its synapses. In a neural setting, this process is
called “learning”, or “training”, as opposed to “programming” in the context
of symbolic computation. Indeed, as we have already indicated above, the
process of learning is rather different from that of programming a computer.
It is incremental, sometimes repetitive, and it proceeds by way of presenting
“examples”. The examples may represent associations to be implemented in
the net. They may also be instances of some rule, and one of the reasons
for excitement about neural networks is that they are able to extract rules
from examples. That is, by a process of training on examples they can be
made to behave according to a set of rules which — while manifest in the
examples — are usually never made explicit, and are quite often not known in
algorithmic detail. Such is, incidentally, also the case with most skills humans
possess (subconcsiously). In what follows, we discuss the issues of learning
and generalization in somewhat greater detail.

We start by analysing learning (and generalization) for a single threshold
neuron, the perceptron. First, because it gives us the opportunity to discuss
some of the concepts useful for a quantitative analysis of learning already
in the simplest possible setting; second, because the simple perceptron can
be regarded as the elementary building block of networks exhibiting more
complicated architectures, and capable of solving more complicated tasks.

(a) (b)

Fig. 2. (a) Feed—forward Network. (b) Network with feed—back loops

Regarding architectures, it is useful to distinguish between so called feed—
forward nets, and networks with feedback—loops (Fig. 2). In feed—forward
nets, the information flow is directed; at their output side, they produce a
certain map or function of the firing patterns fed into their input layer. Given
the architecture of such a layered net, the function it implements is deter-
mined by the values of the synaptic weights between its neurons. Networks
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with feedback—loops, on the other hand exhibit and utilize non—trivial dynam-
ical properties. For them, the notion of (dynamical) attractor is of particular
relevance, and learning aims at constructing desired attractors, be they fixed
points, limit cycles or chaotic. We discuss attractor networks separately later
on in Sec. 4. Finally, feed—forward architectures may be combined with el-
ements providing feedback—loops in special ways to create so—called feature
maps, which we also briefly describe.

The physics—approach to analyzing learning and generalization has con-
sisted in supplementing general considerations with quantitative analyses of
heavily schematized situations. Main tools have been statistical analyses,
which can however be quite forceful (and luckily often simple) when the size
of a given information processing task becomes large in a sense to be specified
below.

It goes without saying that this approach would not be complete without
demonstrating — either theoretically, by way of simulations, or, by studying
special examples — that the main functional features and trends seen in
abstract statistical settings would survive the removal of a broad range of
idealizations and simplifications, and that they, indeed, prove to be resilient
against changing fine details at the microscopic level.

3.1 Simple Perceptrons

A perceptron mimics the functioning of a single (formal) neuron. Given an
input v = (v1,1s,...,vN) at its N afferent synapses, it evaluates its local
field or post-synaptic potential as weighted sum of the input components v;,

N
ho(v) = Wo,vs (5)

compares this with a threshold 4, and produces an output vy according to
its transfer function or input—output relation

v = P(ho(v) =) , (6)

For simple perceptrons, one usually assumes a step-like transfer function.
Common choices are (z) = sgn(z) or &(x) = O(z) depending on whether
one chooses a 1 representation or a 1-0 representation for the active and
inactive states!.

The kind of functionality provided by a perceptron has a simple geomet-
rical interpretation. Equation (6) shows that a perceptron implements a two-
class classification, assigning an ‘active’ or an ‘inactive’ output—bit to each
input pattern v, according to whether it produces a super- or sub—threshold
local field. The dividing decision surface is given by the inputs for which
Wo-v=)y, i Wojv; = 9. It is a linear hyperplane orthogonal to the direction

! ©(x) is Heaviside’s step function: @(x) = 1 for z > 0 and O(x) = 0 otherwise.
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Fig. 3. Linear separation by a perceptron

of the vector Wy of synaptic weights (Wy;) in the N-dimensional space of
inputs (Fig. 3). Pattern sets which are classifiable that way are called linearly
separable. The linearly separable family of problems is certainly non—trivial,
but obviously also of limited complexity. Taking Boolean functions of two in-
puts as an example, and choosing the representation 1 = true and 0 = false,
one finds that AND(v1,v3), and OR(v1,12) as well as IMPL(vy, v») are lin-
early separable, whereas XOR(vy, v2) is not.

It is interesting to see, how Hebbian learning, the most prominent candi-
date for a biologically plausible learning algorithm, would perform on learning
a linearly separable set of associations. A problem that has been thoroughly
studied is that of learning random associations. That is, one is given a set of
input patterns &*, u = 1,..., P, and their associated set of desired output
labels ¢§'. Each bit in each pattern is independently chosen to be either active
or inactive with equal probability and the same is assumed for the output
bits.

It has been known for some time (Cover, 1965) that such a set of random
associations is typically linearly separable, as long as the number P of pat-
terns does not exceed twice the dimension N of the input space, P < 2N.
It turns out that the suitable representation of the active and inactive states
for this problem — i.e., appropriate for the given pattern statistics —is a £1
representation. Moreover, due to the symmetry between active and inactive
states in the problem, a zero threshold should be chosen.

Learning a la Hebb by correlating pre- and postsynaptic activities, one
has (AWy;)* x ¢ E;‘ as the synaptic change in response to a presentation
of pattern u. As we have mentioned already, this involves a modification of
Hebb’s original proposal. Summing contributions from all patterns of the
problem set, one obtains (compare Eq. (3))

s
Wo;‘:NZé‘H7 (M)
p=1
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where the prefactor is chosen just to fix scales in a manner that allows taking
a sengible large system limit. Here we distinguish input from output bits by
using different symbols for them. In recursive networks, outputs of single neu-
rons are used as inputs by other neurons of the same net, and the distinction
will be dropped in such a context.

It is not difficult to demonstrate that Hebbian learning finds an approxi-
mation to the separating hyperplane, which is rather good for small problem
size P, but which becomes progressively worse as the number of patterns to
be classified increases. To wit, taking an arbitrary example £€” out of the set
of learnt patterns, one finds that the Hebbian synapses (7) produce a local
field of the form h” = ho(€”) = (§ + 0”. Here (§ is the correct output-bit
corresponding to the input pattern £” (the signal), which is produced by the
v—th contribution (AWy;)” to the Wy;. The other contributions to h” do
not add up constructively. Together they produce the noise term §”. In the
large system limit, one can appeal to the central limit theorem to show that
the probability density of the noise is Gaussian with zero mean and variance
a = P/N.2 A misclassification occurs, if the noise succeeds in reversing the
sign determined by the signal (§. Its probability depends therefore only on
a, the ratio of problem size P and system size N. It is exponentially small —
Per(a) ~ exp(—1/2a) — for small o, but increases to sizeable values already
way below a, = 2, which is the largest value for which the problem is lin-
early separable, i.e. the largest value for which we know that a solution with
Perr = 0 typically exists. If, however, a finite fraction of errors is tolerable,
and such can be the case, when one is interested in the overall output of a
large array of perceptrons, then moderate levels of loading can, of course, be
accepted. We shall see in Sec. 4 below that this is a standard situation in
recursive networks.

The argument just presented can be extended to show that even distorted
versions of the learnt patterns are classified correctly with a reasonably small
error probability, provided the distortions are not too severe and, again, the
loading level « is not too high.

The modified Hebbian learning prescription may be generalized to handle
low activity data, i.e. patterns with unequal proportions of active and inactive
bits. The appropriate learning rule is most succinctly formulated in terms of
a 1-0 representation for the active and inactive states and reads

(AWo;)* o< Chél (8)

where (¥ = ¢ — agu; and §~]” = & — ain, with a;, /oy denoting the probabil-
ity of having active bits at the input and output sides, respectively. Non-zero
thresholds are generally needed to achieve the desired linear separation. Inter-
estingly this rule “approaches” Hebb’s original prescription in the low activity
limit @in/ous — 0; the strongest synaptic changes occur, if both, presynaptic
and postsynaptic neuron are active, and learning generates predominantly

% The precise value is actually (P —1)/N.
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excitatory synapses. Interestingly also, this rule benefits from low activity at
the output side: The variance of the noise contribution to local fields is re-
duced by a factor aout (1 — @out)/(1 — ain) relative to the case ain = Gous = %,
leading to reduced error rates and correspondingly enlarged storage capaci-
ties. We shall return to this issue in Sec. 4 below.

Two tiny modifications of the Hebbian learning rule (7),(8) serve to boost
its power considerably. First, synapses are changed in response to a pattern
presentation only, if the pattern is currently misclassified. If ¢§' is the desired
output bit corresponding to an input pattern &* which is currently misclas-
sified, then

(AW )" o e"GEy (9)
where € is an error magk that signifies whether the pattern in question is
currently misclassified (¢ = 1) or not (¢# = 0). Here, a +1 representation
for the output bits is assumed; the input patterns can be chosen arbitrarily
in R™N. Second, pattern presentation and (conditional) updating of synapses
according to (9) is continued as long as errors in the pattern set occur. The
resulting learning algorithm is called percepton learning.

An alternative way of phrasing (9) uses the output error 6§ = 5 — v, i.e.,
the difference between the desired ¢§' and the current actual output bit v§ for
pattern p. This gives (AWy;)* o 0y &¥. It may be read as a combined process
of learning the desired association and “unlearning” the current erroneous
one.

With Hebbian learning, perceptron learning shares the feature that synap-
tic changes are determined by data locally available to the synapse — the
values of input and (desired) output bits. Both, the locality, and the simplic-
ity of the essentially Hebbian correlation—type synaptic updating rule must
be regarded prerequisites for qualifying perceptron learning — indeed any
learning rule — to be considered as a “reasonable abstraction” of a biological
learning mechanism.

Unlike Hebbian learning proper, perceptron learning requires a supervisor
or teacher to compare current and desired performance. Here — as with any
other supervised learning algorithm — is, perhaps, a problem, because neither
do our synapses know about our higher goals, nor do we have immediate or
deliberate control over our synaptic weights. It is conceivable though that
the necessary supervision and feedback be provided by other neural modules,
provided that the output of the perceptron in question is “directly visible”
to them and a more or less direct neural pathway for feedback is available.
We will have occasion to return to this issue later on.

The resulting advantage of supervised perceptron learning over simple
Hebbian learning is, however, dramatic. Perceptron learning is guaranteed
to find a solution to a learning task after finitely many updatings, provided
only that a solution exists, and no assumptions concerning pattern statistics
need be made. Morevoer, learning of thresholds can, if necessary, be easily
incorporated in the algorithm. This is the content of the so—called perceptron
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Fig. 4. Geometrical view on generalization.

convergence theorem (Rosenblatt, 1962). For a precise formulation and for
proofs, see (Rosenblatt, 1962; Minsky and Papert, 1969; Hertz et al., 1991).

So far, we have discussed the problem of storing, or embedding a set of
(random) associations in a perceptron. It is expedient to distinguish this prob-
lem from that of learning a rule, given only a set of examples representative
of the rule.

For the problem of learning a rule, a new issue may be defined and studied,
viz. that of generalization. Generalization, as opposed to memorization, is the
ability of a learner to perform correctly with respect to the rule in situations
(s)he has not encountered before during training.

For the perceptron, this issue may be formalized as follows. One assumes
that a rule is given in terms of some unknown but fixed separating hyperplane
according to which all inputs are to be classified. A set of P examples,

ngsgn(wt'gu)a p,:l,...,P, (10)

is produced by a “teacher perceptron”, characterized by its coupling vector
Wt = (Wf W, ..., WE) which represents the separating hyperplane (the
rule) to be learnt. That is, as before, the input patterns £€* are randomly gen-
erated; however, the corresponding outputs are now no longer independently
chosen at random, but fixed functions of the inputs. A “student perceptron”
attempts to learn this set of examples — called the training set — according
to some learning algorithm.

The generalization error €; is the probability that student and teacher
disagree about the output corresponding to a randomly chosen input that was
not part of the training set. For perceptrons there is a very simple geometrical
visualization for the probability of disagreement between teacher W' and
student W. It is just ¢, = 6/m, where 8 is the angle between the teacher’s
and the student’s coupling vector (see Fig. 4).

Assume that the student learns the examples according to the generalized
Hebb rule. In vector notation,



138 Heinz Horner and Reimer Kihn

1 P
Wy de (11)

An argument in the spirit of the signal-to-noise-ratio analysis used above to
analyse Hebbian learning of random associations can be utilized to obtain
the generalization error as a function of the size P of the training set. To this
end, one decomposes each input pattern & into its contribution parallel and
orthogonal to W*. Through (11), this decomposition induces a corresponding
decomposition of the student’s coupling vector, W = W + W . Using
(10), one can conclude that the contributions to W add up constructively,
hence [|W || grows like a = P/N with the size P of the training set. The
orthogonal contribution W to the student’s coupling vector, on the other
hand, can be interpreted as the result of an unbiased P—step random walk
(a diffusion process) in the N — 1-dimensional space orthogonal to W*, each
step of length 1/v/N. So typically ||[W || ~ y/a. In the large system limit,
prefactors may be obtained by appeal to the central limit theorem, and the
average generalization error is thereby found to be

ey() = %arctan(HWJ_H/HW”H) - %arctan (&) D)

It deacreases from e; ~ 0.5 at the beginning of the training session — the
result one would expect for random guesses — to zero, as a — oo. The
asymptotic decrease is eg(a) ~ 1/v/2ma for large a.

The simple Hebbian learning algorithm is thus able to find the rule asymp-
totically, although it is never perfect on the training set. A similar argument
as that given for the generalization error can be invoked to compute the
average training error &, which is always bounded from above by the gener-
alization error.

How does the perceptron algorithm perform on the problem of learning
a rule. First, since the examples themselves are generated by a perceptron,
hence linearly separable, perceptron learning is always perfect on the training
set. That is ¢y = 0 for perceptron learning. To compute the generalization
error, is not so easy as for the Hebbian student. We shall try to convey the
spirit of such calculations later on in Sec. 3.3. Let us here just quote results.

Asymptotically the generalization error for perceptron learning decreases
with the size of the training set as e;(a) ~ a™' for large a. The prefactor
depends on further details. Averaging over all perceptrons which do provide
a correct classification of the training set, i.e., over the so—called version
space, one obtains 5" (a) ~ 0.62/a. For a student who always is forced to
find the best separating hyperplane for the training set (its orientation is
such that the distance of the classified input vectors from either side of the
plane is mazimal) — this is the so—called optimal perceptron — one has
e9P*(a) ~ 0.57/a. It is known that the Bayesian optimal classifier (optimal

with repect to generalization rather than training) has 5?‘”’63 () ~ 0.44/q,
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but this classifier itself is not implementable through a simple perceptron.
Extensive discussions of these and related matters can be found in (Gyorgy
and Tishby, 1990; Watkin et al., 1993; Opper and Kinzel, 1996; Engel, 1994).

Thus, perceptron learning generalizes faster than Hebbian learning, how-
ever at higher ‘computational cost’: the perceptron learner always has to
retrain on the whole new training set every time a pattern is added to it.
A significant amount of computational cost is required on top of this, if one
always tries to find the optimal perceptron.

3.2 Layered Networks

To overcome the limitations of simple perceptrons so as to realize input—
output relations more complicated than the linearly separable ones, one may
resort to combining several simple perceptrons to build up more complicated
architectures. An important class comprises the so—called multi-layer net-
works to which we now turn.

In multi-layer networks, the output produced by a single perceptron is
not necessarily communicated to the outside world. Rather one imagines a
setup where several perceptrons are arranged in a layered structure, each node
in each layer independently processing information according to its afferent
synaptic weights and its transfer function &. The first layer — the input
layer — receives input from external sources, processes it, and relays the
processed information further through possibly several intermediate so—called
hidden layers. A final layer — the output layer — performs a last processing
step and transmits the result of the “neural computation” performed in the
layered architecture to the outside world. Synaptic connections are such that
no feedback loops exist.

Multi-layer networks consisting of simple perceptrons, each implement-
ing a linearly separable threshold decision, have been discussed already in the
early sixties under the name of Gamba perceptrons (see Minsky and Papert,
1969). For them, no general learning algorithm exists. The situation is dif-
ferent, and simpler, in the case where the elementary perceptrons making up
the layered structure have a smooth, differentiable input—output relation. For
such networks a general-purpose learning algorithm exists, which is guaran-
teed to converge at least locally to a solution, provided that a solution exists
for the information processing task and the network in question.

The algorithm is based on gradient-descent in an “error—energy land-
scape”. Given the information processing task — a set of input—output pairs
(¢4,€"), p=1,..., P to be embedded in the net — and assuming for sim-
plicity a single output unit?®, one computes a network error measure over the
set of patterns

3 This implies no loss of generality. The problem may be analyzed separately for
the sub-nets feeding each each output node.
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E= @), (13)

w

the output errors 6} being defined as before. For fixed input-output relations
@, the error measure is determined by the set of all weights of the network
E = E(W). Let W;; be a weight connecting node j to i. Gradient descent
learning aims at reducing F by adapting the weights W;; according to

SE(W)

AW;; = _HWM )

(14)
where 7 is a learning rate that must be chosen sufficiently small to ensure

convergence to (local) minima of E(W). For a network consisting of a single
node, one has o5 = (5 — vy with 15 = &(3°; Wy;€4) = $(hg), hence

AWo; =Y S5 (hh)eh =n>_dhet (15)
u ©

where &' denotes the derivative of . Note that there is a certain similar-
ity with perceptron learning. The change of Wy; is related to the product
of a (renormalized) error Sg at the output side of node 0 with the input
information §;f, summed over all patterns pu.

If the network architecture is such that no feed—back loops exist, this rule
is immediately generalized to the multi-layer situation, using the chain rule
of differential calculus. The resulting algorithm is called the back—propagation
algorithm for reasons to become clear shortly. Namely, for an arbitrary cou-
pling W;; in the net one obtains

AW = —772576;’ ; (16)

©w

where {;‘ is the input to node ¢ in pattern g, coming from node j (except
when j denotes an external input line, this is not an input from the outside
world), and SZH is a renormalized output error at node i, computed by back—
propagating the output—errors of all nodes k to which node 4 relays its output
via Wki;
8 =" kWi d' (hE) . (17)
k
Note that the (renormalized) error is propagated via the link ¢ — k by uti-
lizing that link in the reverse direction! This kind of error back—propagation
needed for the updating of all links not directly connected to the output
node is clearly biologically implausible. There is currently no evidence for
mechanisms that might provide such functionality in real neural tissue.
Moreover, the algorithm always searches for the nearest local minimum
in the error—energy landscape over the space of couplings, which might be a
spurious minimum with an untolerably large error measure, and it would be
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stuck there. This kind of malfunctioning of the learnig algorithm can to some
extent be avoided by introducing stochastic elements to the dynamics which
permit occasional uphill-moves. One such mechanism would be provided by
“online—learning”, in which the error—measure is not considered as a sum of
(squared) errors over the full pattern set, but rather as the contribution of
the pattern currently presented to the net, and by training on the patterns
in some random order.

Back-propagation is a very versatile algorithm, and it is currently the
‘work-horse’ for training multi-layer networks in practical or technical ap-
plications. The list of real-world problems, where neural networks have been
successfully put to work, is already rather impressive; see e.g. (Hertz et al.,
1991). Let us just mention two examples. One of the early successes was to
train neural networks to read (and pronounce) written English text. One of
the harder problems, where neural solutions have recently been found com-
petitive or superior to heuristic engineering solutions, is the prediction of
secondary structure of proteins from their amino-acid sequence. Both exam-
ples share the feature, that algorithmic solutions to these problems are not
known, or at least extremely hard to formulate explicitly. In these, as in many
other practical problems, networks were found to generalize well in situations
which were not part of the training set.

A generally unsolved problem in this context is that of choosing the cor-
rect architecture in terms of numbers of layers and numbers of nodes per
layer necessary to solve a given task. Beyond the fact that a two—layer archi-
tecture is sufficient to implement continuous maps between the input- and
output—side, whereas a three-layer net is necessary, if the map to be realized
has discontinuities, almost nothing is known (Hertz et al., 1991). One has to
rely on trial-and—error schemes along the rule of thumb that networks should
be as large as necessary, but as small as possible, the first part addressing
the representability issue, the second the problem that a neural architecture
that is too rich will not be forced to extract rules from a training set but
simply memorize the training examples, and so will generalize poorly. Algo-
rithmic means to honour this rule of thumb in one way or another — under
the categories of network—pruning or network—construction algorithms — do,
however, exist (Hertz et al., 1991).

The situation is again somewhat better for certain simplified setups —
two—layer Gamba perceptrons where the weights between a hidden layer and
the output node are fixed in advance such that the output node computes a
preassigned boolean function of the outputs of the hidden layer. Popular ex-
amples are the so—called committee-machine (the output follows the majority
of the hidden layer ouputs) and the parity—machine (it produces the product
of the 1 hidden layer outputs). For such machines, storage capacities and
generalization curves for random (input) data have been computed, and the
relevant scales have been identified: The number of random associations that
can be embedded in the net is proportional to the number A of adjustable
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weights, and in order to achieve generalization, the size P of the training set
must also be proportional to N. The computations are rather involved and
approximations have to be made, which are not in all cases completely un-
der control. Moreover, checks through numerical simulations are hampered
by the absence of good learning algorithms. So, whereas scales have been
identified, prefactors are in some cases still under debate. A recent review is
(Opper and Kinzel, 1996).

Neither back—propagation learning (online or off-line) for general multi—
layer networks nor existing proposals for learning in simplified multi-layer
architectures of the kind just described (see, for instance, the review by
Watkin et al. (1993)) can claim a substantial degree of biological plausibility.
In this context it is perhaps worth pointing out a proposal of Bethge et al.
(1994), who use the idea of fixing one layer of connections the other way
round, and consider two—-layer architectures with fixed input—to—hidden layer
connections. These provide a preprocessing scheme which recodes the input
data, e.g., by representing them locally in terms of mutually exclusive fea-
tures. This requires, in general, a large hidden layer and divergent pathways.
The advantage in terms of biological modelling is, however, twofold. There is
some evidence that fixed preprocessing of sensory data which provides fea-
ture detection via divergent neural pathways is found in nature, for instance
in early vision. Moreover, for learning in the second layer, simple perceptron
learning can do, which — as we have argued above — still has some degree of
biological plausibility to it. Quantitative analysis reveals that such a setup,
one might call it coding—machine, can realize mappings outside the linearly
separable class (Bethge et al., 1994). The generalization ability of networks
of this type remain to be analyzed quantitatively. It is clear, though, that the
proper scale is again set by the number of adjustable units.

Interestingly, there exist unsupervised learning mechanisms that can pro-
vide the sort of feature extraction required in the approach of Bethge et al.
Prominent proposals, which are sufficiently close to biological realism, are due
to Linsker (1986) and Kohonen (1982; 1989). Linsker suggests a multilayer
architecture of linear units trained via a modified Hebbian learning rule, for
which he demonstrates the spontaneous emergence of synaptic connectivi-
ties that create orientation selective cells and so-called center—surround cells
in upper layers, as they are also observed in the early stages of vision. Ko-
honen discusses two—layer architectures where neurons in the second layer
“compete” for inputs coming from the first, which might be a retina. Lateral
inhibition, i.e., feedback in the second layer ensures that only a single neuron
in the second layer is active at a time, namely the one with the largest post-
synaptic potential for the given input. An unsupervised adaptation process
of synaptic weights connecting the input layer to the second layer is found to
generate a system where each neuron in the second layer becomes active for
a certain group of mutually similar inputs (stimuli). Note that this presup-
poses that similarity of, or correlations between different inputs exists. Inputs
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which are mutually similar, but to a smaller degree, excite nearby cells in the
second layer. That is, one has feature extraction which preserves topology.
Moreover, the resolution of the feature map becomes spontaneously finer for
regions of the stimulus space in which stimuli occur more frequently than in
others. Details can be found in Hertz et al. (1991).

3.3 A General Theoretical Framework for Analyzing Learning
and Generalization

Let us close the present section with a brief and necessarily very schematic
outline of a general theoretical framework in terms of which the issues of learn-
ing and generalization may be systematically studied. Not because we like
to indulge in formalism, but rather because the theoretical framework itself
adds interesting perspectives to our way of thinking about neural networks in
general, which, incidentally, carry much further than our mathematical abili-
ties to actually work through the formalism in all detail for the vast majority
of relevant cases. Key ideas of the approach presented below can be traced
back to pioneering papers of Elizabeth Gardner (1987; 1988).

To set up the theoretical framework, it is useful to describe the learning
process in terms of a training energy. Assume that the task put to a network
is to embed a certain set P of input—output pairs (¢#,&#), p = 1,..., P,
where the output vectors (* may be determined from the input vectors &*
according to some rule, or independently chosen. The training energy may
then be written as

E(W|{¢",€"}) =) (W, ¢, 8") (18)

m

with a single pattern output error e(W, (¥, £#) that is a nonnegative measure
of the deviation between the actual network output v* = v(W, £H) and the
desired output ¢*. In the case of recursive networks, more specifically, in the
case of learning fixed point attractors in recursive networks, there is of course
no need to distinguish between input and output patterns.

Learning by gradient descent in an error—energy landscape — that is
learning as an optimization process — has been discussed above in connection
with the back-propagation algorithm for feed—forward architectures, where
the absence of feedback—loops allowed to obtain rather simple expressions
for the derivatives of E with respect to the W;;. It was noted already in
that context that, in order to avoid getting stuck in local suboptimal energy
valleys, one may supplement the gradient dynamics with a source of noise.
This would lead to the Langevin dynamics

r 8w, = -2 BwWiicr, e + 1) (19
at T T awy ’ A
in which the (systematic) drift term aims at reducing the training error,
whereas the noise allows occasional moves to the worse.
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There is more to adding noise than its beneficial role in avoiding subopti-
mal solutions. Namely, if the noise in (19) is taken to be uncorrelated Gaus-
sian white noise, with average (n;;(t)) = 0 and covariance (n;; (t)ne(t')) =
2T6(;5y,(k1)0(t — t'), then the Langevin dynamics (19) is known to converge
asymptotically to ‘thermodynamic equilibrium’ described by a Gibbs distri-
bution over the space of synaptic weights,

P(WI{¢*,€"}) = 27" exp{-BE(W|{¢",€"})} . (20)

Here § denotes an inverse temperature* in units of Boltzmann’s constant,
B = 1/T. In the case where the W;; are only allowed to take on discrete
values, the Langevin dynamics (19) would have to be replaced by a Monte—
Carlo dynamics at finite temperature, the analog of gradient decscent being
realized in the limit 7" — 0. The equilibrium distribution would still be given
by (20), if transition probabilities of the discrete stochastic dynamics were
properly chosen. Note that P depends parametrically on the choice of training
examples.

Now two interesting things have happened. First, by introducing a suitable
form of noise and by considering the long time limit of the ensuing stochastic
dynamics, we know the distribution P over the space of weights explicitly,
so we can in principle compute averages and fluctuations of all observables
of which we know how they depend on the W;;. Second, by considering the
equilibrium distribution (20), one is looking at an “ensemble of learners”
which have reached, e.g., a certain average asymptotic training error, and
one is thereby deemphasizing all details of the learning mechanism that may
have been put to work to achieve that state. This last circumstance is one of
the important sources by which the general framework acquires its predictive
power, because it is more likely than not that we do not know the actual
mechanisms at work during learning, and so it is gratifying to see that at
least asymptotically the theory does not require such knowledge.

Of the quantities we are interested in to compute, one is the average
training error

(BE) = (E(W|{¢",€"})) = /du(W)P(WI{C“,ﬁ“})E(WI{C",E”}), (21)

where the measure du(W) encodes whatever a—priori constraints might be
known to hold about the W;;. It may also be obtained from the “free energy”

F=—-f"'lnZ=-4"" ln/du(W) exp{-BE(W[{¢",£"})} (22)

corresponding to the Gibbs distribution (20) via the thermodynamic relation

4 Note that we use temperature T not as specifying ambient temperature, but
simply as a measure of the degree of stochasticity in the dynamics.
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0

<E>=%

BF . (23)
The result still depends on the (random) examples chosen for the training
set, so an extra average over the different possible realizations of the training
set must be performed, which gives

E(8,P) = ((E)) = / T de(c*, &) (B . (24)

Such an average is automatically implied, if one replaces the free energy in
the thermodynamic relation (23) by its average over the possible training
sets, i.e., the so called quenched free energy F, = —8 ! (In Z)). Similarly,
the average generalization error is obtained by first considering e;(W) =
Jdp(¢,€)e(W,¢,€), that is, the single pattern output error used in (19),
averaged over all possible input output pairs which were not part of the
training set, and by computing

eg(B, P) = ((ea(W)))) - (25)

Actually, it turns out that the additional averaging over the various realiza-
tions of the training set need not really be performed, because each training
set will typically produce the same outcome, which is therefore called self-
averaging. Technically, however, such averages are usually easier to handle
than specific realizations, and the averages are therefore nevertheless com-
puted. The same situation is, incidentally, encountered in the analysis of
disordered condensed matter systems. Not too surprisingly therefore, it is
this subdiscipline of physics from which many of the technical tools used in
quantitative analyses of neural networks have been borrowed.

It is well known that the statistical analysis of conventional condensed
matter comes up with virtually deterministic relations between macroscopic
observables characteristic of the systems being investigated, as their size be-
comes large (think of relations between temperature, pressure and density,
i.e., equations of state for gases). In view of the appearance of relations of
statistical thermodynamics in the above analysis, one may wonder whether
analogous deterministic relations would emerge in the present context. This
is indeed the case, and it may be regarded as the second source of predictive
power of the general approach.

In the large system limit, that is, as the number N of synaptic couplings
becomes large, the distribution (20) will give virtually all weight to W-—
configurations with the same macroscopic properties. Among these are, in
particular, the training error per pattern, e, = P! Eu E(W|{¢",£&"}), and
the generalization error &g.

The analysis reveals that a proper large system limit generally requires
to scale the size P of the training set according to P = aMN, as we have
observed previously in specific examples. As N' — oo (at fixed a) learning
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and generalization errors are typically — i.e., for the overwhelming majority
of realizations — given by their thermodynamic averages (as functions on the
a-scale), &, = P71E(B, P) — (B, @) and 5 — £4(8, ).

The reason for the generalization error to be among the predictable macro-
scopic quantities stems from the fact that it is related to the distance in weight
space, A(W*, W) = N 7' 37 (W, — W;;)?, between the network configura-
tion W and the target configuration W* which the learner is trying to ap-
proximate. This is itself a (normalized) extensive observable which typically
acquires non-fluctuating values in the thermodynamic limit.

The results obtained via the statistical mechanics approach are, as we have
indicated, typical in the sense that they are likely to be shared by the vast
majority of realizations. This is to be seen in contrast to a set of results about
learning and generalization, obtained within the machine-learning commu-
nity under the paradigm of “probably almost correct learning”. They usually
refer to worst—case scenarios and do, indeed, usually turn out to be overly
pessimistic. We refer to (Watkin et al., 1993; Engel, 1994; Opper and Kinzel,
1996) for more details on this matter.

In the zero-temperature (8 — o) limit, the Gibbs distribution (20) gives
all weight to the synaptic configurations which realize the smallest conceivable
training error. An interesting question to study in this context is what the
largest value of « is, such that the minimum training energy is still zero.
This then gives the size of largest pattern set that can be embedded without
errors in the given architecture — irrespective of whatever learning algorithm
might be used to train the net. This number is called the absolute capacity
of the net, and it depends, of course, on the pattern statistics. In the case
where outputs in the pattern set are generated according to some rule, one
obtains information as to whether the rule is learnable, i.e., representable in
the network under consideration, or not.

For unbiased binary random patterns, the absolute capacity is found to
be a, = 2 for networks consisting of simple threshold elements, and without
hidden neurons. The number increases, if the patterns to be embedded in
the net have unequal proportions of active and inactive bits (see also Sec. 4
below); it decreases if one wants to embed patterns with a certain stability,
that is, such that correct classifications are obtained even with a certain
amount of distortion at the input side (Gardner, 1987; Gardner, 1988). In
attractor networks, large stability implies large basins of attraction for the
patterns embedded in the net.

Another way to phrase these ideas is to note that learning of patterns
puts restrictions on the allowed synaptic couplings. The absolute capacity is
reached when the volume of allowed couplings, which becomes progressively
smaller, as more and more patterns are being embedded in the net, eventually
shrinks to zero. The logarithm of the allowed volume is like an entropy, a
measure of diversity. Learning then reduces the allowed diversity in the space
of (perfect) learners. Similarly, by learning a rule from examples, the volume
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in the space of couplings will shrink with increasing size of the training set,
and eventually be concentrated around the coupling vector representative of
the target rule. Generalization ensues.

An interesting application of these ideas as means to predict the effects
of brain lesions has been put forward by Virasoro (1988). He demonstrated
that after learning hierarchically organized data — items grouped in classes
of comparatively large similarity within classes, and greater dissimilarity be-
tween classes — the class information contained in each pattern enjoys a
greater embedding stability than the information that identifies a pattern as
a specific member of a class. As a consequence, brain lesions that randomly
destroy or disturb a certain fraction of synapses after learning, will lead to the
effect that the specific information is lost first, and the class information only
when destructions become more severe. An example of the ensuing kind of
malfunctioning is provided by the prosopagnosia syndrome — characterized
by the abiltiy of certain persons to recognize faces as faces, without being
able to distinguish between individual faces. According to all we have said
before, this kind of malfunctioning must typically be expected to occur in
networks storing hierarchically organized data, when they are being injured.
Note moreover that, beyond the fundamental supposition that memory re-
sides in the synaptic organization of a net, hardly anything else has to be
assumed for this analysis to go through.

It is perhaps worth pointing out that the Gibbs distribution (20) enjoys
a distinguished status in the context of maximum-entropy / minimum-bias
ideas (Jaynes, 1979). It is the maximally unbiased distribution of synaptic
couplings, subject only to an, at least in principle, observable constraint,
namely that of giving rise to a certain average training error. Together with
the notion of concentration of probabilities at entropy maxima (Jaynes, 1979),
this provides yet another source of predictive power that may be attributed
to the general scheme.

Finally, we should not fail to notice that there is, of course, also room and
need for studying learning dynamics proper as opposed to the statistics of
asymptotic solutions, because information about final statistics tells nothing
about the time needed to reach asymptotia, which is also relevant and im-
portant information, certainly in technical applications. Here, we leave it at
quoting just one pertinent example. The ezistence of neural solutions for a
given storage task, which may be investigated by considering the allowed vol-
ume in the space of couplings, tells nothing about our ability to find them. For
the perceptron with binary weights, for instance, Horner (1992) has demon-
strated that algorithms with a complexity scaling polynomially in system size
are not likely to find solutions at any non—zero value of « in the large system
limit, despite the fact that solutions are known to exist up to a, ~ 0.83.
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4 Attractor Networks — Associative Memory

Memory is one of the basic functions of our brain and it also plays a central
role in any computing device. The memory in a computer is usually organized
such that different contents are stored under different addresses. The address
itself, typically a number, has no relation to the information which is found
under its name. The retrieval of information requires the knowledge of the
corresponding address or additional search engines using key words with lists
of addresses and cross references.

An associative memory is a device which is organized such that part of
the information allows to recall the full information stored. As an example
the scent of a rose or the spoken word ‘rose’ recalls the full concept rose,
typical forms and colors of its blossoms and leaves, or events in which a rose
has played a role.

On a more abstract level we would like to have a device in which certain
patterns £ are stored and where a certain input 7 recalls the pattern closest
to it. This could be achieved by searching through the whole set of memories,
but this would be rather inefficient.

A neural network is after all a dynamical system. Its dynamics could be
defined by the update rule (4) or equivalently by a set of nonlinear differential
equations

dl/z' (t) _ 1

dt 7

vi(t) —qs(ZWijuj(t) —19) _ (26)

where 7T is some average delay time. It is known from the theory of dynamical
systems that equations of this type have attractors. That is, any solution with
given initial values approaches some small subset of the full set of available
states, which could be a stationary state (fixed point), a periodic solution
(limit cycle) or a more complicated attractor. The set of initial values giv-
ing rise to solutions approaching the same attractor is called the basin of
attraction of this attractor. This can now be used to construct an associative
memory, if we succeed in finding synaptic couplings such that the patterns
to be stored become attractors. If this is achieved, an initial state not too far
from one of the patterns will evolve towards this pattern (attractor), provided
it was within its basin of attraction.

It is clear that this mechanism requires networks with strong feedback.
In a feed forward layered network with well defined input and output layers,
the information would simply be passed from the input layer through hidden
layers to the output layer, and without input such a network would be silent.

The goal is not only to find the appropriate couplings using a suitable
learning rule, but also to estimate how many patterns can be stored and how
wide the basins of attractions are. Wide basins of attraction are desirable
because initial states having a small part in common with the pattern to be
retrieved should be attracted by this pattern.
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4.1 The Hopfield model

A great deal of qualitative and quantitative understanding of such associa-
tive memories has come from a model proposed by Hopfield (Hopfield, 1982;
Amit, 1989; Hertz et al., 1991). Its purpose is to store uncorrelated binary
random patterns & = 1, where i = 1,..., N labels the nodes (neurons)
and p =1,...,P the patterns to be stored. It employs the modified Hebb
learning rule (3)

Wy = e (27)
I

and one assumes that each node is connected with every other node. For
the dynamics one uses a discretized version of eq. (26), picking a node ¢ at
random and updating its value according to

vi(t+7) = sgn( Z Wijv; (t)) . (28)
3(#1)
For the analysis of this model it is useful to define an ‘energy’ or ’cost

function’ .

E(t) =—3 > vilt) Wi v () (29)
ij
for the firing pattern v;(t) at a given time ¢. It can easily be shown that
this function can never increase in the course of time. This implies that the
firing pattern will evolve in such a way that the system approaches one of
the minima of E. This is like moving in a landscape with hills and valleys,
and going downbhill until a local minimum is reached. The existence of such a
function, called Lyapunov function, ensures that the only attractors of such
a model are fixed points or in the present context stationary firing patterns.
It has to be shown now that, with the above learning rule, the attractors
are indeed the patterns to be stored, or at least close to them. The arguments
are similar to those given in the context of the perceptron. As measure of
the distance between the actual state and a given pattern we introduce the
‘overlap’

malt) = 3 3 € u() (30)

which is less than or equal to one, and m(t) = 1 signifies that the actual
firing pattern is that of pattern \. If this is the case, the overlap with all the
other patterns will be of order 1/ V/N. Using the overlap, we can write the
energy as

E(t) = —% S ma (). (31)

Investigating this in the limit of large N, and considering an initial state
such that the initial overlap m(0) is the only one which is of order 1, the
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remaining ones being of order 1/ V/N, one may approximate the energy by
E(t) ~ —m(t)?/2, assuming that m(t) remains the only finite overlap for
all time. If this is the case, the energy will decrease and reach its minimal
value for my(t) — 1, as t — oo. That is, the network has reconstructed
pattern A.

For initial states having a finite overlap with more than one pattern, the
attractor reached can be a new state, called spurious state, composed of parts
of several learnt patterns (Amit et al., 1985; Amit, 1989). This tells us that
the network seems to memorize patterns which have not been learnt. It is not
clear whether this has to be considered as malfunctioning or whether it gives
room for creativity in the sense of novel combinations of acquired experience.
With a slightly modified dynamics (Horner, 1987), a mixed initial state can
also evolve towards the pattern with maximal initial overlap. Depending on
the overall situation a network might switch from one mode to the other.

The picture so far presented holds as long as the loading & = P/N is
small enough, so that the random contributions to the energy due to the
my(t) ~ 1/v/N with p # X can be neglected.

For higher loading, the influence of these remaining patterns has to be
taken into account. A more thorough investigation (Amit et al., 1985; Amit,
1989; Hertz et al., 1991) shows that this has two effects. First of all the
retrieval states (minima of E) are no longer exactly the learnt patterns, but
close to them with a small amount of errors. For the whole range of loadings
for which this kind of memory works, the final overlap is larger than 0.96,
increasing with decreasing loading. In addition new attractors are created
having a small or no overlap with any of the patterns. Their effect is primarily
(Horner et al., 1989) to narrow the basins of attraction of the learnt patterns.
At a critical loading of «, ~ 0.138 these states cause a sudden breakdown of
the whole memory.

This sudden breakdown due to overloading can be avoided by modified
learning rules. Depending on details (see Hertz et al., 1991 section 3) either
the earliest or the most recent memories are kept and the others are forgotten.
It is also possible to keep the earliest and the most recent memories and to
forget those in between, which seems to be the case with our own memory.
Furthermore certain memories can be strengthened or erased by unconscious
events taking place for instance during dream phases (see Hertz et al., 1991
section 3).

In order to estimate how efficient such a memory works, it is not only
necessary to find out how many patterns can be stored and how many errors
the retrieval states have, it is also necessary to investigate the size of the
basins of attraction, in other words, which amount of a pattern has to be
offered as initial stimulus in order to retrieve this pattern. An investigation
of the retrieval process (Horner et al., 1989) shows that this minimal initial
overlap depends on the loading «, and for a < 0.1 one finds approximately
the retrieval condition my(0) > 0.4a. Finally, one can also estimate the
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gain of information reached during retrieval. This is the difference between
the information contained in the pattern retrieved and the information that
must be supplied in the initial stimulus to guarantee successful retrieval.
This again depends on the loading, and a maximum of 0.1 bit per synapse is
reached for a =~ 0.12.

Another quantity of interest is the speed of retrieval. One finds that almost
complete retrieval is reached already after only 3 updates per node. Inserting
numbers for the relevant time scales of neurons one obtains 30 to 60 msec.
This can be compared to measured reaction times which are typically of the
order of 100 to 200 msec.

Apart from other reasons, the Hopfield model is unrealistic in the sense
of requiring complete and symmetric connectivity. The requirement of sym-
metry W;; = Wj; ensures, in particular, the existence of an energy or cost
function (29) ruling the dynamics of the network. The connectivity among
cortical neurons is high, of the order of 10* synapses per neuron, but far from
being complete, keeping in mind that already within the range of the dendritic
tree of a single neuron more than 10° other neurons are found. This has been
taken into account in a study (Derrida et al., 1987) of a model with randomly
diluted synaptic connections. The overall properties remain unchanged. The
maximal number of patterns is now proportional to the average number C
of afferent synapses per neuron, P, = a.C, with a, ~ 0.64, but the to-
tal gain of information per synapse is still similar to the value obtained for
the original model. A different behavior is found as the critical loading, «.,
is approached: In this model the basins of attraction remain wide, but the
number of errors in the retrieval state increases drastically, as a — a..

4.2 Sparse Coding Networks

As mentioned previously a remarkable feature of cortical neurons is their low
average firing rate. In principle a neuron can produce as many as 300 spikes
per second. Recordings on living vertebrate’s brains typically show some cells
firing at an elevated rate of up to 30 spikes per second, but the average rate
is much lower, only 1 to 5 spikes per second. Retaining the proposal of rate
coding one has to conclude that typical firing patterns are sparse in the
sense that the number of active neurons N,(t) at each time is much less
than the number of silent neurons N;(t). This means that the mean activity
a(t) = No(t)/(No(t) + Ng(t)) is low.

Various versions of attractor networks with low activity have been inves-
tigated (Willshaw et al, 1969; Palm, 1982; Tsodyks and Feigel’'man, 1988;
Amit et al., 1994; 1996) in the literature. Within the framework of binary
McCulloch-Pitts neurons their state is conveniently represented by v, = 1 for
active and vy = 0 for silent neurons. In this case the original Hebb learning
rule (2,3) reinforcing the coupling strength between neurons active at the
same time is appropriate.
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Obviously this learning rule creates excitatory synaptic connections only,
so in addition inhibitory neurons are required to control the mean activity of
the network, as discussed in section 2. It turns out that this control has to be
faster than the action of the excitatory synapses. This seems to be supported
by the findings that the connections with inhibitory neurons are short and
their synapses are typically attached to the soma or the innermost parts of
the dendrites of the excitatory pyramidal cells.

The update rule (26,28) has to be modified according to the (0;1) repre-
sentation using a step function #(z) =1 for £ > 0 and &(z) = 0 otherwise.

Again such networks can serve as fast associative memories. The maxi-
mal loading depends on the mean activity. It diverges as a, ~ 1/aln(1/a) for
a — 0. At the same time the information per pattern decreases with decreas-
ing activity such that the total gain of information reaches a constant value
of 0.72 bit per synapse (Horner et al., 1989). This value is, however, reached
very slowly; for example, at a = 0.001 one finds a, = 30 and only 0.3 bit
information gain per synapse. Nevertheless, this value exceeds the one found
for the Hopfield model.

It should be noted that the class of low activity networks just described
only solves the spatial aspect of the low activity issue. However, by going
one step further and returning to the continuous—time dynamics (26), and
by using more realistic ‘graded’ neural input—output relations, one can solve
the temporal aspect as well. Neurons which should be firing in one of the low
activity attractors are then typically found to fire also at low rate (Kithn and
Bos, 1993). Within models of neural networks based on spiking neurons, this
issue has been addressed by Amit et al. (1994; 1996).

One of the virtues of sparse coding networks is in the learning rule. A
change in the synaptic strength is required only if both, the pre- and the
postsynaptic neuron are active at the same time. This implies that the total
number of learning events is reduced compared to a network with symmetric
coding and consequently the requirements on accuracy and reproducibility of
each individual learning process are less stringent.

Another reason why nature has chosen sparse coding could of course be
reduction of energy consumption because each spike requires some extra en-
ergy beyond the energy necessary to keep a neuron alive.

In a sparse coding network it makes sense to talk about the foreground of
a pattern, made up of the active neurons in this pattern, and a background
containing the rest. The foreground is usually denoted as cell assembly, a
notion which goes back to Hebb. The probability that a neuron belongs to
the foreground of a given pattern is given by the mean activity a of this
pattern, which is assumed to be low. The probability that this neuron belongs
simultaneously to the foreground of two patterns is given by a2. This means
that the cell assemblies belonging to different pattern are almost completely
disjoint. As a consequence mixture states are no problem because their mean
activity is higher and they can be suppressed by the action of the inhibitory
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neurons regulating the overall activity. This will play a role for some of the
functions discussed later.

4.3 Dynamical Attractors

The attractor network models discussed so far allowed only for fixed point
attractors or stationary patterns as retrieval states. This is a severe restriction
and one can think of many instances where genuine dynamical attractors
are asked for. The reason for the restriction is the existence of a Lyapunov
function which can be traced back to the symmetry of the couplings W;; =
Wij;. This shows that asymmetric couplings have to be included if dynamical
attractors are to be constructed (see Hertz et al., 1991, section 3).

Let us demonstrate this again on a somewhat artificial example. The
desired attractor should be composed of a sequence of patterns ! such that
pattern g is present for some time 7 and then the next pattern g + 1 is
presented. The whole set of patterns with 4 = 1, ..., L can be closed such that
pattern 1 is shown again after the last pattern L has appeared, generating
a periodically repeating sequence. This is called a limit cycle. The retrieval
of this cycle should work such that the network is initialized by a firing
pattern close to one of the members of the cycle, say pattern 1, this pattern
is completed, and after a time 7 pattern 2 appears and so on.

This can be achieved by using two types of synapses, fast synapses Wz];
without delay and slow synapses W with delay 7. The update rule (26) now
reads

dl/z'(t) _

dt 7

vit) = (Y Wihvi () + > Wiuit -1 -9) | . (32)
J J
The appropriate choice of the couplings is (see eq.(27))

L L
wi==$ A
p=1 st

with pattern L + 1 being equivalent to pattern 1.

Assume the network was in a random state for ¢ < 0 and has been brought
into a state close to pattern 1 at ¢ = 0. For 0 < ¢t < 7 the slow asymmetric
synapses will have no effect, whereas the fast synapses drive the state even
closer to pattern 1. For 7 < ¢t < 27 the slow synapses now tend to drive
the state from pattern 1 to pattern 2, and if they are stronger than the fast
synapses (A > 1), the state actually switches to pattern 2, which is then
reinforced by the action of the fast synapses as well. This process is repeated
and the whole cycle is generated.

Obviously due to the cyclic symmetry any pattern of the cycle can be
used for retrieval. Furthermore it is possible to store more than one cycle
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or cycles and fixed points in the same network. For the storage capacity the
total number of patterns in all attractors is crucial.

The decisive step in this model is the addition of the non—symmetric slow
synapses which ultimately cause the switching between successive patterns.
Devices of this kind have been studied in several variations (see Hertz et al.,
1991, section 3).

The mechanism sketched above requires the existence of slow synapses
having exactly the delay time necessary for the desired timing of the attractor.
This can easily be relaxed (Herz et al., 1989) by assuming a pool of synapses

W, with different delays 7. Employing a modified Hebb learning rule (2)

AW () o vi(t) vi(t —7) , (34)

the training process reinforces specifically those synapses which have the
appropriate delay time and cycles with different times for the presentation
of each individual pattern can be learnt. This learning rule is actually the
natural extension of Hebb’s idea, assuming that the delay is caused primarily
by the axonal transmission time.

One can think of other mechanisms to determine the speed at which
consecutive patterns are retrieved. One such mechanism (Horn and Usher,
1989) uses the phenomenon of fatigue or adaptation (see section 2) and some
special properties of sparse coding networks. The process of adaptation can
be mimicked by a time dependent threshold ¥;(t) with

O _ L (3, + ) - 0,00 9

where 7, is the time constant relevant for adaptation. According to this equa-
tion the threshold of a silent neuron relaxes towards 19, and is increased if
this neuron fires at some finite rate.

For the synaptic couplings again a combination of symmetric couplings,
stabilizing the individual patterns, and non—-symmetric couplings, favoring
transitions to the consecutive patterns in the sequence, is used. This means
that eqs.(32,33) can again be used with the above time dependent threshold
9;(t) but without retardation in the asymmetric couplings W. In contrast
to the above model, now A < 1 has to be chosen.

This works as follows. Assume the network was in a completely silent
state for ¢ < 0 and all the thresholds have their resting value ¢,. Applying
an external stimulus exciting the cell assembly or pool of active neurons of
pattern 1, the symmetric couplings stabilize this pattern. The nodes which
should be active in pattern 2 are also excited but if A is sufficiently small
the action of the asymmetric couplings is not strong enough to make them
fire, too. As time goes on, the neurons active in pattern 1 adapt and their
threshold increases, reducing their firing rate. This reduces also the global
inhibition and at some time the action of the weaker asymmetric couplings
will be strong enough to activate the pool of neurons which have to be firing
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in pattern 2. This works of course only, if the neurons of this second pool
are still fresh. This is, however, the case because in a sparse coding network
the probability to find a neuron simultaneously in the cell assemblies of two
consecutive patterns is low. After adaptation of the neurons in the second
pool the state switches to pattern 3 and so on.

4.4 Segmentation and Binding

A similar sparse coding network with adaptive neurons can also solve the
problem of segmentation (Horn and Usher, 1989; Ritz et al., 1994). Assume
that an external stimulus excites simultaneously the pools of neurons of more
than one pattern. The task is then to exhibit the separate identity of these
patterns despite the fact that their representative neuron pools are simulta-
neously excited. This can be achieved by activating, i.e., retrieving only one
of the patterns at a time and selecting another one a bit later. This is actually
what we do, if we are confronted with complex situations containing several
unrelated objects. We concentrate on one object for some time and then go
to the next, and so on.

A sparse coding network with suitable inhibition will allow for the ac-
tivation of a single pattern only, because the simultaneous recall of two or
more patterns would create an enhanced overall activity which is suppressed
by the action of the inhibitory neurons. If exposed to a stimulus containing
more than one learnt pattern, this network will first activate the pattern hav-
ing the strongest input. After some time the pool of active neurons in this
pattern will have adapted and the network retrieves the pattern with the sec-
ond strongest stimulus because its pool of neurons is still fresh, disregarding
again the small amount of neurons common to the active pools of both pat-
terns. This goes on until all patterns contained in the external stimulus have
been retrieved or until the neurons of the first pool have recovered sufficiently
to be excited again. Due to this recovery only a small number of patterns
can be retrieved one after the other, and those being weakly stimulated will
never appear. This is in accordance with our everyday experience.

This example is of course not a proof that this has to be the way how
segmentation is done in our own brain. It only shows how it could plausibly
be done. This critique applies, however, to the other models discussed as well.

A complementary problem is that of binding. Imagine in a visual scene a
large object moves behind some obstacle. What is actually seen is the front
and the back end of this object, with the middle part hidden. The feature
which is common to both parts is the speed at which they move, and this
allows to identify both parts as belonging to one object. If only one part is
moving, they are easily identified as parts of two different objects. That is,
parts of a complex stimulus having certain features in common are identified
as parts of a larger object; these parts are linked.

A possible mechanism for this linking was discovered in multi-electrode
recordings in the visual cortex of cats or other mammals (Gray and Singer,
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1989; Eckhorn et al., 1988). It was observed that a moving light bar creates
an oscillatory firing pattern in the cells having appropriate receptive fields.
A second light bar created an oscillatory response in some other neurons.
The motion of both bars in the same direction created a synchronization and
phase locking of these oscillations whereas no such effect was observed if they
were moved in different directions. This effect could even be observed among
neurons belonging to different areas in the visual cortex.

The proposal is now that linking is performed by synchronization of os-
cillatory or more general firing patterns.

The observed oscillations had a period of about 20 msec and lasted for
about 10 periods. Synchrony was established already within the first few
oscillations. It should be pointed out that an individual neuron emits at most
one or two spikes during one period. This means that larger assemblies of
cells with similar receptive fields have to cooperate. Actually the oscillations
were observed in intercellular recordings which pick up the signals of many
adjacent neurons, or in averages over many runs. The fast synchronization
time and the relatively short duration of the oscillations might indicate that
the important feature is not so much the existence of these oscillations, but
rather the synchronous activity within a range of a few msec.

Not too surprisingly several idealized models have been proposed repro-
ducing this effect. Most of them are still based on a rate coding picture. This
seems problematic in view of the short times involved and the relatively low
average spiking rates of any individual neuron. Nevertheless rate coding is
not completely ruled out, if one keeps in mind that a rate has to be under-
stood not as a temporal average over a single cell but rather as an average
over assemblies of similar cells.

4.5 Synchronization of Spikes and Synfire Chains

Rate coding is the widely accepted paradigm for the predominant part of data
processing in the brain of vertebrates. Keeping in mind that rates might have
to be understood as averages over groups of neurons, elementary operations
could be performed within the integration time of a neuron, typically 10
msec. The exact timing of the incoming spikes within this period should not
matter.

If, on the other hand, a short volley of synchronized spikes arrives at a
neuron within a fraction of a msec, this neuron can fire within a fraction of
a msec. This can be used for very fast data processing whenever necessary,
for instance in the auditory pathway where phase differences in the signals
coming from the two ears are analyzed.

This raises the issue whether such short volleys of synchronized spikes are
a general feature, and what new kind of data processing can be made this
way.

A possible such mechanism are synfire chains (Abeles, 1991). Their build-
ing blocks are pools of neurons locally connected in a feed forward manner. If
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the neurons in one pool are stimulated simultaneously, they will emit synchro-
nized spikes. After some short delay time these spikes arrive at the neurons
forming the next pool and cause a synchronous firing of this pool too. This
process is repeated and a wave of activity travels with a certain speed along
the chain. Actually the neurons forming the pools are all members of a larger
network and a given neuron can belong to several pools. The chain and its
pools are only defined by their connectivity. There might be also connections
from the neurons of one pool to other neurons not belonging to the next pool.
These connections have to be weak, however, otherwise those postsynaptic
neurons have to be counted as members of the next pool. The picture of
distinct pools is somewhat washed out if variations in the delay times are
taken into account. What matters is the synchronous timing of the incoming
spikes.

In some sense the idea of synfire chains is closely related to the dynamic
attractors discussed earlier. The difference is in the sharp synchronization
of the volleys of spikes. Model calculations show that some initial jitter in
the volleys can even be reduced and synchrony sharpened up, stabilizing the
propagation along the chain.

What would be the signature of synfire chains as seen in multi—electrode
recordings of the spike activity? In such recordings the spikes emitted by
few neurons picked at random are registered. If a synfire chain is triggered a
certain temporal spiking pattern should be generated depending on where in
the chain those neurons are located. If this synfire chain is active repeatedly,
the spiking pattern should also repeat and the corresponding correlations
should become visible against some background activity. Apparently such
correlations have been observed with spiking patterns extending over several
hundred msec and with a reproducibility of less than one msec (Abeles, 1994).
This is quite remarkable, and it requires that a sufficient number of neurons is
involved such that irregularities in the precise timing of the individual spikes
are averaged out.

If the total number of neurons involved in a synfire chain or in one of its
pools is small compared to the size of the total network, it is possible that
several synfire chains are active at the same time. Assuming a weak coupling
between different chains, synchronization of chains representing different fea-
tures of the same object could be of relevance for the binding problem.

On the other hand simulations on randomly connected networks with
spiking neurons and low mean activity show the existence of transients and
attractors resembling synfire chains. What is typically found is a small num-
ber of long limit cycles and in addition a small number of branched long
dominating transients leading into the cycles. An arbitrary initial state is
quickly attracted to one of the pronounced transients or directly to one of
the limit cycles. The emerging picture resembles a landscape with river sys-
tems (transients) and lake—shores (cycles). It is possible that these structures
serve as seeds for more pronounced synfire chains formed later by learning.
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It is also possible that synfire type activity is just a byproduct of other data
processing events or of background activity, if such transients and attractors
are always present and are not erased by learning.

5 Epilogue

The present contribution has been concerned with investigations of neural
networks as information processing devices. The basic assumption that has
been underlying these investigations is that information is represented by
neural firing patterns, and that the spatio—temporal evolution of these pat-
terns is a manifestation of information processing. Its course is determined
by the synaptic organization of a net, which can itself evolve on larger time
scales through learning. Neural networks are thus dynamical systems on (at
least) two levels — that of the neurons and that of the synapses.

For higher vertebrates, there is some evidence that both, speed and relia-
bility of neural ‘computations’ are achieved by being performed in large net-
works employing a high degree of parallelism. It makes up for the relatively
slow dynamics of single neurons, and it gives rise to a remarkable robustness
of network—based computation against malfunctioning of individual neurons
or synaptic connections.

The fact that we are dealing with large systems, when we are trying to un-
derstand neural information processing, indicates that concepts of statistical
physics might provide useful tools to use in such an endeavour. This proves,
indeed, to be the case, again on (at least) two levels — for the analysis of
neural dynamics and associative memory, and for the analysis of the synaptic
dynamics associated with learning and generalization.

The robustness of neural information processing against various, even
rather severe kinds of malfunctioning at a microscopic level — mentioned
above as an observational fact — shows that microscopic details may be var-
ied in such systems without necessarily changing their overall properties. This
is to be seen as a hint that even rather simplified models might capture the
essence of certain information processing mechanisms whithout necessarily
being faithful in the description of all details.

Conversely, the analysis of simplified models reveals that information pro-
cessing in neural networks s robust against changing details at the micro-
scopic level, be they systematic or random. For example, the main feature
of the Hopfield model (1982), viz. to provide a mechanism for associative
information retrieval at moderate levels of loading, has been found to be
insensitive against a wide spectrum of variations affecting virtually all char-
acteristics of the original setup — variations concerning neural dynamics,
learning rules, representation of neural states, pattern statistics, synaptic
symmetry, and more. Similarly, the ability of neural networks to acquire in-
formation through learning and to generalize from examples was observed to
be resilient against a large variety of modifications of the learning mechanism.
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We should not fail to point out once more that the statistical approach
to neural networks can claim strength and predictive power only in the de-
scription of macroscopic phenomena emerging as cooperative effects due to
the interaction of many neurons, either in unstructured or in homogeneously
structured networks. We have indicated that, indeed, a number of interest-
ing information processing capabilities belong to this category. Our ability
to analyze them quantitatively has been intimately related to finding the
proper macroscopic level of description, which by itself is almost tantamount
to finding the proper questions to be addressed in understanding various
brain functions.

In concentrating on specific brain functions, mechanisms and processes
realizable in specific unstructured or homogeneously structured architectures,
we had to leave untouched the question of how these various functions and
processes are being put to work simultaneously in a real brain — supporting
each other, complementing each other, and communicating with each other
in the most intricate fashion. A central nervous system is after all not an
unstructured or homogeneously structured object, but rather exhibits rich
structures on many levels, with and without feedback, with and without
hierarchical elements. Analyzing the full orchestration of neural processes in
this richly structured system is currently way beyond our capabilities — not
in small part perhaps due to the fact that we have not yet been able to
discover the proper way of looking at the system as a whole.

Whether, in particular, the emergence of the ‘self’” will eventually be un-
derstood through and as an orchestration of neural processes, we cannot
know. In view of the richness of phenomena we have observed already at
the level of simple, even primitive systems we see, however, no strong reason
to exclude this possibility.
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