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Abstract. The slow relaxation and aging of glassy systems can be modelled
as a Markov process on a simplified rough energy landscape: energy minima
where the system tends to get trapped are taken as nodes of a random network, 
and the dynamics are governed by the transition rates among these. In this 
work we consider the case of purely activated dynamics, where the transition 
rates only depend on the depth of the departing trap. The random connectivity 
and the disorder in the trap depths make it impossible to solve the model 
analytically, so we base our analysis on the spectrum of eigenvalues λ of the
master operator. We compute the local density of states ρ(λ|τ) for traps with
a fixed lifetime τ  by means of the cavity method. This exhibits a power law
behaviour ρ(λ|τ) ∼ τ |λ|T  in the regime of small relaxation rates |λ|, which we
rationalize using a simple analytical approximation. In the time domain, we
find that the probabilities of return to a starting node have a power law-tail 

that is determined by the distribution of excursion times F (t) ∼ t−(T+1). We 
show that these results arise only by the combination of finite configuration 
space connectivity and glassy disorder, and interpret them in a simple physical 
picture dominated by jumps to deep neighbouring traps.
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1. Introduction

In pursuing a better understanding of non-equilibrium glassy systems, scientists have 
invested much eort into characterising their complex, multidimensional potential 
energy landscapes in configuration space. Key properties of these energy landscapes are 
the number of minima, the distribution of their depths, and of the heights of barriers 
between them. These have been explored using both computer simulations [1–3] and 
theoretical approaches [4–6]. The picture that has emerged is that the energy landscape 
of glasses is extremely complex, consisting of (exponentially many) minima, barriers 
and saddles of any order. The crystalline configurations that would be occupied in equi-
librium at low temperature are hidden in this maze of valleys and walls and this keeps 
glassy systems out of equilibrium on typical observation timescales. When a glass is 
prepared, for example by quenching a viscous liquid to a low enough temperature, the 
system is expected to start descending rapidly towards a local minimum of the energy 
landscape [7, 8] (though how it does so is in itself not trivial [9]). As time proceeds, the 
system will then slowly explore progressively lower energy minima, leading to aging 
eects where physical properties depend on the time since preparation of the glass 
[10]. The dynamics in this regime can be thought of as consisting mostly of thermal 
fluctuations around an energy minimum, interspersed with rare large fluctuations that 
allow the system to cross a barrier and reach a new energy minimum. If one ignores 
the small thermal fluctuations around a given minimum, i.e. within a given ‘basin’, 
and focusses on the long time exploration of the various basins, then glassy dynamics 
can be modelled as a Markov process on a network, with each local energy minimum 
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represented as a network node. A complete definition of such a model requires assump-
tions on the network topology, i.e. the connectivity in configuration space, and the 
transition rates between the nodes. The latter are expressed in terms of the energies 
of the various energy minima and the barriers between them. The distribution of the 
energy minima that enters here is expected on general grounds to have an exponential 
tail towards the deepest minima [11, 12].

The trap model [13–15] is one of the most successful descriptions of glassy dynamics 
that belong to this framework, where the energy minima are thought of as traps ‘hang-
ing o’ a threshold level where all barriers are located; in addition, the network of traps 
is assumed to be fully connected so that every trap can be accessed from any other. All 
moves between traps then require activation to the threshold level, which is convenient 
to use as the zero of the energy scale, and each jump takes the system to a randomly 
chosen new trap. The system thus eectively forgets with each jump what trap it was 
in before, making the dynamics a renewal process. The transition rates only depend 
on the departing energy depth because activation is always to the threshold level, and 
directly define the inverse lifetime of any trap. These simplifications allow the model 
to be solved analytically and give direct access to the evaluation of time dependent 
quantities. In particular, aging is described by two-time correlation functions that can 
be found explicitly and are given by the so-called arcsine law below the glass trans-
ition temperature [16]. A variety of disordered and more complex models of glasses 
exhibit an emergent trap-like phenomenology and aging behaviour, as demonstrated 
by numerical evidence as well as analytical arguments [17, 18]. However, the presence 
of dynamical correlations can make it hard to access the relevant timescales via simu-
lations, and coarse-graining the evolution into larger eective basins may be required 
[19]. Importantly for us, the network of traps is generically not fully connected, and 
the original trap model then describes only the motion between the deepest eective 
basins at very long times. Note that a long time reduction of correlation functions to 
the arcsine law has been proven explicitly for the case of regular connectivity among 
the traps [20]. Various works have investigated in particular the case of lattices [14, 
21, 22], though this is more plausible when the dynamics is interpreted as describing 
movement of a particle in real space rather than of a system in a high-dimensional 
configuration space. In the latter case, disorder in the connectivity among traps [23] 
inspired models of glassy dynamics on random networks. These are impossible to solve 
analytically, because of the disorder in trap depths and the random connectivity among 
nodes. Previous studies therefore had to rely on a heterogeneous mean field approx-
imation [24, 25], which is uncontrolled. A dierent approach can be taken, however, by 
basing the analysis on the spectral properties of the master operator. This operator is 
the continuous-time analogue of a Markov transition matrix, and is key in determin-
ing the dynamics of the system. In particular the spectral density or density of states 
(DOS) ρ(λ) gives the spectrum of relaxation rates of the system, and the localization 
properties of the eigenmodes carry information about the probability flow across the 
network. This is the approach that we followed in our previous work [26], which was 
dedicated to the analysis of trap models on sparse networks. In these models the zero 
energy threshold level remains present but jumps among traps are only allowed along 
network edges, i.e. local with respect to the network, so that the renewal property is 
lost.
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In [26] we investigated the thermodynamic limit of an infinite network of traps 
by means of the cavity method. This approach exploits the local tree-like structure 
of networks with sparse connectivity and follows in this analogous applications to the 
spectral analysis of symmetric random matrices; see e.g. [27–31] or [32, 33] for a rigor-
ous discussion. We used two relevant limits as benchmarks: the mean field (MF) limit 
where the average connectivity diverges in the thermodynamic limit of infinite system 
size, thus giving the original Bouchaud trap model, and the infinite temperature or ran-
dom walk (RW) limit, where the energy landscape no longer plays a role. Our findings 
confirmed the idea that the very long time dynamics is well described by the original 
fully connected trap model and does not depend on the topology of the network of 
traps: the DOS always has a small-|λ| tail—governing the long time relaxation—with 
the same power law behaviour as in mean field, ρ(λ) ∼ |λ|T−1. This can be rational-
ized within a simple high temperature approximation. In addition to this, our results 
indicated a decomposition of the dynamics into three dierent timescales: the long 
time (small |λ|), network independent regime with localized eigenmodes, the short time 
region where eigenmodes are delocalized and dominated by the network connectivity, 
and an intermediate regime where the DOS is as in mean field but the eigenmodes are 
delocalized nonetheless.

In this work we significantly extend our analysis of the trap model on sparse net-
works by looking at the local DOS, ρ(λ|τ), which gives the contribution to the (total) 
DOS from all traps with a fixed average lifetime τ . The high T approximation scheme 
again proves useful for deriving an analytical approximation for ρ(λ|τ) in the regime rel-
evant for the long time dynamics: we find ρ(λ|τ) ∼ τ |λ|T  when |λ| � 1/τ . These results 
are then translated into the time domain to give estimates for the return probability 
Pτ (t) and the distribution F (t) of excursion times, i.e. the times required by the system 
to return to an initial trap, leading to Pτ (t) ∼ t−(T+1) for t � τ  and F (t) ∼ t−(T+1). 
Remarkably, it is the distribution of deep minima surrounding the initial trap that 
determines these power laws, and they arise as a combined eect of limited connectivity 
and trap depth disorder: if only one of these features is present, the local DOS becomes 
concentrated around −1/τ  implying an exponential decay of the return probability.

The paper is organised as follows: after defining the model in section 2, we present 
our cavity theory in section 3, describe the approximation scheme and sketch the result 
for the power law tail of the local DOS; the full derivation is left to appendix B. In sec-
tions 4 and 5 we focus on the behaviour in the time domain by analysing, respectively, 
the return probability and the excursion time distribution. Finally, we summarise and 
discuss our results in section 6.

2. Bouchaud trap model on networks

We follow the set-up of our previous work [26]: the problem is defined by a continuous-
time Markov process on a sparse network (or graph), whose nodes (or traps) repre-
sent the minima of the energy landscape where the system gets trapped. These have 
a positive energy that represents the depth of the minimum with respect to the level 
zero of the energy landscape, and determines the expected lifetime of that state. Trap 
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depths (E  >  0) are quenched random variables following the exponential distribution 
ρE(E) = θ(E)exp(−E). The master equation defining the Markov process is

∂tp(t) = Mp(t) (1)
where p(t) = ( p1(t), . . . , pN(t)) is the probability distribution describing the position of 
the system on the network. The elements of the master operator M are:

Mij = cijrij for i �= j, Mii = −
�

j(�=i)

Mji (2)

where rij are the Bouchaud transition rates rij = e−βEj/c ≡ rj, c is the average connec-
tivity of the network, β is the inverse temperature and cij is 1 if i and j  are connected, 
and 0 otherwise. It is useful to define the quantity τj = (crj)

−1 = exp(βEj), which sets 
the scale of the expected waiting time (c/kj)τj to leave a node j ; here kj  is the degree of 
the node. The distribution of energies E implies a distribution for τ  given by

ρτ (τ) = T τ−(T+1). (3)
Note that �τ� diverges for T � 1, signalling a low T regime where the dynamics gets 
glassy. In this work we will mostly focus on the case where the network connectivity is 
that of a random regular graph (RRG), i.e. where every node is connected to c random 
nodes, with c � 3 so that the fraction of nodes outside the giant connected component 
of the graph vanishes in the large N limit [34]. This case is the simplest and yet it 
exhibits the same key features as more complex network topologies. This is confirmed 
by the results shown at the end of section 3.1, where the cases of Erdös–Rényi and 
scale-free connectivities are discussed.

The assumption of a configuration space characterised by a sparse and random con-
nectivity makes the master equation (1) impossible to solve analytically. We therefore 
take another route and focus on the spectral properties of M, whose αth eigenvalue, 
left and right eigenvectors we write respectively as λα,wα and uα. A formal solution to 
(1) is then given by

p(t) =
N−1�

α=0

eλαt(wα,p(0))uα (4)

where (·, ·) denotes the scalar product between vectors. If the network is connected 
there is only one vanishing eigenvalue λ0 = 0, and the corresponding right eigenvector 
represents the equilibrium distribution of the system: peq = limt→∞ p(t) = u0. All other 
eigenvalues have a negative real part and the contribution of the associated eigenvec-
tors to p(t) is exponentially suppressed over time. We will often refer to the eigenvec-
tors of M as the eigenmodes (or simply the modes) of the dynamics, so e.g. we could 
say that the long time behaviour of the system is governed by the slow modes, thus 
referring to the eigenvectors in the small |λ| regime. The importance of the spectrum of 
eigenvalues for the dynamics is evident as it provides the distribution of relaxation rates 
of the system. For this reason, a central quantity for our analysis is the (total) density 
of states (DOS), defined as
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ρ(λ) =
1

N

N−1�

α=0

δ(λ− λα). (5)

One could equivalently consider the spectrum of the relaxation rates rα = −λα, which 
would just flip the sign of lambda. We stick to the convention in (5) for consistency 
with our earlier work [26]. There we discussed in some detail the features of the DOS 
of the trap model defined on sparse networks. In all cases that we considered the DOS 
showed a |λ| → 0 power-law tail with the same exponent as found in the case of mean 
field connectivity, and eigenvectors exhibiting a localization transition, from delocal-
ized fast modes to localized slow modes. We measured the degree of localization in 
terms of the inverse participation ratio (IPR), using a formula proposed by Bollé et al 
[29] to detect localization transitions in symmetric random matrices. In order to inves-
tigate the thermodynamic limit we relied on the cavity method, and used a population 
dynamics algorithm to solve the associated cavity equations numerically. This method 
links the master operator to the inverse covariance matrix of a complex Gaussian 
distribution and therefore requires a symmetric matrix as input, which in our case is 
obtained from the similarity transformation

Ms = P−1/2
eq MP1/2

eq . (6)
Here Peq is a diagonal matrix with non-zero elements given by the equilibrium distri-
bution: (Peq)ii = (peq)i. This transformation preserves the eigenvalue spectrum, which 
is real as Ms is real and symmetric. Also, it does not aect the diagonal elements of 
the master operator, i.e. (Ms)ii = (M)ii, a fact that will turn out to be crucial for us. 

The eigenvectors vα of Ms are given by vα = P
−1/2
eq uα = P

1/2
eq wα. These retain the same 

localization properties as the eigenvectors of the original system, except for finite size 
eects mostly appearing close to the ground state (see [26], appendix E). The symme-
try of Ms is a consequence of the detailed balance condition that holds between the 
transition rates and the equilibrium Boltzmann distribution peq [35], see also [36] for 
a discussion in the context of Fokker–Plank evolution. Using a standard identity from 
random matrix theory [37], the DOS of Ms can be expressed as

ρ(λ) = lim
ε→0

1

πN

N�

i=1

ImGii(λε) (7)

in terms of the resolvent

G(λε) = (λεI−Ms)−1. (8)
Here I indicates the N ×N identity matrix and we have used the abbreviation 
λε = λ− iε with i the imaginary unit and ε small and positive. In going from (5) to 
(7) one replaces the delta functions in (5) with Lorentzians of width ε; thus ε sets the 
numerical resolution that we have on the λ-axis when we come to evaluate quantities 
of interest, using in our case specifically the population dynamics algorithm outlined 
below.

In this work we use the cavity method to study the DOS in more detail. In par-
ticular we decompose it into a set of local DOSs, one for each node; these local DOSs 
are defined explicitly below. The analysis allows to probe the important eects of 
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heterogeneity in the network, as generated by the landscape of trap depths Ei. It will 
also enable us to obtain insights into the dynamics directly in the time domain, as e.g. 
time-dependent probabilities of return to a certain trap can be easily computed using 
results for the local DOSs.

3. Local DOS

The ith term appearing in the sum on the right hand side of equation (7) is the contrib-
ution to the total DOS given by a single node. To make this explicit, we can write

ρ(λ) =
1

N

N�

i=1

ρ(λ|i) (9)

with ρ(λ|i) = limε→0 ImGii(λε)/π. This quantity is referred to as the (single node) local 
DOS. By translating the eigendecomposition of Ms into one for the resolvent matrix, 
G(λε) =

�
α(λε − λα)

−1vαv
T
α, one sees that the local DOS can be written more explic-

itly as

ρ(λ|i) =
N−1�

α=0

δ(λ− λα)v
2
α,i. (10)

The normalization of eigenmodes implies that summing over all network nodes i and 
dividing by N gives the total DOS defined by (5), as written in (9). More generally, it 
is possible to decompose the total DOS according to the contribution from all traps 
with a given property, e.g. a fixed local timescale τi = τ . Following this idea, we define 
ρ(λ|τ) as

ρ(λ|τ) = 1

Nτ

N�

i=1

δ(τ − τi)ρ(λ|i) (11)

where Nτ =
�N

i=1 δ(τ − τi). The following relations then hold:

ρ(λ) =

�
dτ ρ(λ|τ)ρτ (τ) (12)

1 =

�
dλ ρ(λ|τ). (13)

Here ρτ = Nτ/N  is the probability density function of τ  for a given realization of the 
system with size N, which for N → ∞ is self-averaging and given by the expression 
(3). Of course the same construction can be used to define a local DOS conditioned on 
generic local disorder variables; the node degree ki would be an obvious choice (see e.g. 
[38]), though we do not pursue this here.

In the next section we show how to use the cavity method to evaluate the local DOS 
ρ(λ|τ), and we derive an analytical approximation valid for the small |λ| tail based on 
the high T approximation scheme that we introduced in [26].
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3.1. Cavity method

Here we only present a brief summary of the cavity construction and refer to our pre-
vious paper [26] for a detailed derivation of the central result, i.e. the self-consistent 
equation for the distribution of cavity precisions given below.

First of all, one observes that the diagonal elements of the resolvent can be expressed 
as

Gii = i

�
dx x2

iP (x) = i

�
dxi x

2
iP (xi)

 (14)
where P (x) ∝ exp(−ixTG−1x/2) is a complex Gaussian measure with covariance matrix 
given by G, and P(xi) the associated marginal distribution at node i. Exploiting the 
sparse structure of G−1, one can express the marginal distribution of i in terms of the 
cavity distributions of its neighbouring nodes k ∈ ∂i:

P (yi) = e
− i

2
λε

y2i
ri

�

k∈∂i

�
dyke

− i
2
(yi−yk)

2

P (i)(yk). (15)

Here ∂i indicates the neighbourhood of i, and we have used the change of variable 
yi = xi

√
ri, which has the desired eect of confining the disorder from the transition 

rates ri to the diagonal terms. The last equation is based on the key assumption that 
the joint distribution of the nodes belonging to ∂i factorises when the central node i is 
removed from the graph (see the illustration in figure 1). This is strictly true only when 
the network formed by the traps and allowed transitions between them is a tree, but 
it also provides a valid approximation whenever the topology of the network is at least 
locally tree-like, as is the case of sparse networks (e.g. with random regular or scale-free 
connectivity) in the large N limit [39]. Using the same line of reasoning as for (15) one 
can write for the cavity distributions the recursive relation

P (i)(yk) = e
− i

2
λε

y2k
rk

�

l∈∂k\i

�
dyl e

− i
2
(yk−yl)

2

P (k)(yl). (16)

Equation (16) is self-consistently solved by Gaussian distributions of the form 

P (i)(yk) ∝ exp(−ω
(i)
k y2k/2). This ansatz transforms equation (16) into an equivalent set 

of equations for the cavity precisions:

k
i

k
i

Figure 1. Local tree-like structure of a random regular graph with connectivity 
c  =  3 (left). When the central node i is removed from the network (right), 
the branches become independent of each other in the thermodynamic limit 

N → ∞, and so the joint probability distribution of the neighbourhood factorises: 

P (i)(y∂i) =
�

k∈∂i P
(i)(yk).
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ω
(i)
k = iλετkc+

�

l∈∂k\i

iω
(k)
l

i + ω
(k)
l

. (17)

The Gaussian nature of the cavity marginals entails that single site marginals P(y i) are 
also Gaussian, with equation (15) implying that single site precisions ωi are of the form

ωi = iλετic+
�

k∈∂i

iω
(i)
k

i + ω
(i)
k

. (18)

The system of equation for the cavity precisions (17) can be solved recursively for a 
finite realization of the system. The marginal precisions ωi are then obtained from (18) 
and they give the diagonal elements of the resolvent via Gii = iτic/ωi.

We are concerned with the thermodynamic limit of a large network. Here we can 
exploit that for N → ∞, where due to the locally tree-like assumption loops in the net-
work become long, the dierent terms in the sum in (17) become uncorrelated samples 
from the distribution p(ω) of cavity precisions. Requiring that the left hand side, too, is 
a sample from the distribution of cavity precisions, one obtains a self-consistency equa-
tion for p(ω). (Note that here and in the following we omit the superscript indicating 
the cavity graph in order to keep the notation simple.) For a general degree distribution 
p k this self-consistency equation reads

p(ω) =
�

k

kpk
c

�
dτρτ (τ)

k−1�

l=1

dωl p(ωl) δ(ω − Ωk−1) (19)

with the abbreviation

Ωa = Ωa(λε, {ωl}, τ) = iλετc+
a�

l=1

iωl

i + ωl

. (20)

A numerical solution of (19) can be found using a population dynamics algorithm; see 
[40] for a detailed explanation of this method. The core idea is to take an initialised 
population P  of cavity precisions ω and then update each of them using the value of 
Ωk−1 given by a sample τ  and k  −  1 random elements of P  as inputs, with the node 
degree k sampled appropriately from the degree-weighted distribution kpk/c. This pro-
cess is then repeated until the statistics of the distribution p(ω) converge. At this point 
the total DOS ρ(λ) can be evaluated as

ρ(λ) = lim
ε→0

1

π
Re

� τc

Ωk(λε, {ωl}, τ)
�
{ωl},τ ,k

 (21)

where the angle brackets �. . .�{ωl},τ ,k indicate averaging over the degree distribution 

p k, the lifetime distribution ρτ (τ) and the k cavity precision distributions3 
�k

l=1 p(ωl). 
Comparing (21) with (12) one reads o directly that the local DOS is given by an 
almost identical expression

3 The full expression reads ρ(λ) = limε→0
1
π
Re

�
k pk

�
dτρτ (τ)

�k
l=1 dωl p(ωl) τc/Ωk(λε, {ωl}, τ).
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ρ(λ|τ) = lim
ε→0

1

π
Re

� τc

Ωk(λε, {ωl}, τ)
�
{ωl},k

 (22)

that diers only in the fact that τ  is fixed rather than averaged over. The remaining 
average is, in practice, evaluated by sampling values of k from the degree distribution, 
and sets {ωl} of k cavity precisions from the population P  converged to equilibrium.

Figure 2-left shows the local DOS obtained by the above method on a log-log 
scale, for the random regular graph ensemble with c  =  5 and T  =  0.8, and for given 
τ = 2. The factor −λ on the y -axis accounts for the transformation λ → ln(−λ) on the 
x-axis, so this plot can be read as the distribution of the logarithmic relaxation rates, 
ln(−λ), with the correct normalization. The blue lines show the results obtained with 
the population dynamics algorithm described above, using two dierent values of ε. 
We note that a smaller value of ε gives a better resolution on the negative lambda axis, 
as it should, and that straight ε-dependent tails appear in the small |λ| region (below 
the corresponding values of ε), as well as for |λ| > 1. These have no physical meaning: 
population dynamics sampling runs of finite length produce only a limited number of 
samples in this region, if any, and the resulting shape of the (local) DOS is strongly 
aected by the Lorentzians of width ε that the method eectively uses to smooth the 
spectra. The green dashed lines were obtained from direct diagonalizations (labelled 
‘numerics’ in the plots) of instances of Ms with network size N = 500, 1000, 2000 (light 
to dark green). The agreement with the population dynamics results is excellent in the 
regions where finite size eects are absent. The latter do show up in the small |λ| regime 
and are again a consequence of limited sample sizes, with finite matrices only rarely 
having eigenvalues in this region4.

In figure 2-right we explore the dependence of the local DOS on τ  as predicted by 
the population dynamics algorithm, for the same setting of random regular networks 
with c  =  5 at T  =  0.8. The grey solid line in the background is the total DOS given 
by (21). This plot provides two important insights about the local DOS: (i) most of its 
mass is peaked around a value of −λ that scales as 1/τ, with this peak getting narrower 
as τ  increases; (ii) in the small |λ| regime well below the peak, the local DOS has a 
power law dependence on |λ|, with a τ -independent exponent.

At this stage it is useful to compare to the simpler MF (c → ∞) and RW (T → ∞) 
limits discussed in the introduction. We discuss their local DOS in appendix A and find 
in both cases a delta peak at |λ∗| ∝ 1/τ  for large τ . (The proportionality constant is 
unity for the MF case, where the delta peak is the only contribution to the local DOS; 
in the RW case there is an additional piece to the spectrum for |λ| of order unity.) The 
delta peak is the analogue of the smooth peaks visible in figure 2-right. More impor-
tantly, the local DOS turns out to be zero for |λ| below the peak. The power law behav-
iour in this regime that we see in figure 2-right therefore has no analogue in either the 
MF or RW limits: it arises only as a combined eect of limited connectivity and trap 
depth disorder. Remarkably, the power law behaviour for small |λ| is robust to changes 
in the network connectivity, as can be seen by comparing results for the Erdös–Rényi 
and scale-free network ensembles in figure 3 to those for random regular networks 

4 The intuition here is that the eigenvalues determine the relaxation times of the system, and exploring a smaller 
network must take less time, on average. More precisely, the largest trapping time τmax in a finite system of size N 
scales as τmax ∼ Nβ [26].
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in figure 2-right. One observes that while the shape of ρ(λ|τ) around λ = −1/τ does 
depend on the type of network, the exponent of the power law tail for low |λ| does not.

In the next section we present an approximation scheme that can explain the power 
law behaviour observed in the local DOS for |λ| � 1/τ , and clarifies that this result 
applies to any sparse network specified by some degree distribution p k with finite mean. 
In fact, the argument that we use is insensitive to correlations among node degrees, and 
should therefore remain valid for networks generated e.g. by preferential attachment 
[39].

3.2. Approximation scheme

While the equations resulting from the cavity method do not permit closed-form solu-
tions, we can use them to construct an approximation scheme that provides useful 
insights. This is done in the spirit of the single defect approximation [41, 42]: the 
main idea is to take into account the disorder of a certain region of interest only, e.g. 
a single node or a given neighbourhood in the case of a network, and assume the rest 
of the system to be homogeneous. In our model, a first order (or ‘first shell’) approx-
imation of this kind corresponds to assuming T = ∞ and a c-regular connectivity on 
the cavity network, and taking only the lifetime τ  and connectivity k of the central 
node into account. With these assumptions the cavity network becomes disorder-free in 
the thermodynamic limit, which implies that the distribution ρ(ω) of cavity precisions 
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Figure 2. Left: local DOS for the random regular graph ensemble with c  =  5, 
T  =  0.8 and τ = 2. The blue lines show the results of the cavity method (population 
dynamics), while the green lines are obtained from direct diagonalization of 
systems with size N = 500, 1000, 2000 (light to dark green), averaging across 104 
samples. The black dashed line represents the second shell approximation given 
by equation (25). Right: local DOS for dierent values of τ  (blue solid lines), and 
associated predictions of the second shell approximation (blue dashed lines, within 
the range [10−6, 1/(2τ )]). For these results we have used ε ranging from 10−4 (for 
τ = 2) to 10−7 (for τ = 2000). The solid grey line in the background shows the total 
DOS.
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becomes a delta function centred on the value of ω̄ that solves ω̄ = Ωc−1(λε, {ω̄}, 1). We 
refer to ω̄ as the infinite-T (and c-regular) solution. The first order approximation is 
then implemented as one cavity step—involving the local τ  and k values—performed 
starting from the infinite-T solution. Following this idea, the second order (or second 
shell) approximation consists of two cavity steps from the infinite-T solution and so 
on. In what follows we will focus on the random regular graph ensemble for simplic-
ity, and refer to the appendices for the demonstration of the wider applicability of the 
approximation.

The first order approximation was previously found to give an accurate description 
of the total DOS in the small |λ| regime, where ρ(λ) ∼ (−λ)T−1 as in mean field [15, 
26]. For the local DOS, on the other hand, the first order approximation is not able to 
provide a match to the power law behaviour shown in figure 2. In fact, this approx-
imation coincides with the random walk limit discussed in appendix A, which yields a 
local DOS characterised by a single delta peak in the small |λ| regime. This is due to the 
complete lack of randomness in the approximation: the attributes of the central node 
are fully specified (by τ  and the fixed degree k  =  c) as are those of the cavity network 
by the infinite-T solution. The second order approximation is then required if we want 
to include some of the original heterogeneity of the system: in the thermodynamic limit, 
dierent nodes with the same value of τ  have dierent neighbourhoods, and averaging 
across these neighbourhoods gives the approximated local DOS. This can be expressed 
mathematically as
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Figure 3. Left: local DOS for the Erdös–Rényi graph ensemble with c  =  5, T  =  0.8; 
the degree distribution is pk ∝ cke−c/k!, with an upper bound kmax = 100 imposed 
for numerical eciency. Blue solid lines: population dynamics results for dierent 
τ , with ε as in figure 2. Blue dashed lines: second shell approximation predictions. 
Solid grey line: total DOS. Right: analogous plot for the case of scale-free networks 
with degree distribution pk ∝ k−γ, bounded between kmin = 2 and kmax = 1000; the 
exponent γ = 2.5 and mean degree �k� = 4.54 are chosen to match results for the 
configuration space topology of a system of Lennard-Jones particles [23].
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ρ2A(λ|τ) = lim
ε→0

1

π
Re

� τc

Ωk({Ωc−1({ω̄}, τl)}, τ)
�
{τl},k

 (23)

where the superscript 2A stands for ‘second order approximation’. In appendix B we 
show that for |λ| � 1/τ  equation (23) can be written as

ρ2A(λ|τ) � cτ
�
δ(k −

k�

l

yl)
�
{yl},k

 (24)

with yl = 1/(λc[τl + (c− 2)−1] + c− 1). The distribution ρy(yl) of y l is strongly peaked 
within a region of order |λ|T  around 1/(c− 1), and it drops by a factor |λ|T  if y l is away 
from this value. The average on the right hand side of (24) is then dominated by cases 
where all the y l are close to 1/(c− 1) except for one, say y 1. The latter then has to 
equal k − (k − 1)/(c− 1), which happens when the corresponding τ1 is of order 1/|λ|. 
Substituting the expression for ρy(y1 = k − (k − 1)/(c− 1)) and multiplying by a factor 
k (as any of the τl could be the large one) this leads to the following result:

ρ2A(λ|τ) ≈ τC(c,T )|λ|T for |λ| � 1/τ (25)
where the prefactor C(c,T ) depends on the degree distribution of the network and 
vanishes in the limit c → ∞, as required to recover the mean field case where the 
local DOS vanishes for |λ| � 1/τ . For random regular networks we find explicitly 
C(c,T ) = Tc(c− 1)T−1(c− 2)−(T+1). Equation (25) then also implies ρ2A(λ|τ) → 0 when 
T → ∞, at least for |λ| < (c− 2)/(c− 1), and so—like the first order approximation—it 
is consistent with the random walk limit. The predicted small-|λ| power law of the local 
DOS, ρ(λ|τ) ∼ |λ|T , matches the full population dynamics results well (see the black 
dashed line named ‘2nd shell approximation’ in figure 2-left, and the blue dashed lines 
in figures 2-right and 3). Interestingly, the argument that leads to equation (25) implies 
that the observed power law arises because of deep minima surrounding the node of 
interest: a significant contribution to the local DOS at any given λ comes from those 
traps that have at least one neighbouring minimum with expected lifetime �1/|λ|. As 
we will see, this feature of the local DOS determines the observed long time behaviour 
of several quantities of interest, and in particular it has important implications for the 
return probability discussed in the next section.

4. Return probability

We now turn our attention to the time domain. We start by using the results for the 
local DOS to compute the average probability of return to an initial trap, as a function 
of its lifetime τ .

Let us call Pi(t) the return probability to an arbitrary initial trap i. Physically, 
this gives the probability of being in trap i at time t, given that we have started out 
in the same trap. Mathematically it is given by equation (4) with the initial condition 
pj(0) = δij, yielding
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Pi(t) =
�

α

eλαtuα,iwα,i =
�

α

eλαtv2α,i. (26)

In the second equality we have used the relations uα,i = p
1/2
eq,i vα,i and wα,i = p

−1/2
eq,i vα,i 

to transform to an expression in terms of the eigenvectors of the symmetrized master 
operator; note that the symmetrization factors cancel. Decomposing the sum according 
to the eigenvalues λ gives

Pi(t) =

�
dλ

�

α

δ(λ− λα)v
2
α,ie

λt =

�
dλ ρ(λ|i)eλt (27)

where ρ(λ|i) is the single node local DOS defined in (10). We now define an average 
return probability over all traps with lifetime τi = τ :

Pτ (t) =
1

Nτ

N�

i=1

δ(τ − τi)Pi(t) =

�
dλ ρ(λ|τ)eλt. (28)

As the second equality shows, the return probability Pτ (t) can be obtained directly 
from the local DOS ρ(λ|τ), which in turn we can predict using population dynamics as 
explained above. We can also use (28) in reverse to deduce that the average of λ over 
the local DOS ρ(λ|τ) is given by −1/τ , in accordance with our findings about the scal-
ing of the peaks observed in figure 2. This general result for the average of λ can be 
seen by noting that Pi(t) = (expMt)ii = 1 +Miit+O(t2). From the definition (2) of the 
master operator this equals 1− t/τi +O(t2); comparing with the expansion of the rhs of 
(28) to linear order in t then gives the result.

Figure 4 shows the return probability Pτ (t) for the random regular graph ensemble 
with c  =  5, T  =  0.8 and τ = 2 obtained using dierent approaches: the blue line is 
computed from the population dynamics result discussed in the previous section, the 
green dashed lines are obtained using data from direct diagonalizations of samples of 
Ms-matrices of dierent sizes (light to dark green), and the red line shows the result of 
stochastic simulations with the Gillespie algorithm (see appendix C). From short times 
up to t ∼ 101 the agreement between these three approaches is clearly very good. At 
larger t, finite size eects induce upward curvature in the direct diagonalization curves 
as the estimate of Pτ (t) approaches the Boltzmann equilibrium distribution in a finite 
system. The simulations, which are performed on eectively infinite networks and so 
do not suer from analogous errors, start to exhibit statistical sampling fluctuations in 
the same range of times. (With the 105 runs of the simulated dynamics that we use, a 
reasonable estimate of the return probability can only be obtained for Pτ (t) � 10−4; we 
therefore do not show data beyond this point in figure 4.)

Looking now in more detail at the results in figure 4, one observes that for times t 
up to the order of the trap lifetime τ , Pτ (t) is dominated by the ‘staying probability’ of 
having never left the initial trap, which we will denote by Sτ (t). This quantity coincides 
with Pτ (t) for the fully-connected graph, which is the original Bouchaud model: once 
the initial trap has been left, the probability of coming back is O(1/N) and vanishes in 
the thermodynamic limit. In our continuous time framework the staying probability is 
simply given by (see grey solid line in figure 4)



Glassy dynamics on networks: local spectra and return probabilities

15https://doi.org/10.1088/1742-5468/ab3aeb

J. S
tat. M

ech. (2019) 093304

Sτ (t) = e−t/τ . (29)
The power law tail of the return probability observed beyond this, in the long time 
regime (t > τ ), is therefore clearly a network eect in the dynamics: the finite connec-
tivity allows for returns to the initial trap even in the infinite system size limit, and as 
we will see this generates a power law tail provided that T is finite so that the disorder 
in the trap depths matters. The power law predicted by the cavity theory is consistent 
with our simple estimate (25) of the local DOS for |λ| � 1/τ , which when inserted into 
the integral in (28) yields

Pτ (t) ≈ τ C̃(c,T ) t−(T+1) for t � τ . (30)
The prefactor here is C̃(c,T ) = C(c,T )Γ(T + 1), with Γ(z) the Gamma function. This 
approximation agrees with the cavity theory exactly regarding the power law exponent; 
even the prefactor is quantitatively close (compare the blue solid line and the black 
dashed line in figure 4).

In the previous section we explained that the derivation of (25) implies that the 
small |λ| power law tail of the local DOS originates from deep minima (with lifetimes 
� 1/|λ|) surrounding the initial trap. The implication for the return probability is the 
following: the most likely manner in which the system can return to the initial state 
at t � τ  is for it to become trapped in a neighbouring node with lifetime  ∼t. Other 
possibilities of course exist, e.g. the system could come back from a trap in the second 
neighbour shell, but these only make a sub-dominant contribution to Pτ (t). This can be 

Figure 4. Average return probability for dynamics on random regular networks 
with c  =  5 and T  =  0.8, for initial traps with expected lifetime τ = 2. Blue line: 
result from numerical evaluation of equation (28) using the population dynamics 
data for the local DOS. Black dashed line: second shell approximation for t � τ  
(see equation (30)). Green dashed lines: results from direct diagonalizations of 
the master operator for system sizes N = 500, 1000, 2000 (light to dark green), 
averaging across 104 samples. Red line: result from stochastic simulations using the 
Gillespie algorithm. Grey line: staying probability Sτ (t) = e−t/τ .
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seen indirectly from the fact that our approximation almost overlaps with the numer-
ically exact population dynamics curve in figure 4.

Summarizing, Pτ (t) exhibits an initial exponential decay typical of the mean field 
limit for t � τ , followed by a power law behaviour with a T-dependent exponent for t �
τ ; the latter arises from deep minima surrounding the departing node. Note that the 
crossover point from the exponential decay to the power law regime occurs at a value of 
Pτ (t) that decreases as τ  increases, which is directly related to the fact that the power 
law tail does not just depend on the scaled time t/τ  (see (30)). Both features can be 
seen in figure 5, where we compare evaluations of Pτ (t) for dierent values of τ : in the 
left plot the x-axis is scaled by τ , which delivers a collapse of the exponential decay 
at short times, while in the right plot we have similarly scaled the y -axis to show that 
the prefactor of the tail is indeed proportional to τ  as the approximation (30) predicts. 
Note that the time constant of the initial exponential decay is somewhat larger than 
the mean field value τ . In fact for τ � 1 this can be approximated by τ(c− 2)/(c− 1), 
as we will justify in the next section.

We note finally that the conditioning on the trap lifetime in the return probability 
Pτ (t) is essential in order to isolate the eects of finite, non-mean field network con-
nectivity among traps. If one instead considers the probability of return to a randomly 
chosen initial trap P (t) =

�
dτ Pτ (t)ρτ (τ), one finds that this is dominated by the initial 

exponential decay of Pτ (t), which is exactly the mean field result. The long time scal-
ing P (t) ∼ t−T  that one deduces has a mean field form even for finite connectivity c. 
The decay exponent is consistent with the small λ-scaling of the total DOS [15, 26], 
which again is independent of c. This analysis tells us that the trap model on networks 
exhibits a long time mean field dynamics on average only, with network eects coming 
to the fore when considering more detailed phenomena like returns to specific initial 
traps as considered here.

5. Excursion times

In the previous section we discussed the dynamical properties of the system in terms 
of the return probability to some initial trap. We saw that the local disorder, i.e. the 
depth of the departing trap, determines the shape of Pτ (t) at short times. In contrast, 
the long time behaviour is always a power law in t, with the dependence on τ  entering 
only via the prefactor. We suggested that this is because when t is much larger than the 
trap lifetime τ , the probability of finding the system in the original trap is dominated 
by the lifetimes of the neighbouring minima. In this section we consolidate this idea by 
excluding the time spent in the initial trap from the analysis and looking at the distri-
bution of excursion times, i.e. the time spent by the system away from the initial trap 
between two visits there. To this end we decompose the return probability as

Pτ (t) =
∞�

n=0

P (n)
τ (t) (31)
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where P
(n)
τ (t) indicates the probability of finding the system in the original trap at time 

t, assuming that it has returned there n times in total. Note that P
(0)
τ (t) = Sτ (t), while 

P
(1)
τ (t) can be written as

P (1)
τ (t) =

� t

t1

dt2

� t

0

dt1 Lτ (t1)F (t2 − t1)Sτ (t− t2). (32)

Here the integrand is the probability that the system leaves the initial trap at time t1 
(we write this as Lτ (t1) dt1), stays away until time t2 (F (t2 − t1) dt2), then returns to the 
origin and remains there until t (Sτ (t− t2)). Reading the expression in this way implies 
that F (t) is the distribution of excursion times, the quantity that we want to evaluate. 

Equation (32) is the convolution between Lτ, F and Sτ, i.e. P
(1)
τ = Lτ ∗ F ∗ Sτ , which 

can be generalised to n returns as

P (n)
τ = (Lτ ∗ F )(n) ∗ Sτ (33)

with (Lτ ∗ F )(n) the n-fold convolution between Lτ and F. Substituting (33) into (31) 
and taking the Laplace transform leads to

P̂τ (s) =
Ŝτ (s)

1− L̂τ (s)F̂ (s)
 (34)

which can be written more explicitly using that, from (29),
Ŝτ (s) = τ/(1 + sτ). (35)

Figure 5. Left: average return probability Pτ (t) against t/τ  for dynamics on 
random regular networks with c  =  5, at temperature T  =  0.8. Blue lines: results for 
dierent τ , obtained from population dynamics data for the local DOS. The collapse 
for t/τ � 1 follows the staying probability (grey line) except for a c-dependent 
factor in the decay rate (see main text). Right: analogous plot of Pτ (t)/τ  against t, 
giving a collapse in the power law tail for t � τ , as predicted by the second shell 
approximation (see equation (30)) .
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Also one has Lτ (t) = −S �
τ (t) or in Laplace space L̂τ (s) = 1− sŜτ (s) = 1/(1 + sτ). 

Substituting into (34) yields

P̂τ (s) =
τ

1 + sτ − F̂ (s)
. (36)

This equation can be inverted to obtain an expression for the excursion time distribu-
tion in terms of the return probability,

F̂ (s) = sτ + 1− τ/P̂τ (s). (37)
We consider first the limit s → 0. The value F̂ (0) =

�∞
0

dt F (t) gives the probability 

that an excursion lasts any finite amount of time, i.e. the probability that the system 
will sooner or later go back to the initial node rather than escape to infinity. On the 
infinite c-regular tree, i.e. for a random c-regular graph in the limit N → ∞, this fixes5 

F̂ (0) = 1/(c− 1), and so we obtain P̂τ (0) = τ(c− 2)/(c− 1) from (37), while Ŝτ (0) = τ . 
In the MF limit we have P̂τ (s) = Ŝτ (s), implying F̂τ (s) = 0 via (37), which is consistent 

with the c → ∞ limit of F̂ (0) = 1/(c− 1).
Next we analyse what (37) says about the long time behaviour of F (t), by consider-

ing F̂ (s) for small s. From equation (30) one obtains the following approximation for 
the leading singular small s-behaviour of the return probability in Laplace space6

P̂τ (s)− P̂τ (0) � τΓ(−T )C̃(c,T ) sT for s � 1/τ . (38)
Substituting this expression for P̂τ (s) into (37) and expanding again for small s one sees 
that F̂ (s) contains the same singular term:

F̂ (s)− F̂ (0) � τ 2
Γ(−T )C̃(c,T )

P̂ 2
τ (0)

sT for s � 1/τ . (39)

For the long time behaviour of F (t) this implies the same power law that we found in 
the return probability:

F (t) �
�c− 1

c− 2

�2

C̃(c,T ) t−(T+1)
 (40)

where we have used P̂τ (0) = τ(c− 2)/(c− 1). Note that the predicted behaviour of 
the excursion time distribution only depends on the average connectivity and temper-
ature, while the departing lifetime τ  disappears from (40) as it did in our earlier result 

F̂ (0) = 1/(c− 1). This is as expected: in the Bouchaud trap model, the escape time τ  

5 A simple argument to see this is the following. The probability of ever returning—call this P0—cannot depend 
on the lifetimes of the traps in the configuration space: if the system escapes to infinity it does not matter how 
long this will take, and so P0 is independent of T as long as T  >  0. Moreover we have P0 = P01, where Pnm is the 
probability to ever land on a node in the nth neighbour shell of the initial trap, starting from the mth shell (here 
the n  =  0 ‘shell’ is the initial trap). It is immediate to see that P01 = 1/c+ P02(c− 1)/c and also P02 = P01P12, which 
by symmetry becomes P02 = P 2

01. The resulting second order equation gives the physical solution P01  =  1/(c  −  1), 
which correctly becomes P01  =  1 for a chain (c  =  2) and P01  =  0 in the MF limit (c → ∞). In general, the probabil-
ity to reach a node that is l steps away decreases exponentially, P0l = (c− 1)−l, which suggests a possible explana-
tion for why the 2nd shell approximation works so well.
6 One has generally P̂τ (0)− P̂τ (s) =

�∞
0

dt Pτ (t)(1− e−st). The integrand becomes dominated by large t for small s; 

substituting the tail estimate (30) and integrating by parts then gives (38).
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only contains information on the local disorder (trap depth) at the initial minimum, so 
once this trap has been left, the behaviour during the following excursion is indepen-
dent of τ .

So far our analytical reasoning was based on an approximation for the local DOS, 
which we converted into a return probability Pτ (t) and finally into the excursion dis-
tribution F (t). Qualitatively, we can also alternatively argue directly from F (t), by 
constructing a simple lower bound. The probability of an excursion taking longer than 

t, 
�∞
t

dt�F (t�), is at least as large as the probability of not having left the first trap 
encountered during the excursion. As the depth of this trap is random, the latter prob-

ability is 
�
dτ � ρτ (τ �)e−t/τ �. This lower bound is just the mean field return probability 

P (t) ∼ t−T  discussed at the end of the previous section. Taking a derivative w.r.t. t 
gives the estimate that F (t) should decay as t−(T+1), exactly as we had found in (40). 
This then implies the analogous power law (30) in the return probability Pτ (t), and in 
turn via (28) the small |λ| power law tail (25) we observed in the local DOS. Note that 
the above bound for the cumulative excursion time distribution again supports our 
intuitive ‘deep minimum in the first shell’ picture: the average of e−t/τ � is dominated 
by traps with lifetimes τ � � t, i.e. by the deepest minima surrounding the initial trap.

Before showing numerical results we comment briefly on the short time behaviour 
of F (t). This is determined by the average escape rate 

�
dτ � ρτ (τ �)/τ � of the first neigh-

bour traps, which have random depths, multiplied by the probability 1/c (again for the 
random regular graph ensemble) of making the first jump from such a neighbour back 
to the initial trap. Overall this yields F (0) = T/(c (T + 1)). This constant translates 

into a 1/s power law in Laplace space for s � 1; such a power law also appears in P̂τ (s) 
due to Pτ (0) = 1.

Our numerical results for the excursion time distribution and the related quanti-
ties are displayed in figure 6: on the left we have the staying probability (red line), the 
return probability (blue line) and the excursion time distribution (green line) in Laplace 
space for the random regular graph ensemble with c  =  5, T  =  0.8 and considering 

departing traps with lifetime τ = 2. P̂τ (s) and F̂τ (s) are computed using the population 
dynamics results for the local DOS, while Ŝτ (s) is given explicitly by equation (35). 
Note that all these quantities decrease as 1/s for large s as expected. The inset shows 

the small s behaviour where the horizontal lines correspond to the values P̂τ (0), F̂ (0) 
and Ŝτ (0) derived above. The plot on the right has the excursion time distribution F (t) 

evaluated as the inverse Laplace transform of the data in the left plot, together with 
the results from direct simulations on the infinite c-regular tree (blue lines); we show 
simulations for multiple τ , which produce identical results as expected. These numer-
ical results match the approximation (40) well, see the black dashed line labelled 2nd 
order approximation. The inset clarifies the behaviour of F (t) for t → 0, with the hori-
zontal line indicating the asymptote F (0).

We stress that our results on the long time power law behaviour of the return prob-
ability and excursion time distribution are robust to changes in network topology, as 
long as this exhibits a locally tree-like structure. Our deep minima argument continues 
to apply then, with returns from the first neighbour shell surrounding the initial node 
giving the dominant contribution.
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We return finally to the return probability Pτ (t) as shown in figure 5. As discussed, 
this quantity initially decays exponentially in t/τ , and the range where this decay is 
seen expands without bound as τ → ∞. The decay constant is somewhat slower than 
the staying probability Sτ (t) would suggest, however. To understand this, one can 

focus on the t/τ  scaling of Pτ (t) by considering in Laplace space τ−1P̂τ (s) for s = σ/τ . 
From (36) this is just τ−1P̂τ (σ/τ) = [1 + σ − F̂ (σ/τ)]−1. In the large τ -limit that we are 

interested in, F̂ (σ/τ) → F̂ (0) = 1/(c− 1) so that τ−1P̂τ (σ/τ) → [(c− 2)/(c− 1) + σ]−1. 
This implies in the time domain in the same limit that

Pτ (t) = e−(t/τ)(c−2)/(c−1)
 (41)

which is consistent with the numerical results shown in figure 5-left. The exponential 
decay resembles that of the staying probability Sτ (t) = exp(−t/τ), but is somewhat 
slower except in the mean field limit c → ∞. The slowing down arises from the fact that 
the system can return an arbitrary number of times n to the initial trap, and the sum of 
all the contributions from n = 1, 2, . . . returns just conspires to produce an exponential 
return probability decay with a smaller decay rate. An intuitive physical explanation 
can be formulated as follows: when τ � 1, excursions take negligible time compared to 

τ . Since F̂ (0) is the return probability, the probability of escaping in any attempt is 
only 1− F̂ (0). Therefore the rate of escape is (1− F̂ (0))/τ = (c− 2)/(c− 1)τ−1.

Figure 6. Left: Laplace transforms of the return probability (blue line), staying 
probability (red line) and excursion time distribution (green line) for the random 
regular graph ensemble with c  =  5, T  =  0.8 and departing traps with τ = 2. The 

dashes continuing the green line for s  >  102 represent the 1/s behaviour of F̂ (s) at 

large s (the evaluation via (37) drops below numerical precision here as P̂τ (s) exhibits 

the same behaviour—see blue and grey lines). The horizontal lines correspond to 

P̂τ (0) (blue), Ŝτ (0) (red) and F̂ (0) (green). Inset: zoom in on the small s range. 

Right: excursion time distribution obtained by inverse Laplace transform of F̂ (s) 

from the left plot (red line). The black dashed line is the theoretical estimate given 
by equation (40). The plot also shows F (t) estimated from simulations on the 
infinite tree which are robust to changes in τ .
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6. Conclusion

In this paper we have studied a model for the evolution of glasses in configuration 
space: the dynamics takes place on a random network whose nodes represent the energy 
minima (or traps) of the system. These are characterised by the number of nearest 
neighbours k and an average lifetime τ . The latter is a quenched random variable, 
power law distributed, whose average diverges below the glass transition temperature 
T  =  1. Our focus was on the spectrum of eigenvalues λ of the master operator govern-
ing the dynamics, and in particular on the local density of states ρ(λ|τ), i.e. the contrib-
ution to the spectrum of relaxation rates from all traps with a fixed lifetime τ .

We employed the cavity method to exploit the tree-like structure of infinite random 
networks, and computed numerically the local DOS using a population dynamics algo-
rithm. The cavity construction also allowed us to perform a simple analytical approx-
imation that provides a very good match to the exact numerical results: the local 
DOS shows a small-|λ| power law tail governing the long time dynamics, specifically 
ρ(λ|τ) ∼ τ |λ|T  for |λ| � 1/τ . This result is robust to changes in the network topology 
as long as a locally tree-like structure is retained; in this class of networks we consid-
ered here random c-regular, scale-free and Erdös–Rényi graphs. The power law tail of 
the local DOS is associated, in the time domain, with the distribution F (t) of excur-
sion times t away from some initial trap. We found F (t) ∼ t−(T+1). This can be seen as 
responsible for the long time behaviour of the probability to return to traps of depth τ , 
which is Pτ (t) ∼ τ t−(T+1) for t � τ .

We showed that the above dynamical properties arise as a combined eect of a 
sparse (loop-free) configuration space connectivity and the quenched trap depth dis-
order: when these features are considered separately the local DOS becomes δ-shaped 
for small |λ|, implying an exponential decay of F (t) and Pτ (t). In more detail, our 
analysis indicates that the most likely way for the system to return to the departing 
trap at some time t � τ  is to spend most of the interim stuck in a neighbouring trap 
with lifetime of order t or larger. Returns from more distant minima are possible but 
become exponentially less probable with distance. For t � τ , instead, Pτ (t) is domi-
nated by the probability of having never left the original trap, Sτ (t) = e−t/τ ; in the 
mean field limit of infinite connectivity, Sτ (t) is in fact the only contribution to Pτ (t). 
Finally, the exponential shoulder of Pτ (t) dominates the average return probability 
P (t) =

�
dτρτ (τ)Pτ (t), leading to the mean field scaling P (t) ∼ t−T , in accordance with 

the small |λ| tail observed in the total DOS [26]. This tells us that the long time dynam-
ics of the trap model on random networks is of mean field kind on average only, while 
the analysis of more detailed phenomena reveals the eects of the network structure.

We conclude this paper with two remarks pointing to future directions. The first 
one concerns the analysis of return probabilities in the Anderson model on random reg-
ular graphs put forward in [43]. In that paper the authors are able to write the return 
probability in terms of eigenfuction correlators evaluated at distance zero on the graph, 
which they can compute with a population dynamics method. The spatial correlation 
length of the eigenvector entries interests us too, in particular that of the slow decay-
ing modes, and we aim at investigating this and related properties in the future using 
a similar approach. In the classical context the return probability to a node i is given 
by Pii(t) = (e−Mt)ii, while in the quantum case one has Pii(t) = |�i|e−iHt|i�|2, where H is 
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the Hamiltonian of the system. The representation that uses the eigenfunction correla-
tors then holds true in our case for (e−Mt)2ii, which represents the probability that two 
independent replicas of the system starting out at the same node both return to that 
node at time t. This quantity connects directly to our second remark, on the question of 
the characterization of the low temperature phase of the trap model in terms of replica 
symmetry breaking (RSB) in trajectory space. While the 1D lattice considered by Ueda 
and Sasa in [44] exhibits an RSB phase for T  <  1, this is not the case for tree-like net-
works, because trajectories always depart from each other in such infinite-dimensional 
structures. However, a possible generalization of the trajectory RSB idea to random 
networks is to consider closed paths only: the distribution of excursion times mentioned 
above exhibits a diverging mean for T  <  1, a fact that we would conjecture should be 
associated with an RSB phase in the space of closed trajectories. Work in this direction 
is in progress.
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Appendix A. Mean field and random walk limits

In section 3 we saw that the power law behaviour of the local DOS close to the ground 
state (λ = 0) arises as a combined eect of limited connectivity and trap depth dis-
order. When considering the two features separately, i.e. either taking the limit T → ∞ 
(RW) or considering a fully connected configuration space (MF), the local DOS exhibits 
a δ-peak at some λ∗(τ), and vanishes in the region |λ| < |λ∗|. In this appendix we dis-
cuss in more detail the local DOS of the relevant (MF and RW) limits; in particular we 
derive the value of λ∗ for the various cases.

The easiest way to obtain a fully connected network is to consider the random c-reg-
ular graph ensemble and then take the limit c → ∞. Imposing pk = δc,k in (22) we get

ρ(λ|τ) = lim
ε→0

1

π
Re

� τc

iλετc+
�c−1

l=1
iωl

i+ωl

�
{ωl} (A.1)

which for c � 1 becomes

ρ(λ|τ) = lim
ε→0

1

π
Re

� τc

iλετc+ c ω̃

�
 (A.2)

where ω̃ =
�
dω p(ω)iω/(i + ω). Using the self-consistency equation (19) for p(ω) we get

ω̃ = i

�
dτρτ (τ)

iλτc+ c ω̃

i + iλτc+ c ω̃ (A.3)

which implies ω̃ = i when c is large. Substituting into (A.2) then yields
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ρMF(λ|τ) = lim
ε→0

1

π
Re

� τ

ετ + i(λ+ 1)

�

= lim
ε→0

1

π

ε

ε2 + (λ+ 1/τ)2

= δ(λ+ 1/τ).

 

(A.4)

It follows that λ∗ = −1/τ , and the delta peak at this location is the only contribution 
to the local DOS. This is displayed as a vertical line (red) in figure A1-left, which also 
shows the mean field local DOS evaluated by averaging results obtained from direct 
diagonalizations of systems with dierent size (shades of green). Note that finite size 
eects are visible in the tails away from the peak. Intuitively, the local DOS in the 
mean field limit has to be a δ-function centred in −1/τ  as the return probability and 
the staying probability are the same in this case, and are given by the exponential 
function in (29).

The local DOS in the random walk limit can be analysed only if the value of τ  is 
fixed before T is sent to infinity; taking T → ∞ first would make all τi = 1. For the 
random c-regular graph ensemble, the local DOS is given by the approximation scheme 
described in section 3.2—which is exact in this case—evaluated at first order. We have:

Figure A1. Left: local DOS for the mean field limit with T  =  0.8 and τ = 200, 
evaluated by averaging direct diagonalization results for systems with dierent 
size (green lines), using ε ∼ 10−5. In the limit N → ∞ these curves converge to 
a δ-function centred at λ = −1/τ (see equation (A.4)). Right: local DOS for the 
random walk limit with c  =  5 and τ = 200, evaluated by averaging results from 
direct diagonalizations of systems with size N  =  4000 (green lines), and using the 
exact cavity result given by (A.7) (blue line). The vertical dashed line indicates 
the location of the δ-peak predicted for τ � 1 as given by (A.10); the cavity 
results shown use non-zero ε so broaden the delta peak to a narrow Lorentzian. 
Red curve: local DOS for τ = 1 with support on R (see main text); in this region, 
the cavity predictions for dierent epsilon and the 1st shell approximation are 
virtually indistinguishable.
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ρ1A(λ|τ) = lim
ε→0

1

π
Re

� cτ

iλετc+ cω̃

�
 (A.5)

with ω̃ = iω̄/(i + ω̄), and ω̄ given by the solution of the infinite temperature cavity 
equation

ω̄ = iλεc+ (c− 1)iω̄/(i + ω̄). (A.6)
The physical solution is the one with positive real part. This defines the precision of 
the Gaussian cavity measure (see main text before equation (18)) for an infinite ran-
dom c-regular network in the limit T → ∞, where the distribution of cavity precisions 
simplifies to p(ω) = δ(ω − ω̄). Equation (A.5) can be written more conveniently as

ρ1A(λ|τ) = lim
ε�→0

τ

π

ε� + ω̃R

(ε� + ω̃R)2 + (λτ + ω̃I)2
 (A.7)

where ε� = ετ is a rescaled version of ε, and ω̃I/R denote the imaginary/real part of ω̃, 
respectively. In the limit ε → 0 these read

ω̃R(λ) =
Re

�
4c− 4− c2(1 + λ)2

2(c− 1)
 (A.8)

ω̃I(λ) =
c− 2− cλ+ Im

�
4c− 4− c2(1 + λ)2

2(c− 1)
. (A.9)

Note that ω̃R is positive for λ ∈ R = (−1−Δc,−1 +Δc) with Δc = 2(c− 1)1/2/c; out-
side of this region it vanishes.

It is instructive to consider first the case of τ = 1, which gives the total DOS of the 
random regular graph ensemble in the random walk limit. For this simple case one can 
directly set ε� = 0 to get ρ1A(λ|1) = ω̃R/[π(ω̃

2
R + (λ+ ω̃I)

2)], which when worked out 
explicitly is a scaled and shifted Kesten-McKay law [26].

For general τ > 1 one sees that the local DOS still has a contribution for λ ∈ R 
but this becomes increasingly suppressed as τ  increases, scaling as 1/τ for large τ  from 
(A.7). This is compensated for by an additional contribution outside of R, where again 
from (A.7) but now with ω̃R = 0 one has ρ1A(λ|τ) = δ(λ+ ω̃I(λ)/τ), which is a delta 
peak at a location λ∗ determined by −λ∗ = ω̃I(λ

∗)/τ . For large τ , λ∗ becomes small so 
that asymptotically λ∗ = −ω̃I(0)/τ , hence from (A.9),

λ∗ � −c− 2

c− 1
τ−1 for τ � 1. (A.10)

This delta peak is the dominant contribution to the local DOS for large τ , where using 
(28) it gives the return probability Pτ (t) = exp(−(t/τ)(c− 2)/(c− 1)) as derived by 
another route in (41) in the main text.

The right plot in figure A1 shows the local DOS for the random regular graph 
ensemble with c  =  5, T  =  0.8 and τ = 200, obtained from direct diagonalizations (green 
lines) and using the exact cavity result (A.7) (blue line). The vertical dashed line cor-
responds to the value of λ∗ given by (A.10), while the red curve shows the case of τ = 1 
discussed above (with support only on R). Note the strong ε dependence of the results 
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for λ �= λ∗ and λ /∈ R, which is consistent with the expectation that ρ(λ|τ) vanishes in 
these regions in the limit ε → 0.

In this appendix we have only considered the case of random regular graphs, and we 
showed that the local DOS is composed of a continuous part with support on R, and a 
δ-peak whose location scales with 1/τ for large τ . More disordered network topologies 
would have the same qualitative behaviour, however. In particular, they would show 
a network-dependent regime of fast relaxation rates −λ, similarly to what happens in 
the case of finite connectivity and finite temperature discussed in section 3 (see also 
[26]-section 5 for results on the total DOS). A δ-peak would again appear in the small 
|λ| regime for large τ .

Appendix B. Second shell approximation

In this appendix we derive the estimate (25) for the power law behaviour of the local 
DOS close to the ground state (λ = 0), which constitutes one of the central results of 
this work. We start by re-writing (23) in a more explicit form and for a general degree 
distribution:

ρ2A(λ|τ) = lim
ε→0

cτ

π
Re

��
iλεcτ + ik +

k�

l=1

1/(i + f(τl))
�−1�

{τl},k
 (B.1)

where

f(τl) = iλεcτl + (c− 1)iω̄/(i + ω̄) (B.2)
and ω̄ is the physical solution of (A.6), which for small λε can be approximated as

ω̄ � i(c− 1) + i
c(c− 1)

(c− 2)
λε. (B.3)

Substituting this approximation into the definition of f(τl) leads to

1

i + f(τl)
=

εc[τl + (c− 2)−1]− i(λεc[τl + (c− 2)−1] + c− 1)

ε2c2[τl + (c− 2)−1]2 + (λεc[τl + (c− 2)−1] + c− 1)2
. (B.4)

Since we are interested in the limit ε → 0 we neglect the term in the denominator mul-
tiplying ε2. The error is significant only when c2[τl + (c− 2)−1]2 � ε−2, in which case 
the second term of the denominator becomes very large (�1) and the resulting contrib-
ution to ρ2A(λ|τ) is negligible. We can therefore write the term in squared brackets in 
(B.1) as

iλεcτ + ik +
k�

l=1

1/(i + f(τl)) = ε
�
cτ + c

k�

l=1

τl + (c− 2)−1

(λc[τl + (c− 2)−1] + c− 1)2

�

+ i
�
λcτ + k −

k�

l=1

1

λc[τl + (c− 2)−1] + c− 1

�
.

 

(B.5)

The real term on the right hand side can again be viewed as a rescaled (and still posi-
tive) ε�. Once this is sent to zero we obtain
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ρ2A(λ|τ) = cτ
�
δ(λcτ + k −

k�

l=1

yl)
�
{τl},k

 (B.6)

with

yl =
1

λc[τl + (c− 2)−1] + c− 1
. (B.7)

Since we are interested in the regime |λ| � 1/τ , the term λcτ  in the δ-function of 
equation (B.6) can be discarded. We observe then that the only non-zero contributions 
to the local DOS are given by those combinations of {τl} that result in 

�
l yl = k. To 

understand when this happens let us set

a = c− 1− |λ|c/(c− 2), b = |λ|c (B.8)
so that yl = (a− bτl)

−1. From the distribution of lifetimes (3) we obtain

ρy(yl) = TbT (a− 1/yl)
−(T+1)y−2

l (B.9)
for y l  <  0 or y l  >  1/(a  −  b). Note that as |λ| → 0, also b → 0. In this limit, ρy(yl) goes 
to zero everywhere except in a region of order b around y l  =  1/(c  −  1). We can now 

approximate the probability distribution of Y =
�k

l=1 yl. This drops by a factor bT 
for each of the y l that is away of 1/(c− 1), so the most likely way to realize Y  =  k 
is to have k  −  1 of the y l equal to 1/(c− 1), and only a single one, say y 1, equal to 
k − (k − 1)/(c− 1). Note that this happens when τ1 ∼ 1/|λ|, i.e. if there is a single deep 
minimum in the first neighbouring shell of the departing trap with lifetime as large as 
1/|λ|. So we have p(Y = k) � kρy(k − (k − 1)/(c− 1)), where the factor k arises because 
any of the y l could be the large one. Finally, from (B.6) (with λcτ → 0) we see that

ρ2A(λ|τ) � cτ
�
δ(k − Y )

�
Y ,k

� cτ
�
kρy(k − (k − 1)/(c− 1))

�
k

= τT ᾱkc
T+1(c− 1)1−T |λ|T

 

(B.10)

which is the same as equation (25) in the main text, with C(c,T ) = T ᾱkc
T+1(c− 1)1−T  

and

ᾱk =
�
k((c− 2)k + 1)−2

�
1− c− 1

(c− 2)k + 1

�−(T+1)�
k
. (B.11)

The simplest case of the random regular graph ensemble is obtained by imposing 
pk = δc,k in the last equation, which leads to C(c,T ) = Tc(c− 1)T−1(c− 2)−(T+1).

Appendix C. Simulated dynamics

The data labelled ‘simulations’ shown in the figures 4 and 6-right have been collected 
by using a version of the stochastic simulation algorithm (SSA) that generates dynami-
cally an infinite tree. The SSA became popular after Gillespie applied it to the study 
of chemical reactions [45], and for this reason it is also known as ‘Gillespie algorithm’. 
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Its general idea is to implement the stochastic evolution of a system on a discrete 
state-space as follows: for each state i, a random waiting time dti is sampled from the 

exponential distribution rexi exp(−rexi t)θ(t), where rexi =
�

j(�=i) rji is the total exit rate 
from state i, and rji is the transition rate from state i to state j . Then, the next state j  
is chosen with probability rji/r

ex
i . This process is repeated until the total time 

�
i dti 

exceeds some tmax that sets the maximum running time of the simulation.
In our case, the states are represented by the nodes of the network. These have 

four main attributes that we track in the simulation: the energy Ei, the degree ki, the 
distance (from the origin) di and the (number of) visits ni. The time spent in a given 
node i and the next node visited j  are defined by the routine gillespietrap(i). This works 
as follows:

 1.  compute the total exit rate rexi =
�

j∈∂i rji = kie
−βEi/c (∂i indicates the neigh-

bourhood of node i); 
 2.  compute the waiting time dt by sampling from pi(t) = rexi exp(−rexi t)θ(t); 

 3.  select the next node inew randomly from the ki neighbours: rji/r
ex
i = 1/ki; 

 4.  return inew and dt.

The quantities of interest, such as the current state or the distance from the origin, 
are measured at times defined by a time-grid with ntimes values in the range [0, tmax]. 
In order to simulate the evolution on an infinite tree, the algorithm has to create the 
network structure on the fly. This can be done as follows:

 1.  start from a node with k0 leaves (k0 is sampled from p k), energy E0, distance 
d0  =  0 and visits n0  =  1. Each leaf j ∈ ∂i has a random energy sampled from 
ρE(E), degree kj   =  1, distance dj   =  1 and visits nj   =  0. This is the starting net-
work configuration; 

 2.  select the next node j  with gillespietrap(i). If nj   =  0, attach a new neighbourhood 
to j , taking into account that j  already has i as neighbour. This is done by the 
routine newneighbourhood( j). Then, the number of visits is set to nj = nj + 1; 

 3.  newneighbourhood( j) assigns knew
j − 1 leaves to j , with knew

j  sampled from kpk/c, 
and so it replaces kj   =  1 with knew

j . The new leaves l ∈ ∂j \ i have random ener-
gies El sampled from ρE(E), distance dl = dj + 1, degree kl  =  1 and visits nl  =  0.

Note that no loops, single nodes or disconnected components are created. The algo-
rithm can also be used for running multiple copies of the dynamics in parallel, which is 
useful if one is interested in collecting data for a given realization of the disorder. The 
full structure of the implementation is explained in the following pseudo-code, where 
x(m) indicates the position of the mth copy of the system, t(m) its time, and there are 
ncopies in total.
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Pseudo-code: simulations on the infinite tree.
set all x(m) = 0 *where 0 is the initial trap*

set all t(m) = 0
set all xnew(m) = x(m)
create the starting network configuration
…
for (t  =  0; t < ntimes; t  +  +) do
   time = time_grid(t)
   for (m  =  1; m � ncopies; m  +  +) do
      while (t(m) � time) do
         *carry out one transition*
         x(m) = xnew(m)
         xnew(m), dt = gillespietrap(x(m))
         if ((xnew(m)).visits == 0)then
            newneighbourhood(xnew(m))
         end if
         t(m) = t(m) + dt
      end while
      *collect statistics here*
     …
   end for
end for
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