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Abstract
One of the simplest models for the slow relaxation and aging of glasses is the 
trap model by Bouchaud and others, which represents a system as a point in 
configuration-space hopping between local energy minima. The time evolution 
depends on the transition rates and the network of allowed jumps between the
minima. We consider the case of sparse configuration-space connectivity given 
by a random graph, and study the spectral properties of the resulting master 
operator. We develop a general approach using the cavity method that gives 
access to the density of states in large systems, as well as localisation properties 
of the eigenvectors, which are important for the dynamics. We illustrate how, 
for a system with sparse connectivity and finite temperature, the density of 
states and the average inverse participation ratio have attributes that arise from 
a non-trivial combination of the corresponding mean field (fully connected) 
and random walk (infinite temperature) limits. In particular, we find a range of
eigenvalues for which the density of states is of mean-field form but localisation 
properties are not, and speculate that the corresponding eigenvectors may be 
concentrated on extensively many clusters of network sites.
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1. Introduction

Glasses are disordered materials that do not exhibit the structural periodicity of crystals but 
nonetheless possess the mechanical behaviour of solids. The most common way of making a 
glass is by quenching, i.e. cooling a viscous liquid so rapidly that crystallisation is avoided. 
The resulting system is called a supercooled liquid. The quench brings the molecules of the 
material into a configuration where the typical time needed to rearrange them is so long that 
the structure of the liquid appears frozen. The system falls out of equilibrium in the sense 
that the relaxation time becomes of the order of the observation time window. The resulting 
extremely slow evolution is called glassy dynamics, and the transition into the regime of very 
long relaxation times is referred to as the glass transition. Technically this phenomenon is 
not a real phase transition as there are no discontinuous changes in any physical property. 
Nevertheless, one can associate a critical temperature TG to a certain liquid, below which the 
rate of change of e.g. volume due to a change in temperature is comparable to that of a solid. 
The value of TG also depends on the rate at which the system is cooled: slower cooling allows 
the material to fall out of equilibrium at lower temperatures (allowing more time for configu-
rational sampling).

Several theoretical approaches have been proposed to investigate the nature of the glass 
transition; the general discussion is presented in a recent review by Biroli and Berthier [1] (see 
also references therein). In spite of a sustained research effort dedicated to this problem, a full 
understanding of glasses has not been achieved yet. One of the most successful theories (based 
on a microscopic description) is the mode-coupling theory, which predicts a dynamical arrest 
in supercooled liquids associated with a power law divergence of the ‘slow’ time scale [2, 3]. 
Another important class of models in the context of glassy systems is that of spin glasses, 
where one generally starts from a Hamiltonian H with disordered interactions and derives the 
thermodynamic properties of the spin system and its dynamical behaviour by averaging over 
the disorder [4, 5].

A further useful angle of attack on the glass problem focusses on the dynamics in config-
uration-space. The energy landscape of a glass is typically very rugged, consisting of many 
local minima (metastable states) separated by energetic barriers, and a global minimum (the 
crystalline equilibrium state) that is kinetically extremely difficult to reach. One can then think 
of this energy landscape as a set of basins of attraction that act as ‘traps’ for the dynamics: 
during its evolution towards equilibrium, the system jumps between local minima at rates that 
decrease strongly with decreasing temperature. Based on this picture, several studies have 
been developed, focusing on various aspects of glassy dynamics in configuration-space. These 
range from investigations of the potential energy landscape, in particular the structure and 
distribution of minima and energetic barriers between them [6–8], to simplified models that 
describe the evolution between traps at a more phenomenological level [9–11].

Interestingly, once the description of the configuration-space dynamics has been simplified 
to motion among traps without internal structure, it is directly related to the research field of 
stochastic processes on networks. The structure of the energy landscape and the relative posi-
tions of neighbouring minima define a network of allowed transitions: the system can only 
jump between traps that are linked within this network, i.e. between minima that are close in 
the configuration-space. Therefore methodology and results from network theory [12, 13] can 
be applied to understand the phenomenology of glasses. In particular, information about the 
energy landscape can be used to model the time evolution of the system as a Markov process on 
the network of minima, with rates depending on the relevant energy barriers. Mathematically, 
the problem thus turns into solving a master equation for the time-dependent probability dis-
tribution that describes the position of the system in configuration-space.
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One of the simplest and most successful descriptions that belong to this framework is the 
trap model by Bouchaud and others [11]. The transition rates are assumed to depend on the 
depth of the departing trap j only, not on the arrival trap i, and have the Arrhenius-like form

rij =
1
N

e−βEj . (1)

Here β is the inverse temperature, Ej  >  0 is the trap depth and N is the size of the network (the 
number of traps). Every transition effectively involves activation to the top of the energy land-
scape, where all the energy barriers are located, and then falling into a new state that is chosen 
randomly among all the minima. The latter assumption implies that this model postulates a 
mean field (fully connected) network structure. It is easy to show that, for an exponential density 
of trap depths ρE(E) = e−E, a glass transition occurs at finite temperature. More specifically, 
below TG = 1 the equilibrium probability distribution across trap depths becomes non-normal-
isable. The exponential form of the trap density of states can be motivated from several points 
of view, e.g. the mean-field replica theory of spin-glasses [4], the random energy model [14], 
or phenomenological arguments in the context of supercooled liquids [15]. Also, following an 
extreme value statistics argument, one might expect that deep minima of potential energy land-
scapes are described by the Gumbel distribution, whose tail is indeed exponential [16].

The simple expression for the transition rates and the fully connected network structure 
allow one to solve the master equation  for the model described above analytically. This is 
simplest in the Fourier–Laplace domain, from where the behaviour in the time domain can 
then be extracted straightforwardly [11]. Trap models have been also studied in Euclidean 
space, where the system jumps between the nodes of a regular lattice; see for example  
[11, 17] or the work by Ben Arous and collaborators [18, 19]. Variants include branching phe-
nomena [20] and walks on positive integers [21], though this is less plausible when modelling 
configuration-space dynamics. The first extension to a trap model on a network was consid-
ered relatively recently by Baronchelli et al, who used a simple heterogeneous mean field 
approx imation to study the dynamics. This assumes that the probability to find the system on 
a certain site only depends on the degree (i.e. on the number of adjacent nodes) of the site. It 
therefore has to postulate that the trap depth at any site is fixed fully by its degree [22, 23]. 
Numerical results do indeed show some correlation between trap depth and degree [24, 25], 
though the relation between the two is far from deterministic.

In this work we extend the analysis of the trap model to dynamics on generic (random) 
networks with sparse inter-trap connectivity. Compared to [23] we develop a more flexible 
approach to the modelling of glassy configuration-space dynamics that allows an arbitrary 
(deterministic or stochastic) relation between trap depth and node degree. Within this general 
scenario we then consider the simplest case where trap depths are uncorrelated with degrees.

For disordered energy landscapes with sparse connectivity a direct analytical solution 
of the dynamics is not possible in either frequency or time domain; we therefore tackle the 
problem via the spectral properties of the master operator, which are key in determining the 
dynamics of the system. Specifically we calculate the density of states (DOS), which gives 
the spectra of relaxation rates of the system, and the localisation properties of the eigenvec-
tors, measured using the inverse participation ratio (IPR). We develop a general cavity method 
for this purpose, leading in the infinite system size limit to an integral equation that can be 
solved numerically via a population dynamics algorithm. Technically, the approach follows 
analogous applications of the cavity method to the spectral analysis of symmetric random 
matrices; see e.g. [26–29] or [30, 31] for a rigorous discussion, and [32–34] for related work 
on heavy-tailed random matrices. Based on the DOS and IPR, we are able to obtain insights 
into the relevant time scales and time regimes of the system. However, we do not have access 
to some time-dependent objects like correlation functions, which are the main quantities of 
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interest within the literature of trap models. Our analysis will therefore be different from that 
of previous works [9–11, 18, 19, 22, 35], and limited to describing the dynamics in terms of 
the static quantities mentioned above.

This paper is organised as follows. In section 2 we define the general set-up of the problem. 
In section 3 we discuss by way of background the localisation of the ground state as a func-
tion of the temperature, and summarise the known results for the mean field and random walk 
limits. In section 4 we address the general case of trap model dynamics on networks with finite 
connectivity and at finite temperature, and we propose a simple analytical approximation for 
the DOS. Also, we explain how the parameter ε that appears in the evaluation of the DOS can 
be exploited as a detection tool for localisation transitions within the spectrum of the system. 
We then use these methods to extract dynamical properties of the trap model on random regu-
lar graphs, where all nodes have the same degree. In section 5 we extend the analysis to other 
network topologies including scale-free graphs. Section 6 summarises our conclusions and 
outlines perspectives for future work.

2. Problem set-up

The general setting of the problem is the following: we consider a continuous-time Markov 
process defined on a network of N nodes that represent the energy states accessible by the sys-
tem, i.e. the minima of the potential energy landscape or simply the traps. The starting point 
is then given by the master equation for the probability distribution p(t) = ( p1(t), . . . , pN(t)), 
where pi(t) is the probability to find the system in trap i at time t:

∂tp(t) = Mp(t). (2)

The master operator M has the following structure:

Mij = cijrij Mii = −
�

j�=i

Mji (3)

where cij = cji = 1 if nodes i and j are connected and cij  =  0 otherwise, also cii  =  0 (there are 
no self-loops), and rij is the transition rate from node j to node i. Note that 

�
j Mji = 0, which 

ensures that probability is conserved. We shall now specify the trap-depth distribution, the 
transition rates and the network topology. We assume

1. exponentially distributed energies: E ∼ ρE(E) = e−E , E � 0.
2. Random graph structure: the cij are sampled from a random graph ensemble with finite 

connectivity. The simplest case for our purposes is one where all those graphs have equal 
probability for which each node i is connected to exactly c others; the probability distribu-
tion of node degrees ki =

�
j cij  is then pk = δc,k. Samples that belong to this ensemble 

are called random regular graphs (RRG). In this work we are interested in the case of 
c � 3. This condition ensures that the fraction of nodes outside the giant component 
vanishes in the large system limit [36], which also implies that the configuration-space 
is connected, therefore ergodic. We will develop our theory for general random graph 
ensembles where the degree distribution is constrained to some pk; in that case c is defined 
as the average degree c =

�
k k pk .

3. Bouchaud transition rates: rij = e−βEj/c ≡ rj . The total escape rate from node j is defined 
as r̂j =

�
i cijrij and can be written in terms of the node degree as r̂j = kjrj. We will find 

it useful to define τj = (crj)
−1 = eβEj . This gives the expected waiting time to exit from 

trap j, exactly so for regular graphs and up to a factor c/kj in the general case. From the 
energy distribution we obtain that the τj have the distribution
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ρτ (τ) = Tτ−(T+1) with τ ∈ [1,∞) (4)

 which implies that the average waiting time �τ� diverges for T  <  1, signalling the occur-
rence of glassy dynamics and aging.

With the above assumptions the master operator M is a sparse random matrix. It will be 
important to bear in mind that two sources of randomness come into play: the disorder in the 
trap depths {Ei} and in the inter-trap connectivity {cij}. Accordingly we also have two differ-
ent notions of distance that are relevant for this model: the distance in energy, i.e. the energy 
difference among the minima, and the distance on the graph structure. As we will see in the 
following sections, these notions of distance play different roles, depending on the case being 
studied, with regards to their relevance for the degree of localisation of the eigenstates.

The formal solution of equation (2) is given by

p(t) =
�

α

eλαt(wα, p(0))uα (5)

where λα, wα, uα are respectively the eigenvalues, left eigenvectors and right eigenvectors of 
M, indexed by α = 0, 1, . . . , N − 1, and (wα, p(0)) denotes the scalar product between the 
left eigenvector wα and the initial probability distribution p(0). In the following we will refer 
to rα = −λα as the relaxation rates of the system, and write r for a generic relaxation rate. 
If the network is connected, there is a single vanishing eigenvalue λ0 = 0. All other λα must 
then have negative real part so that the corresponding modes uα make a contribution to p(t)
that is exponentially suppressed over time. In the long-time limit only u0 survives, which is 
the equilibrium Boltzmann distribution of the system associated with the ground state λ0. The 
corresponding left eigenvector is w0 = (1, . . . , 1). So

lim
t→∞

p(t) = u0 = peq =
1
Z
(eβE1 , . . . , eβEN ). (6)

Within the present formulation the energies are positive as they represent the depth of each 
trap, so eβEi is the correct Boltzmann weight for node i.

The evolution of the probability at finite t depends on the spectral properties of the master 
operator. In particular, slowly decaying modes govern the long-time behaviour of the system, 
and solving the master equation amounts to diagonalising M. This operation can be performed 
analytically only for a few special cases presented in section 3. However, information about 
the spectrum and the localisation properties of M can still be obtained in the large system 
limit; we use the cavity method [37] for this purpose. This method links M to the inverse 
covariance matrix of a Gaussian distribution, and therefore requires the symmetrised form of 
the master operator

Ms = P−1/2
eq MP1/2

eq (7)

or in components Ms
ij = r1/2

i Mijr
−1/2
j , where we have introduced a diagonal matrix Peq with 

(Peq)ii = peq
i ∝ r−1

i . This transformation preserves the eigenvalue spectrum of M, implying 
that the associated eigenvalues are real, as Ms is real and symmetric. We note that the diagonal 
elements of M remain unchanged: (Ms)ii = (M)ii. The eigenvectors vα of Ms are given by 

vα = P−1/2
eq uα = P1/2

eq wα. Physically, the symmetry of Ms means that the dynamics we are 
considering obeys detailed balance with respect to the Boltzmann steady state.

Our study aims to predict the statistics of the eigenvalues and eigenvectors of Ms. The 
first quantity of interest is the density of states (DOS), i.e. the fraction of eigenvalues lying 
between λ and λ+ dλ, defined as ρ(λ)dλ with

R G Margiotta et alJ. Phys. A: Math. Theor. 51 (2018) 294001
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ρ(λ) =
1
N

N−1�

α=0

δ(λ− λα). (8)

We average the DOS over random samples, finitely sized, and assume self-averaging in the 
thermodynamic limit. The DOS is crucial as it defines the time scales {|λ−1

α |} of the dynamics, 
or, more precisely, it gives the full spectra of relaxation rates {rα}. It is essential to keep this in 
mind as, for consistency, we will present the results in terms of the DOS throughout the paper, 
and occasionally remind the reader of the simple relation rα = −λα.

The second key quantity that we are interested in is the degree of localisation of the eigen-
states, which carries information about their ability to contribute to the transport properties of 
the system across the network: localised modes can only produce local probability-flows. The 
rationale behind this is clear: assuming pi(0) = δij, then if the vectors {uα, wα} are mostly 
localised, only a few terms in the sum on the rhs of equation (5) give a significant contrib-
ution to the probability distribution p(t), which should therefore spread only slowly over time 
away from the initial node j. In general, we expect that the ability of the system to explore 
the configuration-space depends on the degree of localisation of the eigenvectors of M. To 
quanti fy this we use the inverse participation ratio (IPR) defined as

Iq(v) =
�N

i=1 v2q
i

(
�N

i=1 v2
i )

q
∼ N−tq (9)

where v = (v1, . . . , vN) is an eigenstate; if v is normalised the denominator equals unity. The 
exponent tq defines the scaling of Iq with N. We refer to [38] for a general introduction to the 
IPR and related quantities. In what follows we concentrate on the standard IPR with q  =  2. We 
can distinguish two extreme situations: if the ‘mass’ of the eigenstate v is evenly spread over 
all the states of the system, namely each element vi is of order 1/

√
N , then the eigenstate is 

delocalised and I2(v) = O(1/N), t2  =  1. If instead only a few elements of v differ from zero, 
the eigenstate is localised and I2(v) = O(1), t2  =  0.

Interestingly, the localisation properties of eigenstates defined on random regular graphs 
(and random matrices) are studied also in the context of quantum many body systems—with 
similar terminology and methodology—where they are linked to the problem of ergodicity 
and equilibration dynamics [39–41].

A number of studies have looked instead at the localisation of the time-dependent probabil-
ity distribution of trap models on lattices. Particularly interesting is the 1D case, which exhib-
its dynamical localisation where localisation properties differ between the aging regime and 
the final Boltzmann distribution [35]. Flegel and Sokolov analysed this phenomenon using 
the spectral properties of the master operator [42]; they trace the non-equilibrium value of the 
IPR during aging back to the eigen vector statistics, while the eigen value statistics only make 
a minor contribution. Dynamical localisation is also discussed in the context of statistical 
mechanics of trajectories [43], which represents another interesting approach to describing the 
glass transition in terms of configuration-space evolution.

The model we study, which is a Markov process on a random graph with Bouchaud trans-
ition rates, is described by two main parameters: the temperature T and the mean connectiv-
ity c. As depicted in figure 1, there are two obvious limits that can be considered: the mean 
field (MF) c → ∞ limit, where the network structure becomes trivial and only the dis order in 
energy is present, i.e. there are ‘glassiness effects’ only, and the T → ∞ limit, where the trap 
depths become irrelevant and the system effectively performs a random walk (RW) among 
neighbouring traps. The point shown in the (1/c, 1/T) plane in figure 1 represents our model 
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with finite connectivity, at finite temperature. This general case can be thought of as a combi-
nation of the two limiting situations of mean field and random walk. In this work we illustrate 
how, for a system with finite c and T, quantities such as the DOS and the average IPR of 
eigenstates have attributes that arise by a non-trivial combination of the corresponding MF 
and RW limits.

3. Ground state and limiting cases

3.1. Ground state: λ = 0

The eigenvector u0 represents the equilibrium probability distribution of the system, 
peq = limt→∞ p(t). This is independent of the network structure and its statistics depend only 
on the energy distribution ρE(E). One can assess the degree of localisation of the equilibrium 
distribution via the IPR of either u0 or its symmetrised analogue v0. Explicitly, these are pro-
portional to

u0 = peq ∝ (eβE1 , . . . , eβEN ) v0 = ps
eq ∝ (eβE1/2, . . . , eβEN/2). (10)

The localisation of the ground state depends on whether the Boltzmann weights are concen-
trated on the deepest traps or not. Since the energies are randomly allocated to the vertices of 
the network, its topology will not affect the IPR of the equilibrium distribution; the distance 
in energy is the only relevant one here. From the definition of the IPR, we get for the ground 
state of the symmetrised master operator

I2(v0) =

�
i e2βEi

(
�

i eβEi)2 ∼ N
� Nβ

1 dττ 1−T

(N
� Nβ

1 dττ−T)2
�





N−1 if T > 2
N−2+2/T if 1 < T < 2
N0 if T < 1

(11)

where the cutoff Nβ derives from the extreme value statistics of the distribution ρτ  [44]: the k 
largest waiting times of N samples τN+1−k < . . . < τN  fall in the range [τN+1−k,∞), therefore 
the fraction k/N is of the order of the area under ρτ  over this range, which for k  =  1 gives 
1/N � τ−T

N = τ−T
max. From (10), the result for the non-symmetrised version is the same except 

Figure 1. Infinite temperature (x-axis) and infinite mean connectivity (y-axis) limits for 
the Bouchaud trap model on a network. The point at (1/c, 1/T) represents the general 
case of finite connectivity and finite temperature. Note that we only consider graphs 
with a giant connected component, which imposes a minimal value of c (e.g. c  =  1 for 
Erdös–Rényi graphs [12]) so that the horizontal axis has a finite range.
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for the replacement of T by T/2. We focus on the symmetrised case as this is the most sensible 
from the random matrix perspective that we use. The symmetrised eigenvectors are also the 
natural objects to appear in our cavity approach, which starts from a (complex) Gaussian dis-
tribution and hence requires a symmetric covariance matrix as input (see section 4 and refer-
ences therein). While the symmetrised eigenvectors do not describe the Markov process that 
obeys equation (2), away from the ground state the symmetrisation is not expected to affect 
their localisation properties. In other words, a localised/delocalised symmetrised eigenvector 
should stay localised/delocalised also in its (either left or right) unsymmetrised form. We refer 
to appendix E for further discussion and data showing that qualitative localization statistics 
for uα, wα and vα are the same except in the small finite-size region of the crossover towards 
the ground state. We also note that the IPR of the symmetric ground state coincides with the 
measure of ground state localisation considered in previous works [16, 43, 45]. Finally, using 
symmetrised eigenvectors to calculate the IPR has an additional benefit: the characteristic 
temperature where the IPR ceases to be of O(1) coincides with the glass transition temper-
ature that is known from the dynamics. Indeed, according to equation (11), the ground state 
v0 is localised below the glass transition TG = 1, delocalised for T  >  2, and has an intermedi-
ate behaviour for 1  <  T  <  2. Figure 2 shows the exponent t2(v0) of this prediction compared 
with the average t̄2(v0) = �− ln I2(v0)/ lnN� of data taken from direct diagonalisations of the 
symmetrised master operator (hereafter labelled ‘numerics’ in the plots). Note that in the limit 
N → ∞ the IPR is of order unity for T  <  1, and drops to zero above, so that the intermedi-
ate temperature region (1  <  T  <  2) should also be regarded as delocalised. In the localised 
regime, an infinite-N calculation shows that the O(1) value of the IPR is given explicitly by 
I2(v0) = 1 − T  for T  <  1 [16, 45], dropping to zero at T  =  1 in agreement with our result.

3.2. Random walk limit: T → ∞

In the infinite temperature limit the dynamics is only affected by the graph topology, i.e. there 
are network effects only and the differences in energy depth among traps become immaterial. 
In this case the master operator coincides with its symmetrised form, and it simplifies to

Mij =
cij

c
− δij (12)

where the first term on the right hand side is the off-diagonal contribution (because cii  =  0). 
Given that M = c−1A − I is directly related to the adjacency matrix A, its DOS can be 
deduced where that of A is known. For the case of a random regular graph, one obtains the 
DOS for N → ∞ as a shifted and scaled Kesten–McKay law [46]:

ρ(λ) =
c

2π

�
4

c − 1
c2 − (λ+ 1)2

��
1 − (λ+ 1)2

�
(13)

which can alternatively be derived using e.g. the cavity construction explained below. For this 
graph ensemble all the eigenvectors are delocalised with high probability [47]. These results 
are illustrated in figure 3(left).

The dynamics in this case has no glassy features, all local waiting times equal unity so that 
jumps occur at a constant rate, and the average distance from the initial node grows linearly 
with time. This is true because, at every jump, the particle has c  −  1 outward paths, and only 
one inward path pointing towards the starting node, thus the motion effectively resembles a 
1D biased random walk.
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3.3. Mean field limit: c → ∞

In the infinite c limit the master operator reduces to that of the mean field (fully connected) 
case. There is no notion of space and only the distance in energy is relevant for the degree of 
localisation of the eigenstates. For such a fully connected system of size N we have (approxi-
mating c = N − 1 ≈ N , which is immaterial for N → ∞)

Mij =
e−βEj

N
(1 − δij)− e−βEj(1 − 1

N
)δij. (14)

The eigenvalue equation in this case reads

1
N

�

j�=i

e−βEj uα,j − e−βEi(1 − 1
N
)uα,i = λαuα,i. (15)

This can be written as

1
N

�

j

e−βEj uα,j − e−βEi uα,i = λαuα,i (16)

and, as the first term is independent of i, one has

uα,i ∝ (λα + e−βEi)−1. (17)

Similarly, for the symmetrised case one obtains

vα,i ∝
e−βEi/2

λα + e−βEi
. (18)

Note that for λα = 0 these expressions recover the equilibrium distribution (10) as they should. 
The solution (17) is in agreement with [48] where the spectral properties of the mean field trap 
model are discussed extensively. From (17) and (18) we expect the IPR to be of order one for 
all λ �= 0, for either their symmetrised or non-symmetrised forms. A simple argument for this 
localisation result in mean field is presented in appendix A; we note here only that the eigen-
vector entries decay as a power law with energy difference to the ‘centre’ of the eigenvector at 

Figure 2. Ground state exponent t2(v0) (black) predicted by (11), and numerical 
average t̄2(v0) (dashed line) taken across M  =  100 ground state realisations of size 
N  =  1000.
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e−βEi ≈ −λα (the ‘centre’ has to be understood here as defined on the energy axis). Returning 
to the eigenvalues, the condition for λα follows from equations (16) and (17) as

�

j

e−βEj

N(λα + e−βEj)
= 1 (19)

which implies that there is an eigenvalue in each interval (−τ−1
i ,−τ−1

i+1), assuming that the 
energies are ordered so that Ei < Ei+1 (recall that τi = eβEi). Therefore in the large N limit the 
DOS is given by

ρ(λ) =

�
dτ ρτ (τ) δ(λ+

1
τ
) (20)

which gives

ρ(λ) = T(−λ)T−1 (21)

for −1 < λ < 0. These results are shown in figure 3(right). Note that the eigenvalue condition 
(19) and the interleaving of eigenvalues between the (negative) inverse trap lifetimes can also 
be seen from the fact that the mean field master operator (14) is a diagonal matrix with a rank 
one perturbation [49], as all elements in each column are the same except for those appearing 
on the diagonal.

Interestingly, all modes remain localised at any finite temperature, while glassiness mani-
fests itself only for T  <  1, and even then only for the ground state. This circumstance has to 
be attributed to the slow decay of the mass of MF eigenvectors away from their localization 

Figure 3. Left: infinite temperature limit for random regular graphs with mean 
connectivity c = 3, 5, 7. Main plot: average t̄2(vα) from direct diagonalisation, with 
averaging performed both across M  =  100 random graphs and within λ-bins centred 
on the symbols. For the finite system size N  =  1000 used, t̄2 is close to but has not 
yet reached its asymptotic value 1. Inset: DOS for N → ∞, given by equation  (13) 
and plotted as density of ln(−λ) to show the full range; the factor −λ appearing on 
the label of the y-axis is the Jacobian of the transformation λ → ln(−λ). We recall 
that the quantity −λ represents the relaxation rate r of the system, so this plot can 
equivalently be read as the density of ln(r), plotted against r on a logarithmic x-axis. 
Right: analogous plot for the infinite connectivity limit c → ∞, where t̄2 ≈ 0 indicates 
localised eigenvectors, and the DOS is a power law given by (21).
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centre, which does not impair the mobility of the particle. This agrees with the intuition that, 
in the absence of spatial structure, the particle is always able to reach any node of the network 
in finite time, as long as the average trapping time is finite, i.e. for T  >  1.

4. Finite connectivity and finite temperature

4.1. The cavity method

We now turn to the main contribution of our work: moving on from the two limiting scenarios 
discussed above, we study the general case of finite connectivity and finite temperature where 
the distance on the graph structure and separation between trap energies are both relevant. We 
do this by means of the cavity method, exploiting the fact that the random graphs we consider 
become locally treelike in the large N limit. The master operator in this case has the general 
structure (7). In what follows we omit the index ‘s’ and consider the symmetrised master 
operator only. The DOS of the matrix M can be written in terms of the resolvent G(λε) as

ρ(λ) = lim
ε→0

1
πN

N�

i=1

Im Gii(λε) (22)

where

G(λε) =
�
λεI − M

�−1
. (23)

Here λε = λ− iε, with ε a small, positive quantity, while i is the imaginary unit; I indicates 
the N × N  identity matrix. To derive equation (22) one replaces the delta distributions in (8) 
with Lorentzians of width ε and takes the limit ε → 0; this explains the origin of the small 
imaginary term in λε. For a detailed description we refer to the original work of Edward and 
Jones [50]. We define the complex Gaussian measure P(x) as

P(x) ∝ e−
i
2 xT G−1x = e−

i
2

�
i,j(λεδij−Mij)xixj (24)

with x = (x1, . . . , xN). The diagonal entries of the resolvent are then given by the local 
variances

Gjj = i
�

dxj x2
j P(xj) (25)

where P(xj) is the marginal distribution

P(xj) =

� �

k �=j

dxk P(x). (26)

To make further progress we recall that the off-diagonal terms of the symmetrised master 

operator are Mjk = cjkr1/2
j r1/2

k , while the diagonal terms are Mjj = −�
k ckjrj . This gives

P(x) ∝ e−
i
2 [λε

�
j x2

j −
�

jk cjk(−rjx2
j +r1/2

j r1/2
k xjxk)]. (27)

Symmetrising rjx2
j  to (rjx2

j + rkx2
k)/2 allows the term in brackets in the last sum to be writ-

ten as a complete square. Equation (27) can be further simplified by the change of variables 

yj = xjr
1/2
j , which has the benefit of confining the disorder from the transition rates rj to the 

local terms:
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P(y) ∝ e−
i
2 [λε

�
j y2

j /rj+
1
2

�
jk cjk(yj−yk)

2] =
�

j

e−
i
2 λε

�
j y2

j /rj
�

( jk)∈G
e−

i
2 (yj−yk)

2

(28)

where the last product runs over all distinct edges of the graph G  defined by the inter-trap 
connectivity {cij}.

The core of the cavity approach is to decompose P(y) into the factors involving a given 
node j, and the remaining factors. The latter define the cavity graph G( j), where node j and all 
its connections have been removed from G , and a corresponding cavity distribution denoted 
P( j)(·). This leads to the following equation for the marginal distribution P(yj):

P(yj) = e−
i
2 λεy2

j /rj

�
dy∂j e−

i
2

�
k∈∂j(yj−yk)

2
P( j)(y∂j) (29)

where P( j)(y∂j) denotes the (complex) probability distribution of the variables {yk} on the 
nodes that are neighbours of j on the graph G . The cavity method is based on the assumption 
that the joint distribution P( j)(y∂j) factorises on G( j) as

P( j)(y∂j) =
�

k∈∂j

P( j)(yk). (30)

This is exact if the original graph G  is a tree, because the cavity graph G( j) then consists of 
disconnected branches. Sparse graphs do contain loops, but these have an average length of 
order ln(N) [12]. Intuitively, as the total number of nodes in the kth coordination shell is ck, 
these will typically be distinct as long as ck � N. Conversely, different sub-trees rooted in the 
neighbourhood of j can be connected to a common site, hence producing a loop, if ck = O(N), 
or k = O(ln(N)). In the large N limit these graphs therefore become locally treelike and the 
factorisation (30) will again become exact: conditional on a given node, the branches rooted 
at that node become independent of each other. Equation (29) then simplifies to

P(yj) = e
− i

2 λε

y2
j

rj
�

k∈∂j

�
dyk e−

i
2 (yj−yk)

2
P( j)(yk). (31)

Similarly one can show for the marginals of the cavity distribution around node j

P( j)(yk) = e−
i
2 λε

y2
k

rk

�

l∈∂k\j

�
dyl e−

i
2 (yl−yk)

2
P(k)(yl) (32)

where ∂k \ j indicates the neighbourhood of node k excluding node j. As all distributions 
involved are zero mean Gaussians, also the marginals must be of this form, i.e.

P( j)(yk) =

�
ω
( j)
k

2π
e−

1
2 ω

( j)
k y2

k P(yj) =

�
ωj

2π
e−

1
2 ωjy2

j . (33)

We follow statistical terminology and call the ω, which are inverse variances, precisions [51]. 
Their real part must be positive in order to preserve normalisability of the corresponding 
Gaussians.
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In terms of the precisions and using r−1
j = τjc, equations (31) and (32) become

ω
( j)
k = iλετkc +

�

l∈∂k\j

iω(k)
l

i + ω
(k)
l

ωj = iλετjc +
�

k∈∂j

iω( j)
k

i + ω
( j)
k

(34)

as derived in more detail in appendix B. The equations for the cavity precisions form a closed 

set {ω( j)
k } that can be solved iteratively. Note that for an actual tree, no iteration is required as 

the equations can be solved recursively by working inwards from the leaves. Once the cavity 
precisions are known, the marginal precisions {ωj} can be deduced. Finally, from (25) and 
(34) one obtains the diagonal entries of the resolvent:

Gjj =
iτjc
ωj

. (35)

The factor τjc = r−1
j  arises here from the transformation from yj back to xj.

Given a specific realisation of the disorder, i.e. for a single instance of the matrix M, we 
know the rates {ri} and the connections {cij}, therefore (34) can be solved iteratively starting 
from a suitable initial condition. The eigenvalue spectrum of the system is finally given by 
(35) and (22). We will refer to this procedure as the single instance cavity method.

In the large N limit (34(left)) turns into a self-consistent equation for the distribution p(ω)
of the cavity precisions—here to keep the notation clean we drop the superscript indicating the 
cavity graph. For the simplest case of a random regular graph this reads

p(ω) =
�

dτ ρτ (τ)
c−1�

l=1

dωl p(ωl) δ(ω − Ωc−1) (36)

where

Ωa = Ωa({ωl}, τ) = iλετc +
a�

l=1

iωl

i + ωl
. (37)

The intuition here is that because p(ω) is a distribution resulting from the solution of the equa-
tion (34) for the cavity precisions, updating the precision on a randomly chosen edge of the 
graph with the r.h.s. of (37) does not change the distribution. Technically, one assumes here 
that the distribution of Gjj, and consequently p(ω), is self-averaging in the limit N → ∞. In 
the case of a general random graph, the only change is an additional average over the number 
of neighbours k of a randomly chosen edge, with the appropriate probability weight kpk/c; see 
appendix B for details.

A numerical solution for p(ω) at any given λε can be obtained using a population dynam-
ics algorithm [52]. The basic idea is to represent the distribution p(ω) with a population of 
Np cavity precisions P = (ω1, . . . ,ωNp). One starts with a certain initial condition and lets the 
population evolve according to the update rule given by the delta function in (36). Once equili-
brated, the histogram of P  should give an approximation of p(ω). In summary the algorithm 
works as explained in the following box:
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Algorithm. Population dynamics algorithm.

1. Start with an initial (complex) population P = (ω1, . . . ,ωNp).
2. Pick c  −  1 random elements {ωl} from P  and a sample τ from ρτ .
3. Replace a random element of the population with Ωc−1({ωl}, τ).
4. Repeat 2 and 3 until equilibration is reached.

Finally, we use (22) and (35) to write the DOS as an average over the distributions p(ω)
and ρτ

ρ(λ) = lim
ε→0

lim
N→∞

1
πN

N�

i=1

Im Gii(λε) = lim
ε→0

1
π

Re
� τc
Ωc({ωl}, τ)

�
{ωl},τ

(38)

where the {ωl} are sampled from the population of cavity precisions converged to equilibrium.
We next discuss the relative merits of single instance cavity method versus population 

dynamics, and the influence of ε. The single instance method allows us to find the spectrum 
of (large) sparse symmetric matrices M, under the cavity approximation of factorisation in 
each cavity graph. In terms of computational cost this method is in principle much faster than 
direct diagonalisation because one only has to find the O(N) cavity precisions, typically from 
a number of iterations of the cavity equations that does not grow with N. However, one still 
has to store all the information on the disorder {τi, cij} and, as is true generally with the cavity 
technique, one obtains little information about the eigenstates. The calculation also has to be 
repeated across a suitably fine grid of λ-values in order to find the spectrum.

In choosing the λ-grid, one has to bear in mind that the general approach replaces the N
delta-functions in (8) by Lorentzians of width ε, therefore ε is the ‘resolution’ that we have 
on the lambda axis. To catch all eigenvalues of a single instance, one therefore requires a grid 
spacing in λ of order ε or smaller. Conversely, for a fixed λ-grid, ε has to be chosen larger than 
the grid spacing, otherwise the chance of hitting all eigenvalues becomes too low to obtain 
accurate results.

In practice, we always perform the cavity iterations themselves with ε = ε0 → 0 (specifi-
cally we set ε0 ∼ 10−300) so that the resulting cavity precisions are not affected by the width 
of the Lorentzians. The required nonzero ε (� ε0) is then applied only in the evaluation of the 
average (38), i.e. in the measurement step. This makes it easy to explore the effect of changes 
in ε, without having to solve the cavity equations afresh. From (33, 34) one sees that using 
ε �= ε0 to calculate the marginal precisions is equivalent to adding ε− ε0 to the inverse vari-
ance of each xj. This provides a regularization for the case where the variance calculated using 
ε0 is close to imaginary because the chosen λ has hit an eigenvalue.

In contrast to the single instance approach, the population dynamics algorithm is designed 
to give the DOS of infinitely large systems. There is no need to keep track of the disorder 
because of self-averaging, and we only have to let the population equilibrate. The eigenvalue 
spectrum becomes densely populated, typically showing a continuous part referred to as the 
bulk. This means that we are always able to compute the DOS over this region, even with 
ε0 ∼ 10−300. A common feature of (sparse) random matrices is that the states covering the 
bulk are in fact delocalised (or extended), and localisation (Lifshitz) tails are present at the 
edges of the spectrum [29, 53–55]. The values of λ where these localisation transitions occur 
are called mobility edges. Pure points, i.e. isolated eigenvalues [56], do sometimes occur 
within the bulk of the spectrum, as is the case for e.g. sparse adjacency matrices with vary-
ing node degrees [57]. In the following sections we refer to the density of all the states of the 
system as the total DOS (tDOS), obtained by the population dynamics algorithm with ε small 
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but finite, and to the density of the extended states only as the extended DOS (eDOS), obtained 
with ε effectively equal to zero.

4.2. Total DOS via population dynamics

We next present the results for the total DOS of a trap model on a random regular graph with 
connectivity c  =  5. Figure 4(left) shows the results obtained using the population dynamics 
algorithm compared with data from direct diagonalisation of the master operator for finite 
N (labelled ‘numerics’). The agreement across the entire λ range is clearly very good. In 
figure 4(right) we include the MF and RW-limits of the DOS for comparison; recall that the 
quantity r = −λ represents the relaxation rate of the system, so the plots showing −λρ(λ)
versus −λ can equivalently be read as the density of ln(r), plotted against r on a logarithmic 
x-axis. We observe that the small |λ| tails (the slow modes governing the long-time dynamics) 
follow the MF trend (blue dashed lines), showing the same power law exponent asymptoti-
cally. Conversely, fast modes (large |λ|) show a non-linear DOS which originates primar-
ily from the Kesten–McKay law (RW limit). We note here that because of the MF tail, one 
expects systems of finite size to have a spectral gap that scales with N as in mean field [48], so 
the second largest eigenvalue should be bounded from above by −τ−1

max ∼ −N−β; a detailed 
analysis of the N-scaling of the spectral gap, however, is beyond the scope of the present work. 
Note that at the highest temperature T  =  2.5, the small |λ| tail of the DOS shows larger statisti-
cal uncertainties because of finite size effects: in direct diagonalisation, finite-sized matrices 
only rarely have eigenvalues in this region; similarly population dynamics sampling runs of 
finite length produce only a limited number of samples contributing to the slow mode regime.

To understand the structure of the DOS in more qualitative terms, we can perform a simple 
(high T ) analytical approximation: we take one cavity iteration at finite temperature starting 
from the infinite temperature solution. This means that only the local disorder is taken into 
account when computing the DOS, i.e. the central node receives its messages from c neigh-
bours belonging to an infinite temperature cavity network. A similar idea, called the single 
defect approximation, has been used to explain localisation phenomena arising from topologi-
cal disorder in random lattices [55, 58]. In the large T and N limits, where all nodes become 

Figure 4. Total DOS for mean connectivity c  =  5 and temperatures T = 0.5, 1.5, 2.5. 
Left: predictions from cavity method (population dynamics, evaluated using ε ∼ 10−4

and population size Np = 2500) compared to direct diagonalisation spectra (grey) for 
networks of size N  =  1000, with statistics taken across M  =  104 graph samples. Right: 
cavity predictions for total DOS compared with MF and RW limits, respectively given 
by (13) and (21).
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equivalent, the cavity precision distribution p(ω) becomes delta-peaked on the value ω̄  that 
solves (36), i.e.

ω̄ = Ωc−1({ω̄}, 1). (39)

The approximated total DOS is then evaluated as in (38)

ρA(λ) = lim
ε→0

1
π

Re
� τc
Ωc({ω̄}, τ)

�
τ
. (40)

The average can be performed analytically, as detailed in appendix C. Figure 5(left) shows the 
resulting first order approximation ρA(λ) against the DOS obtained by direct diagonalisation. 
One observes that the approximation is in remarkably good agreement with the numerical data 
in the region of slow (MF-like) modes, though even in the RW-like regime it is qualitatively 
correct. We can iterate the scheme to obtain higher order approximations: to the second order 
we perform two cavity iterations at finite temperature starting from the infinite temperature 
solution, and so on. The second order approximation is then given by

ρ2A(λ) = lim
ε→0

1
π

Re
� τc
Ωc({Ωc−1({ω̄}, τl)}, τ)

�
{τl},τ

. (41)

This average cannot be carried out analytically but is straightforward to perform by sampling 
from the distribution of waiting times. Figure 5(right) shows the first and second order approx-
imations on a linear scale. One gets a slightly better result with the second order approximation 
ρ2A in the large |λ|-region, though not yet a quantitative match to the full cavity predictions. 
In the small |λ| tail we find (not shown here) that there is no significant difference between 
the first and second order approximations. As a final remark, we note that an infinite order 
approximation would give the population dynamics result: in this case, the infinite temper-
ature solution ω̄  corresponds to a particular initial condition for P , which is lost after a large 
number of iterations of the approximation scheme.

Figure 5. Total DOS for mean connectivity c  =  5 and temperatures T = 0.5, 1.5, 2.5. 
Left: first order approximation compared to spectra from direct diagonalisation (grey, 
statistics from M  =  104 system samples of size N  =  1000). Right: population dynamics 
prediction (green), first order (black) and second order (dashed) approximations for 
T  =  1.5. All the evaluations have been performed using ε ∼ 10−4 and a population of 
size Np = 2500.
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4.3. Extended DOS and IPR

As explained above, we can measure the extended DOS (only) by evaluating the cavity pre-
dictions in the limit ε → 0 as it is this part of the spectrum that becomes continuous in the 
thermodynamic limit. Comparing the extended and total DOS then allows us to locate the 
mobility edges of the system. Figure 6(left) shows the total DOS and the extended DOS on a 
linear scale, with an inset zooming in on the localisation transition occurring on the right end 
of the spectrum. Figure 6(right) displays the same plot with a logarithmic y-axis, where we 
have included evaluations of the total DOS for different ε values. This allows one to estimate 
the left end of the spectrum from the point on the λ-axis where the total DOS ceases to be 
ε-independent. Note that on approaching the mobility edges, the convergence of the popula-
tion dynamics to its steady state becomes very slow. The peaks in the extended DOS that are 
visible in the inset of figure 6(left) are caused by this and should accordingly be ignored as 
unphysical. While it is not surprising to find localisation tails at the edges of the spectrum, at 
least from a random matrix perspective, it is remarkable that the appearance of mobility edges 
arises directly from the combination of two limiting cases with exclusively extended (RW) and 
localised (MF) eigenvectors, respectively. We can already argue that the fastest and slowest 
processes are governed by localised modes, with an intermediate regime where all modes are 
delocalised. Since we are interested in the long time dynamics, our attention will be focused 
on the bulk of extended states and on the slow (MF) localised modes only; we will also show 
that the fraction of fast localised states is relatively small compared to that of slow modes. As 
we will see, the mobility edge occurring on the slow end of the spectrum (of eigenvalues, or 
similarly relaxation rates) allows one to identify three different regimes in the time domain.

The localisation transition described above is associated with a change in the distribution 
p(ω): the population of cavity precisions converges to a steady state which has complex sup-
port for λ in the bulk of the spectrum, and purely imaginary support outside. This transition 
can be detected by considering the average real part of the cavity precisions, which is shown 
in figure 7(left): as these precisions must have non-negative real part, the vanishing of the 
average real part means all real parts are zero. ‘Zero’ is to be interpreted here as of order ε0, 
the value of ε used in the population dynamics; our ε0 ∼ 10−300 is indistinguishable from zero 

Figure 6. Left: total DOS (green, tDOS) and extended DOS (black, eDOS) for 
connectivity c  =  5 and temperature T  =  1.5. Inset: zoom on the localisation transition 
occurring on the right edge of the spectrum; the mobility edge lies at λc � −0.04. 
The evaluations have been performed using a population of size Np = 2500. The noisy 
peaks in eDOS are due to the slow convergence of the algorithm at the localisation 
transition and should be ignored as unphysical. Right: same plot with a logarithmic y-
scale, including total DOS evaluations with two different ε values.
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even on the logarithmic scale of figure 7(left). The figure shows the average real part of the 
cavity precisions and the total/extended DOS as a function of λ. As claimed above, the aver-
age real part is nonzero in the bulk of the spectrum, goes to zero exactly where the extended 
DOS does, and then vanishes within the localised spectrum. The approach of the average real 
part to zero is continuous (see inset), indicating that the transition in the structure of the distri-
bution of cavity precisions is likewise continuous.

Note that having imaginary cavity precisions amounts to having real diagonal entries of the 
resolvent (via equation (35)), which in the context of field theory and Anderson localisation 
are related to the so called self-energies. Similarly to what we have outlined above, the state 
of an electron in a disordered medium is classified as localised or delocalised depending on 
whether the electron’s self-energy is real or complex [59].

We complement the above results by measuring the average degree of localisation of the 
eigenvectors. For N → ∞ one cannot access the IPR of individual eigenvectors. Instead one 
can consider the average IPR in a small range ε around λ and then take ε to zero:

Ī2(λ) = lim
ε→0

lim
N→∞

1
Nρ(λ)

N−1�

α=0

δε(λ− λα)I2(vα) (42)

where δε(x) = ε/[π(x2 + ε2)] is a Lorentzian of width ε and ρ(λ) is assumed to be calculated 
similarly, using δε(x) instead of δ(x) in the definition (8). The order of the limits in the defini-
tion ensures self-averaging because the number of λα that contribute, which is of order Nε, 
becomes large.

Swapping the two limits, i.e. assuming that at any given λ at most one eigenvector contrib-
utes to the average IPR, one can relate Ī2(λ) to the squared modulus |Gjj(λ)|2 of the resolvent 
entries. Bollé et al obtained from this a formula that allows the IPR to be evaluated within 

Figure 7. Left: average real part of the cavity precisions (red), extended DOS (black 
dashed line) and total DOS (green) for connectivity c  =  5 and temperature T  =  1.5. 
In the localised part of the spectrum, the cavity precisions have vanishing real part, 
i.e. are purely imaginary. The inset shows a zoom on the left localisation transition 
on a linear scale. The average real part of the precisions drops continuously to zero. 
Right: average IPR Ī2(λ) (blue) predicted by (43), alongside extended DOS (black) and 
total DOS (green dashed line). In the extended region of the spectrum the IPR scales 
with ε as expected. The inset shows a zoom on the left localisation transition on a 
linear scale, where in the localised region Ī2(λ) equals unity. The evaluations have been 
performed using a population of size Np = 2500. For the total DOS and Ī2(λ) we have 
used ε ∼ 10−3; for the extended DOS we have used ε0 ∼ 10−300.
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population dynamics [29], and used this to study localisation transitions in Laplacian and 
Levy matrices. In our notation their expression reads

Ī2(λ) = lim
ε→0

ε

πρ(λ)

���� τc
Ωc({ωl}, τ)

���
2�

{ωl},τ
(43)

which can be rewritten more explicitly as

Ī2(λ) = lim
ε→0

� ε

(ε+ Ar)2 + (λ+ Ai)2

��� ε+ Ar

(ε+ Ar)2 + (λ+ Ai)2

�
(44)

where, to keep the notation simple, we have used

A = Ar + iAi =
Ωc

τc
− iλε =

1
τc

c�

l=1

iωl

i + ωl
(45)

with Ar and Ai respectively the real and imaginary part of A. If the cavity precisions have zero/
positive real part, then Ar is zero/positive accordingly. It follows from (44) that Ī2(λ) = 1 in 
the localised part of the spectrum, where the distribution p(ω) has purely imaginary support, 
and it is of order ε within the bulk, where the support of p(ω) is complex. While we expect an 
average IPR of order unity, a value exactly equal to one is implausible in our case. This can be 
seen from the large c-limit, where we must recover the IPR of the MF eigenvectors (17), for 
which clearly Ī2 < 1 (see also figure 3(right)). The discrepancy indicates that the swapping of 
the limits ε → 0 and N → ∞ is not in general justified. Nonetheless, (43) remains useful as a 
tool for differentiating between localised and extended parts of a spectrum.

As an alternative to the treatment of Bollé et al, we suggest an approximation to the IPR 
that is derived by taking N → ∞ at fixed ε, and therefore is suitable for use within population 
dynamics based on (36). We leave the derivation to appendix D and only give the result

Ī�2 (λ) = lim
ε→0

2ε
πρ(λ)

Var
�
Re

� τc
Ωc({ωl}, τ)

��
{ωl},τ

(46)

where Var(·) indicates the variance. The order of limits (N → ∞ first, then ε → 0) used 
ensures that there are always enough states within the λ-range of width ε where quantities are 
measured. In this regard, our approach is opposite to that of Bollé et al, where the two limits 
are inverted. Even so, we observe a very close agreement between the IPR estimates (43) and 
(46), as shown in figure D1 in appendix D.

Figure 7(right) shows the total DOS, the extended DOS, and the average IPR predicted by 
(43). As explained above, in the localised region Ī2(λ) has a constant value of one, even where 
the total DOS drops to the ε-value used in the measurement step of the population dynamics 
algorithm, i.e. outside of the support of the spectrum. The localisation transitions, detected as 
the points on the λ-axis where the value of Ī2 changes from O(ε) to O(1), occur where the 
extended DOS drops to O(ε0). This confirms what we have discussed before: in the thermo-
dynamic limit the spectrum has a continuous part of extended states, with localisation tails of 
pure point states occurring at the edges of the bulk.

4.4. Finite size effects

The advantage of the population dynamics approach is that it allows us to evaluate the spec-
tral properties of infinitely large systems at a relatively low computational cost. As described 
above, the distribution p(ω) is approximated by a large population P  of representative cavity 
precisions samples. This population converges to steady states that depend on the value of λ, 
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and it undergoes critical transitions at the mobility edges. The location of these transitions 
turns out to have a non-negligible dependence on the population size Np (see figure 8(left)). 
Finite size effects in population dynamics algorithms have been discussed in the context of 
the Moran model [60] and in the evaluation of large deviation functions [61, 62]. In particular 
in [62] the authors show that in their case, systematic errors in the algorithm decrease propor-
tionally to the inverse of the population size. In order to determine the actual position of the 
mobility edges occurring within our spectra we assume that

|λL/R
∞ − λL/R

c (Np)| ∼ N−a
p (47)

where λL/R
c (Np) is the left/right mobility edge measured using a population of size Np, and 

λ
L/R
∞ = limNp→∞ λ

L/R
c (Np). Accordingly, we gather data for different Np and then fit them 

using

λL/R
c (Np) = c1 + c2N−a

p (48)

where c1, c2 and the exponent a are determined by minimizing the least-squares deviation. This 
then identifies, in particular, the extrapolated value λL/R

∞ = c1. As shown in figure 8(right), 

with the exponent a chosen in this way our data {(λL/R
c (Np), N−a

p )} do lie on a straight line 
to a good approximation as (48) assumes. This fitting method is applied to determine the 
right and left mobility edges for different values of the temperature, with mean connectivity 
c  =  5. The exponent a is non-trivial in our case: it shows a monotonic increase with inverse 
temperature and typically lies between 0 and 1 (see figure 10, top-right), in contrast to the 
setting in [62] where a  =  1. We conjecture that the T-dependence of a is related to the fact 
that also the exponent of the distribution of waiting times ρτ (τ) varies with T; a more precise 
quantitative understanding of the value of a remains an open problem, however. Figure 9(left) 
shows the DOS with the extrapolated right λR

∞ and left λL
∞ mobility edges (respectively on 

the left and right of the plot, because the x-axis shows −λ), the RW-DOS and the power-law 
MF-DOS for the slow modes. We note that λR

∞ lies at a point on the λ-axis where the full DOS 
is already MF-like. In facts, it seems natural to describe the spectrum as composed of three 
main regions: the slowest modes possess MF-like features as they are localised and power-
law distributed. The fastest modes are delocalised and exhibit a non-monotonic DOS that is 
closely related to the Kesten–McKay law for the RW limit. Finally, the intermediate region 

Figure 8. Left: extended DOS for different population sizes Np (black) and total DOS 
(green), for connectivity c  =  5 and temperature T  =  1.5. Right: least squares fit of 
{(λR

c (Np), N−a
p )} giving λc

��
Np→∞ � −0.006.
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(green shaded area) has mixed properties of the two limiting cases: here the eigenstates are 
delocalised (RW-like) but show a power-law distribution (MF-like). We also observe that this 
intermediate region becomes wider—the fraction of delocalised modes with a MF-like density 
of states increases—as the temperature decreases (figure 9(right)).

From the extrapolated position of the mobility edges in the eigenvalue spectrum we can 
estimate the fraction of localised modes πtot  in our system. This is given by the integral of the 
total DOS over the λ-regions containing localised states, which in our case lie at the edges of 
the spectrum. It is in fact simpler to evaluate πtot  by working out the complement, i.e. integrat-
ing over the bulk of the DOS:

πtot = 1 −
� λR

∞

λL
∞

dλ ρ(λ). (49)

Here λL
∞ and λR

∞ are the left and right mobility edges of the system, extrapolated to infinite 
population size as explained above.

We can similarly obtain the fraction of localised fast/slow modes by integrating over the λ-
region at the left/right end of the spectrum. Since we have Lorentzian tails of width ε affecting 
the total DOS, the most accurate way of computing these fractions is to locate the left end of 
the spectrum λL

end by exploiting the ε dependence of the total DOS (see figure 6(right)), then 
evaluating the fraction of localised fast modes as

πL =

� λL
∞

λL
end

dλ ρ(λ). (50)

The fraction of localised slow modes is finally given by πR = πtot − πL. Figure 10 shows 
the fractions of localised modes (left) and the right mobility edge (bottom-right) as func-
tions of the temperature, for mean connectivity c  =  5. We observe that as the temperature 
decreases the localisation region on the right edge of the spectrum becomes narrower while 

Figure 9. Left: total DOS (green solid line), extrapolated right and left mobility edges 
(green dashed line), occurring respectively on the left and right sides of the plot, MF 
DOS (power law, blue dashed line) and RW DOS (black solid line) for c  =  5 and T  =  1.5; 
the RW DOS is evaluated via (13). The spectrum is composed of three main regions: 
MF-localised (left), MF-extended (centre, green shaded area) and RW-extended (right). 
Right: total DOS (solid lines) and extrapolated right mobility edges (dashed lines) for 
c  =  5 and T  =  0.5 (blue), 1.5 (green), 2.5 (red). These spectra show the same qualitative 
features discussed for the case of T  =  1.5, but with the fraction of modes in the central 
‘mixed’ (MF-extended) region increasing as T decreases. The evaluations of the total 
DOS have been performed using ε ∼ 10−5 and a population of size Np = 2500.
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the fraction of slow localised modes in this increases. Overall, the total fraction of localised 
eigenstates becomes larger as the temperature decreases. Nevertheless, even at T  =  0.5—the 
lowest temper ature considered here—the fraction of localised modes only amounts to around 
10% of the total DOS. The majority of these localised eigenstates lie in the low |λ| tail, as can 
be seen from the fact that the quantities πR and πtot  are almost overlapping on the log scale 
shown in figure 10(left). Importantly for the long-time dynamics, all the slowest modes in the 
system are localised, at least for the temperature regime that we have considered here. The 
temper ature trend for low T is consistent, at the other end, with the T → ∞ limit: here we 
obtain a RW spectrum with only extended and no localised modes.

5. More disordered network topologies

So far we have focused on the case of random regular graph (RRG) connectivity, where the 
network defining the possible paths among minima in the potential energy landscape has a 
regular structure that becomes free of disorder in the thermodynamic limit. From a topologi-
cal perspective the absence of disorder might seem as unrealistic as, say, in the n-dimensional 
hypercubic lattice or the complete graph with its mean field connectivity. However, the RRG 
does introduce the essential features of sparse random networks, i.e. it is ‘infinite dimension-
al’—the number of nodes grows exponentially with distance—and it confines all dynamical 
transitions to a local environment. The RRG case is also interesting as the localisation prop-
erties of the eigenvectors of the master operator are the opposite of those in the mean-field 
Bouchaud model, where the connectivity is infinite and all eigenmodes are power-law local-
ised on the energy axis.

The question that we want to address in this section is whether the RRG case possesses all 
the relevant features of sparsely connected energy landscapes, at least in terms of the spectral 
properties discussed so far, or whether more disordered network topologies add new features 
(see e.g. [63]). We therefore extend our analysis to Erdös–Rényi (ER) and scale-free (SF) 
graph structures, which have been widely studied in other contexts [12, 64]. They both have 
finite average degree c but are paradigmatic as graph ensembles with finite (ER) and infinite 

Figure 10. Left: DOS integrated over the localised part of the spectrum to give the total 
fraction of localised modes πtot  and the fraction of slow localised modes πR against 
inverse temperature; note that the two curves almost overlap. Right: exponent a (top) and 
right mobility edge (bottom) extrapolated from the least squares fit (see equation (48)), 
plotted against inverse temperature. These evaluations have been performed with mean 
connectivity c  =  5.
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(SF) degree variance, respectively. Further motivation comes from the fact that numerical 
studies on a relatively small number of Lennard-Jones interacting atoms have suggested a con-
figuration-space connectivity of the scale-free type [24], which is also the network topology 
assumed by Baronchelli et al [23] as discussed in the introduction. The SF case may therefore 
represent the best candidate for modelling configuration space connectivity, though we stress 
that our approach is flexible and can be applied to any network topology without short loops.

Looking at the random walk (RW) and mean-field (MF) limits, we note first that in the for-
mer case there is no simple closed form expression for the DOS, analogous to (13) for regular 
graphs, on complex network structures: we will have to obtain results by population dynamics 
instead for the T → ∞ limit. The limit c → ∞, on the other hand, effectively brings us back 
to the fully connected case so our previous results and discussion for the MF limit still apply.

Erdös–Rényi graphs [65] of size N are constructed by assigning an edge between any pair 
of vertices with probability p, so the average number of edges in the network is N(N − 1) p/2
and we need (N − 1) p to be finite to ensure that the resulting graphs are sparse. The prob-
ability that a given node has k neighbours then follows a binomial distribution, which in the 
large N limit approaches a Poisson distribution with parameter c = (N − 1) p. We therefore 
apply our cavity method assuming pk = e−cck/k!, with �k� = Var(k) = c. Since the Poisson 
distribution is strongly peaked around c, the local environment of these graphs is typically 
subject to weak fluctuations, and the overall structure is not far from that of random regular 
graphs. In the following we will assume c  =  5, which ensures that the fraction of nodes in the 
giant cluster is approximately equal to one, ignoring the effects of very small disconnected 
components on the spectral properties of the whole system. The population dynamics algo-
rithm applies as explained in section 4, with the only difference that at each update we pick 
k  −  1 elements from the population of cavity marginals with probability pkk/c; see appendix 
B for further details.

The spectral features of the ER ensemble with c  =  5 and T  =  1.5 are shown in fig-
ure 11(left). The total DOS is displayed for evaluations involving two different values of ε, 
whose effect is visible on the left of the plot. The total DOS of the RW limit would have the 
same ε tail for small |λ| but we do not show this region as the RW DOS becomes too small to 
estimate reliably there. Similarly to the case of random regular graphs, the DOS is composed 
of three main parts: a mean field power-law tail occurs at the slow end of the spectrum, cover-
ing localised (left) and delocalised (centre) modes, while the distribution of fast modes (right) 
is non-monotonic and follows closely the DOS of the corresponding RW limit. In contrast 
to the RRG case, the connectivity disorder alone is enough to induce localisation transitions 
within the spectrum; the mobility edges are extrapolated by the least squares fit discussed in 
the previous section, and they are marked by the green (T  =  1.5) and red (T → ∞) dashed 
lines in the plot. We observe that the area under the total DOS of MF localised modes at 
T  =  1.5 is much larger than that corresponding to the RW case. This means that the intrinsic 
localisation attributes of ER graphs are sub-dominant with respect to the effects introduced by 
energy disorder, which become stronger when the temperature is lowered.

The last class of networks that we address in this work is the scale-free type. In the form 
originally proposed [66], these networks are constructed via preferential attachment: starting 
with a dimer of two nodes linked together, one connects a new node to the existing ones with a 
probability that is proportional to the number of links that they already have, repeating the pro-
cess until the network has the desired size. More generally SF networks are characterised by a 
degree distribution pk that decays as k−γ . Here γ is typically in the range 2 < γ < 3, implying 
that second and higher order moments diverge. This motivates the appellative ‘scale-free’ as, 
by contrast to Erdös–Rényi and random regular graphs, the degree fluctuations are infinitely 
large and have no intrinsic scale. Defining a SF graph ensemble by assigning equal probability 
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to all networks with the given degree distribution, one typically finds many hubs within the 
network, i.e. nodes with very high degree, occurring at all (degree) scales. In order to minimise 
the number of disconnected sub-graphs we introduce a lower bound on the range of degrees by 
imposing p0 = p1 = 0. Also, in practice we cannot deal numerically with unbounded proba-
bility distributions, and a cutoff KMAX has to be specified so that pk = 0 ∀ k > KMAX; we take 
KMAX = 1000. The cutoff is entirely immaterial for the ER case, where for the Poisson degree 
distribution with e.g. c  =  5 one has pKMAX ∼ 51000/1000! ∼ 10−1869. Even for SF graphs, with 
γ = 2.5, pKMAX ∼ 1000−2.5 ∼ 10−8 so the cutoff lies far in the tail of the distribution. It does 
make all moments of the distribution finite, but still retains much larger degree fluctuations 
than for random regular and ER graphs.

The results for the SF ensemble with γ = 2.5 and T  =  1.5 are shown in figure 11(right), 
using the same colour scheme as for the ER plot on the left and a population of 2500 cavity pre-
cisions. A striking difference is that the spectrum is much broader than for the previous cases, 
by at least one order of magnitude (scaling the rates by the average connectivity is ineffective 
when the variance of degrees is large as here): a long tail of fast, localised modes appears 
(at the left end of the spectrum, which on the plot is on the right as the x-axis shows −λ). 
Similarly to the case of ER graphs, the area under the total DOS of MF localised modes at 
finite temperature (T  =  1.5) is much larger than that corresponding to the RW case, which 
demonstrates the strengthening of slow mode localisation when the temperature is lowered. 
Overall, in spite of some differences in the details, the DOS for SF networks has the same 
structure as for random regular and Erdös–Rényi graphs, with a tail of slow modes follow-
ing the mean field statistics, a mixed region where the DOS is MF-like but eigenstates are 

Figure 11. Left: spectral attributes for Erdös–Rényi networks. Total DOS (green solid 
lines) and extrapolated mobility edges (green dashed lines) for c  =  5 and T  =  1.5, with 
the corresponding MF DOS (power law, blue dashed line), RW DOS (black solid line) 
and extrapolated RW mobility edges (red dashed lines). The spectrum is composed of 
three main regions: MF-localised (left), MF-extended (centre, green shaded area) and 
RW-like (right). Right: analogous plot for scale-free networks with system parameters 
γ = 2.5 (implying c � 4.53), and T  =  1.5. The same colour scheme of the left-hand 
plot applies. Both plots have −λ on the x-axis, making the right mobility edges appear 
on the left side of the pots (and vice-versa for the left mobility edges). The quantities 
tDOS, RW eDOS and RW tDOS in both plots have been computed using a population 
of size Np = 2500.
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delocalised, and a remaining part of the spectrum that is non-monotonic and closely related 
to the associated RW case. By lowering the temperature we induce a shift in the DOS towards 
slower modes, the range of MF-RW mixed modes becomes wider, and the fraction of slow 
localised modes increases.

6. Conclusions and future perspectives

In this paper we have considered the problem of walks on the potential energy landscape as 
described by the trap model of Bouchaud and others, extending previous analyses to the case 
of sparse inter-trap connectivity. In this scenario there are two different sources of disorder: 
one is associated with the topology defining the connectivity among minima, and the other one 
is given by the different energy depth of the traps. Accordingly there are two important notions 
of distance: the distance on the graph structure and the distance on the energy axis. The sparse 
structure of the master operator M makes the problem impossible to solve with analytical 
tools, and we thus approached it by means of the cavity method, which in the thermodynamic 
limit leads to a population dynamics algorithm. This allowed us to evaluate the eigenvalue 
spectrum of M, and the localisation properties of the associated eigenstates (the modes of the 
dynamics), which are key to understanding the dynamical behaviour of the model.

We first discussed the spectral properties of the ground state, i.e. the equilibrium distribu-
tion, focussing on how the IPR scales with system size for different temperatures; these results 
are independent of network structure because the transition rates obey detailed balance. In 
the bulk of the paper we considered the case of random networks with regular connectiv-
ity, where the key system parameters are the temperature T and the mean connectivity c. We 
discussed the limiting situation of infinite temperature, where the dynamics is a random walk 
(RW) and only the distance on the graph structure matters. Here the density of states (DOS) 
is given by a shifted and scaled Kesten–McKay law, and all eigenmodes are delocalised. In 
the opposite mean-field (MF) limit c → ∞, where traps are distinguished only by their energy 
depth, the eigenstates are localised and the DOS follows a power law with a T-dependent 
exponent. We found that these features are combined in the general case of finite connectiv-
ity and finite temper ature where both notions of distance are relevant: a MF-like tail of slow 
localised modes (governing the long time dynamics) appears, while fast modes follow the 
RW case, being delocalised and showing a non-monotonic DOS related to the Kesten–McKay 
law. Localisation transitions appear within the spectrum at the changeover between these two 
behaviours; they correspond to continuous transitions in the nature of the support of p(ω), 
the distribution of cavity precisions that is the key quantity within the population dynamics 
algorithm. The location of these transitions is affected by population size, and we extrapo-
lated them to the infinite population limit using a simple power law form. This revealed a 
surprise: the combination of RW and MF features give rise to a mixed region separating the 
fast modes from the slow modes, where the DOS has a MF shape but eigenstates are nonethe-
less delocalised.

The shape of the DOS, and particularly the power law MF-like tail of slow modes, are 
well captured by a simple ‘high temperature’ approximation scheme. At first order, one cav-
ity iteration (involving disorder) is performed starting from the infinite temperature solution 
found on the cavity graph (where, in the case of RRG, disorder is absent). This is similar to 
the ‘single defect approximation’ [55]: the central vertex is the only source of randomness and 
this allows one to find an analytical solution for the DOS.
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We observed the same overall structure in the spectra for more disordered network topolo-
gies, specifically Erdös–Rényi and scale-free graphs, though with some changes in the details 
particularly for the fastest modes. The broader degree distributions of these networks are suf-
ficient to induce localisation transitions even for infinite temperature, i.e. without any effects 
from the trap depths. However, the fraction of slow localised modes is greatly enhanced at 
finite temperature, where the corresponding DOS has a power-law MF shape. The latter fea-
ture arises in every graph ensemble considered here. Bearing in mind that the spectrum of 
relaxation times is simply given by the collection of inverse eigenvalues {1/|λα|}, the ultimate 
long time dynamics should then always be of mean field kind. This asymptotic independ ence 
from the network structure is in fact consistent with the way the trap model was originally 
designed, namely to describe dynamics in configuration-space on a very long time scale where 
deep minima are effectively fully connected by paths passing through shallow traps. The pres-
ence of a region in the spectrum with mixed MF and RW properties suggests the existence 
of an intermediate time scale during which the dynamics should exhibit features of both the 
short-time random walk behaviour, which is network dependent, and the long time mean field 
evolution. How this distinction based on the spectral analysis can be quantified in the time 
domain remains an open problem and will have to be addressed in future.

More generally, the lack of detailed information about the eigenvectors remains the major 
limitation of our approach, as it impedes a direct evaluation and classification of the ageing 
dynamics. Nevertheless, we believe that there is scope here for significant improvement and 
we hope that this work stimulates further investigations in this direction. In particular, these 
should include exploring the time domain and trying to characterise the three different regimes 
that we have highlighted above. This can be done e.g. by looking at the  time-dependent prob-
ability of return to a given trap, which can be expressed as the Laplace transform of the local 
density of states (i.e. the contribution to the total DOS from a local node with a given trap 
depth). The local DOS will typically be peaked around the value of −λ that corresponds to 
the initial decay of the return probability, and this would allow one to focus on a single one of 
the three distinct regions that we have identified in the spectrum. Alongside the return prob-
ability, other time dependent quantities, such as the mean number of distinct nodes visited 
within some time t, will help to characterise the (non-equilibrium) dynamics and identify the 
system’s time scales. This question can be tackled with the techniques of [67], accompanied 
by numerical simulations of random walks on trapping networks to assess finite size and 
pre-asymptotic (short t) effects.

Future work should aim also to elucidate the link between the dynamics and the localisa-
tion properties of glassy dynamics on networks. Insights might come from a closer look at the 
structure of the eigenvectors. The IPR carries no information on the spatial distribution of the 
eigenvector components, nor is it able to distinguish between exponential and non-exponential 
localisation, either in energy or on the graph structure. For this reason it is not clear from 
our results how the two sources of randomness influence the localisation strength of, say, 
the localised eigenstates governing the long time dynamics. The region of the spectrum that 
we have characterised as ‘MF-localised’ might exhibit eigenvectors that are e.g. exponen-
tially localised within small areas of the network, rather than covering all the nodes through 
a power law decay with difference in trap energy (as happens for mean field connectivity). 
Then, for waiting times in the range of the slow localised modes (which will be the typical 
case at low temperature), when the system escapes from a deep trap all delocalised modes will 
have decayed and the motion will remain confined to the neighbourhood of the initial node, 
in contrast to MF dynamics. Similarly, in the ‘mixed’ region of the spectrum the delocalised 
eigenvectors might have non-trivial spatial structure; one might conjecture that they should 
be concentrated onto an extensive number of clusters of nodes, interpolating between the 
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localised slow modes and the delocalised fast ones. Overall, therefore, more detailed informa-
tion on the distribution of the entries of the slow eigenvectors and their spatial correlations 
should allow a better understanding of the asymptotic dynamics. The former quantity can eas-
ily be obtained numerically via e.g. the multifractality spectrum [38], while the latter could be 
assessed with an analogue of the radial distribution function (or similar measures) from liquid 
state theory [68]. To calculate them in the large system size limit, on the other hand, as outputs 
from a population dynamics algorithm, remains a technical challenge.

Finally, we point out two possible extensions of the present work: given the evidence for 
correlations between the depth and the number of neighbours of an energy minimum, this 
would be a feature worth including within our model. Such a more general setting should be 
amenable to an analysis similar to the one in this paper as we sketch briefly in appendix B. In 
principle, correlations in the degree of neighbouring minima could also be taken into account. 
The idea, supported by previous works on simulations of L-J interacting atoms [24], is that 
deep minima in the potential energy landscape are surrounded by many shallower ones, creat-
ing a hierarchical structure and thus inducing degree-degree and degree-energy correlations.

The second interesting model extension would be to consider alternative transition mech-
anisms among minima, as considered e.g. by Barrat and Mézard [69, 70], who used Glauber 
transition rates. These rates depend on the difference in energy between the departure and 
arrival nodes, and as energy-decreasing transitions are always allowed one can picture the 
situation on a fully-connected graph as an energy landscape made up of steps rather than traps. 
Here the entropy of relaxation paths is key and leads to a completely different phenomenology 
(see for example [71–73]), with ageing arising from entropic rather than energetic barriers. 
On sparse graphs, on the other hand, even Glauber dynamics will encounter energy barriers—
consider a deep trap with only shallow neighbours—and so a much richer and possibly more 
realistic dynamics should result. Work towards analysing this case is in progress.
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Appendix A. Localisation in mean field limit

We give here a qualitative argument for why in the mean-field limit a generic eigenvector 
associated with eigenvalue λ < 0 will be localised. We regard λ < 0 as fixed here and take 
N → ∞, to stay well away from the ground state. For finite N one would expect a crossover to 
the localisation properties of the (delocalised, for T  >  1) ground state as λ → 0.

The explicit form of the eigenvector components is given in (17). To estimate how 
these components vary across nodes i, consider a typical realisation of the trap depths 
{E1, E2, . . . , EN}, arranged in ascending order such that Ei < Ei+1. The inverse trapping times 
τ−1

i = exp(−βEi), which determine the eigenvector components ui ∝ (λ+ τ−1
i )−1 (we drop 

the eigenvector label α here), are then in descending order. The largest component will occur 
at the node i with τ−1

i  closest to |λ|; call this node j. The number of inverse trapping times at 
other nodes that lie in an interval [τ−1

j , τ−1
i ] is typically Nρτ−1(τ−1

j )(τ−1
i − τ−1

j ) where ρτ−1
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denotes the distribution of inverse trapping times. Abbreviating this density of states-factor as 
simply ρ, we can therefore write

j − i = Nρ(τ−1
i − τ−1

j ) (A.1)

as a deterministic approximation for the values of the inverse trapping times around τ−1
j .

Now call SN and SD respectively the sum on the numerator and denominator in the defini-

tion (9) of I2. Using that λ ≈ −τ−1
j , we have

SN =
�

i

u4
i ∝

�

i

(λ+ τ−1
i )−4 �

�

i

� j − i
Nρ

�−4
. (A.2)

The last sum can be approximated as twice the integral over the positive values of m  =  i  −  j

SN � 2ρ4
� ∞

1
dm

1
(m/N)4 ∝ ρ4N4. (A.3)

Similarly, for the sum in the denominator in I2 we get

SD �
�

2ρ2
� ∞

1
dm

1
(m/N)2

�2
∝ ρ4N4. (A.4)

Taking the ratio, it follows that I2  =  O(1) for any eigenvector u with an eigenvalue away from 
zero; this statement holds at any temperature. Note that the sums or integrals defining SN and 
SD all converge at the upper end, i.e. have their mass concentrated around small m  =  i  −  j. 

This justifies our initial approximation of focussing on inverse trapping times close to τ−1
j . It 

also implies that the above argument for the IPR of the right eigenvectors of the master opera-
tor applies equally to the eigenvectors of the symmetric master operator: these differ only by 

factors of τ−1/2
i , which vary weakly (by O(1/N)) across the relevant range where m  =  i  −  j 

is finite.

Appendix B. The cavity method

In this appendix we illustrate how to derive the equation (34) relating the (cavity) precisions, 
starting from the cavity marginal probability distributions as expressed in (32), i.e.

P( j)(yk) = e−
i
2 λεy2

k/rj
�

l∈∂k\j

�
dyl e−

i
2 (yl−yk)

2
P(k)(yl) (B.1)

which is based on the factorisation (30). As depicted in figure B1, this assumption works well 
if the graph lacks short loops, i.e. when it is locally treelike. Under this condition the correla-
tions between the variables y∂j belonging to different branches become negligible when the 
common root is removed from the graph. Inserting the ansatz given in (33), i.e.

P( j)(yk) =

�
ω
( j)
k

2π
e−

1
2 ω

( j)
k y2

k (B.2)

we obtain for the cavity marginals

P( j)(yk) ∝ e−
i
2 λεy2

k/rk
�

l∈∂k\j

�
dyl e−

i
2 (yl−yk)

2− 1
2 ω

(k)
l y2

l . (B.3)
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Completing the square and integrating out yl one finds

P( j)(yk) ∝ e−
i
2 λεy2

k/rk
�

l∈∂k\j

e−
i
2 y2

k− 1
2 (i+ω

(k)
l )−1y2

k . (B.4)

As by definition this must be proportional to exp(−ω
( j)
k y2

k/2), it follows that

ω
( j)
k =

iλε

rk
+

�

l∈∂k\j

iω(k)
l

i + ω
(k)
l

(B.5)

which after replacing rk = (τkc)−1 is the desired cavity equation. The calculation for the mar-
ginal precisions {ωj} (see (34)) is exactly analogous. Note that the discussion so far allows any 
kind of graph structure, i.e. it is independent of a specific choice for the degree distribution pk, 
and it also allows correlations between degree and energies.

When going from the above considerations for a single finite-sized graph to the thermody-

namic limit, one assumes that the cavity precisions {ω( j)
k } are random variables taken from 

some distribution p(ω). Equation (B.5) then turns into a self-consistent equation for p(ω). 
For a general degree distribution pk and a joint distribution ρτ ,k(τ , k) = ρτ |k(τ |k) pk this reads

p(ω) =
�

k

pkk
c

�
dτ ρτ |k(τ |k)

k−1�

l=1

dωl p(ωl) δ(ω − Ωk−1) (B.6)

where c is the average degree of the network, pkk/c is the probability that a randomly chosen 
edge connects the root-node to a neighbour with degree k, and

Ωk−1 = Ωk−1({ωl}, τ) = iλετc +
k−1�

l=1

iωl

i + ωl
. (B.7)

Clearly (B.6) reduces to the result for random regular graphs (36) in the main text once we 
impose that ρτ |k(τ |k) = ρτ (τ) and pk = δc,k. The population dynamics algorithm for the gen-
eral case (B.6) follows the same protocol as discussed in section 4, with the only difference 
that, at each update, one has to pick k randomly with weight pkk/c, then draw k  −  1 elements 
from P  and τ from ρτ |k(τ |k).

We conclude this appendix with a final remark: while the change of variable yi = xir
1/2
i  is 

not essential for single instance cavity evaluations, i.e. for fixed realisations of the disorder, 
this step becomes necessary in going to the thermodynamic limit. This is because otherwise 
correlations between cavity precisions on different branches of a cavity graph would be cre-
ated by the coupling to the local disorder, and therefore the assumption of statistical independ-
ence between these cavity precisions would be violated.

j
k

j
k

Figure B1. Neighbourhood of site j on G  (left) and on G( j) (right). The red cross 
indicates that j is absent in G( j) and the branches become independent when the local 
structure is treelike.
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Appendix C. High T approximation

In this appendix we discuss the construction of the high T approximation for the DOS, ρA(λ)
(see (40)). As mentioned in section 4, we take one cavity iteration at finite T, starting from the 
infinite temperature solution. Consequently the cavity precisions are evaluated without on-site 
disorder as the limit T → ∞ gives τk = 1 for all k. Also, in the thermodynamic limit the ran-
dom regular graph structure becomes effectively a regular tree, and the problem of finding the 

kk
jj j

k

ll

Figure C1. Left: schematic representation of the first order approximation: the sub-
graph in red (only a small portion is shown here, namely the nearest and next-nearest 
neighbours of j), where disorder is absent, follows the infinite temperature solution. The 
‘messages’ from the nearest neighbour nodes k feed into the central node through one 
cavity step at finite T (blue arrows indicate an evaluation involving energy disorder). 
Right: at the second order we take two finite T steps starting from the infinite temperature 
solution at the next-nearest neighbours l.

Figure D1. Left: average IPR evaluated via (43) and (46) using different values of ε
(dark blue to light blue), extended DOS (black) and total DOS (green dashed line); Ī�2 (λ)
from (46) is averaged within λ-bins for clearer visualisation. In the extended region of 
the spectrum the IPR scales with ε as expected. Top right: histogram of the Ai values 
collected at λ � −1.465 (in the localised region on the left side of the spectrum), note 
that ρ(Ai) is smooth around Ai = −λ. Bottom right: Ī�2 (λ) against decreasing values 
of ε. The green points converge to the limiting value of unity, the black points drop 
to zero because the ε values used over there are too small to ensure proper averaging. 
Evaluations were performed using a population of size Np = 2500, with temperature 
and connectivity of T  =  1.5 and c  =  5, respectively.
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cavity precisions becomes free of disorder. Figure C1(left) shows a schematic representation 
of this procedure. In this non-disordered framework the distribution p(ω) is then expected to 
be delta peaked on some value ω̄ . We have

p(ω) = δ(ω − ω̄) =

�
dτρτ (τ)

c−1�

l=1

dωl p(ωl)δ(ω − (iλεc +
c−1�

l=1

iωl

i + ωl
))

=

� c−1�

l=1

dωl δ(ωl − ω̄)δ(ω − (iλεc +
c−1�

l=1

iωl

i + ωl
))

= δ(ω − (iλεc + (c − 1)
iω̄

i + ω̄
)). (C.1)

Thus ω̄  needs to satisfy

ω̄ = iλεc + (c − 1)
iω̄

i + ω̄
(C.2)

and out of the two roots we need to pick the one with Re ω̄ � 0, to which we also simply refer 
as ω̄ . We recall that the DOS in the thermodynamic limit is obtained by averaging over the 
cavity precisions and waiting time distributions according to

ρ(λ) = lim
ε→0

1
π

Re
� τc
Ωc({ωl}, τ)

�
{ωl},τ

. (C.3)

The first order of our approximation scheme thus gives

ρA(λ) = lim
ε→0

1
π

Re
� τc
Ωc({ω̄}, τ)

�
τ

(C.4)

where
� τc
Ωc({ω̄}, τ)

�
τ
=

� ∞

1
dτ ρτ (τ)

τ

iλετ + iω̄
i+ω̄

=
T

iλε

� ∞

1
dτ

τ−T

τ + C(λε)

(C.5)

with C(λε) = ω̄/(λε(i + ω̄)). The integral over τ can be done directly giving a hypergeomet-
ric function of T and C. Explicitly, one obtains

ρA(λ) = Re
�

2F1(1, T; 1 + T |− C(λ))/iπλ
�
. (C.6)

The second order approximation consists of two cavity steps at finite T—and similarly the 
nth order approximation would have n cavity steps—starting from the infinite temperature 
solution (see figure C1(right)). The cavity precisions are evaluated with their on-site disorder. 
As a result, the average giving the DOS contains the disorder of the neighbouring environment 
{τk}, plus the local disorder of the central node τ:

ρ2A(λ) = lim
ε→0

1
π

Re
� τc
Ωc({Ωc−1({ω̄}, τk)}, τ)

�
{τk},τ

. (C.7)

Similarly to (C.5) we have

� τc
Ωc({Ωc−1({ω̄}, τk)}, τ)

�
{τk},τ

=

�
dτ ρτ (τ)

c�

k=1

dτk ρτ (τk)
τc

iλετc +
�c

k=1
iΩc−1({ω̄},τk)

i+Ωc−1({ω̄},τk)

.

(C.8)
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The results of numerical evaluation of ρ2A(λ) are discussed in section 4.
Since the equation  for ω̄  is T-independent, the localisation transitions detected by this 

approximation do not depend on temperature and they always lie at the ends of the RW-limit 
spectrum, specifically for the RRG case we have λL/R = −(2c − 1)/c,−1/c (from (13)). 
This is true for any finite iteration of the approximation scheme, as can be argued inductively: 
the mth iteration cavity precisions will be imaginary—indicating a localised region of the 
spectrum—whenever they are evaluated using an imaginary (m − 1)th iteration solution, as 
long as the imaginary part in λε used for these evaluations is kept small enough.

Appendix D. The inverse participation ratio I�2

In this appendix we explain how to derive the equation (46), which constitutes an alternative to 
the formula that Bollé et al proposed for estimating the average IPR [29]. We start by express-
ing the diagonal resolvent entries in terms of the eigenvector components

Gjj(λε) =
N�

α=1

v2
α,j

λ− iε+ λα
(D.1)

whose imaginary part reads

Im Gjj(λε) =
N�

α=1

ε

(λ− λα)2 + ε2 v2
α,j. (D.2)

In order to simplify the notation we will omit the lambda argument in Gjj(λε) and ρ(λ) where 
necessary. We also take N as large but finite and assume that ρ(λ) is finite, too. This can be 
ensured by choosing ε small but such that Nε � 1: for any given λ many eigenvalues then 
contribute to ρ(λ), which evaluates the DOS using Lorentzians δε(λ− λα) of width ε. Since 
the statistics of the Im Gjj are crucial in determining the value of important quantities like the 
DOS, we consider the associated cumulant generating function F(q) = ln�exp(

�
j qj Im Gjj)�, 

which can be expressed as

F(q) �
�
ln
�

α,j

�
eqjεv2/[(λ−λα)2+ε2]

�
v

�

{λα}
. (D.3)

Here we have made two approximations. The first is to treat the vα,j for different α and j as 
independent, thus ignoring normalisation and orthogonality constraints on the eigenvectors. 
This is plausible as the number of constraints is much smaller than the number of variables 
vα,j, producing only weak correlations. To see this, note that there are O(Nρε) eigenvectors 
contributing significantly to (D.2). These have O(N × Nρε) components, while the number 
of orthonormality constraints between them is O(N2ρ2ε2) and so smaller by a factor ε. The 
second approximation in (D.3) is that we are neglecting correlations between eigenvalues 
and eigenvectors. This again seems plausible given that the eigenvalues λα that contribute 
lie within a small range of O(ε) around λ where the statistics of the vα,j should change little.

To evaluate F(q) it now remains to average over the λα. As the number of contributing 
eigenvalues is O(Nρε) and hence large, small fluctuations of the eigenvalues around their 
mean positions should be immaterial. We therefore approximate the λα as lying on a linear 
grid with the relevant spacing (Nρ)−1, and in the same spirit replace the sum over α by an 
integral, shifting its origin so that α = 0 designates the eigenvalue closest to λ. Then (D.3) 
becomes
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F(q) �
�

j

�
dα ln

�
eqjεv2/[(α/(Nρ))2+ε2]

�
v =

�

j

�
dα ln

�
eβα(qj)v2�

v (D.4)

where we have defined

βα(q) =
N2ρ2εq

α2 + N2ρ2ε2 . (D.5)

Expanding in the qj now gives a conventional cumulant expansion

F(q) �
�

j,n

�
dα

βn
α(qj)

n!
Kn

v2 (D.6)

where we denote by Kn
x  the nth cumulant of x. The remaining integral is

�
dαβn

α(q) = qnNρε−(n−1)cn (D.7)

where cn =
�

dx(1/(1 + x2))n, so that

F(q) �
�

j,n

qn
j

n!
Nρε−(n−1)cnKn

v2 . (D.8)

Picking out the term of order qn
j  finally leads to the following correspondence between the nth 

cumulants of Im Gjj and v2

Kn
Im Gjj

� Nρ(λ)ε−(n−1)cnKn
v2 . (D.9)

We can now use the above general result to relate the second cumulant of v2 to the IPR: 
from the definition (43) we have I2(λ) � �v4�/(N�v2�2), while generally K2

v2 = �v4� − �v2�2. 
Imposing the eigenvector normalization condition �v2� = 1/N  we obtain

K2
v2 � 1

N2 (NI2(λ)− 1). (D.10)

When I2(λ) = O(1), i.e. in a localised part of the spectrum, the first term dominates for large 
N and we obtain K2

v2 � I2(λ)/N . Equation (D.9) evaluated at second order then gives a form-
ula for the IPR that is N-independent:

I2(λ) = lim
ε→0

lim
N→∞

2ε
πρ(λ)

Var
�
Im Gjj

�
(D.11)

where we have noted explicitly the order of limits involved. In the large N-limit taken, one 
expects I2 to be self-averaging and thus approach some value Ī�2 . Substituting (35) into (D.11), 
in the infinite-N limit we finally obtain the IPR estimate (46) in the main text.

Figure D1(left) shows the IPR estimated via (43) and (46) using different values of ε, at 
temperature T  =  1.5 and for average connectivity c  =  5; the total and extended DOS are also 
included. We observe that the IPR scales linearly with ε within the bulk of the spectrum, 
which is as expected for (43). Our alternative estimate (46) is directly applicable only within 
the localised part of the spectrum, but also turns out to be O(ε) for extended states. In finite 
systems, the IPR for extended states is O(1/N). Intuitlvely, one can therefore say that in the 
population dynamics algorithm, which assumes N → ∞, the ‘regulariser’ ε effectively plays 
the role of the inverse system size, 1/N.

R G Margiotta et alJ. Phys. A: Math. Theor. 51 (2018) 294001



34

In the localised part of the spectrum, figure D1(left) shows that both IPR estimates are of 
order unity, though Ī2(λ) = 1 throughout for ε → 0 while Ī�2 (λ) remains below unity as one 
would expect physically (an average IPR of one would require all eigenvectors to be localised 
onto a single node, which is not even true in the mean-field limit). We note, however, that 
Ī�2 (λ) can be written as

Ī�2 (λ) = lim
ε→0

2ε
�x2� − �x�2

�x� (D.12)

where, using the notation of (44),

x =
ε+ Ar

(ε+ Ar)2 + (λ+ Ai)2 . (D.13)

The second (mean squared) term in (D.12) is irrelevant in the limit ε → 0, because 
�x� = πρ(λ) is of order unity. In the localised part of the spectrum Ar = 0 so x simplifies to 
x = ε/(ε2 + (λ+ Ai)

2). Here, the remaining term

Ī�2 (λ) = lim
ε→0

2ε
�x2�
�x� (D.14)

makes clear that the second moment of x must be O(1/ε) and hence significantly larger than 
the squared mean. In fact, if the distribution of Ai approaches a smooth limit ρ(Ai) for ε → 0, 
then (for small ε)

�x� = πρ(−λ), �x2� = π

2ε
ρ(−λ) (D.15)

because both are given by integrals that are sharply peaked at Ai = −λ. Finally (D.14) and 
(D.15) give

Ī�2 (λ) = 1. (D.16)

This argument is confirmed by the data shown in figure D1(right): on the top we can clearly 
see that the histogram of Ai is smooth everywhere, and in particular around the value of −λ
that dominates the computation. The plot at the bottom shows the convergence (green points) 
of Ī�2  when epsilon decreases; here we have used the same data as in the plot for ρ(Ai). The 
reason why the last few points (in black) drop to zero is that the amount of data collected was 
enough to give a smooth histogram on a scale as small as 10−4, but not less.

In conclusion, our estimate for the average IPR is expected to give a value of unity in the 
localised region of the spectrum, in the limit ε → 0. Surprisingly this is the same result given 
by the Bollé et al formula, even though the latter is based on the opposite assumption of the 
estimate of the IPR being dominated by a single eigenvector.

Appendix E. Numerical results for the IPR

In section  3 we discussed briefly the effect of the symmetrisation (7) on the localisation 
properties of the eigenvectors, focussing particularly on the ground state. Recall that the 
right, left and symmetrised eigenvectors, respectively uα, wα and vα, are related via Peq as 

vα = P−1/2
eq uα = P1/2

eq wα, where (Peq)ii = peq
i ∝ τi = exp(βEi) and (Peq)ij = 0 for i �= j. In

the infinite temperature limit (RW) the symmetrisation is immaterial as Peq reduces to the iden-
tity matrix, which implies vα = uα = wα. In appendix A we have discussed the localisation in 
the mean field limit where the system has no spatial structure and the IPR of symmetrised or 
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non-symmetrised eigenvectors is dominated by the pole in −λ (see equations (17) and (18)); 

the factor τ−1/2
i  in the numerator of the symmetrised case does not affect the value of the IPR 

qualitatively. Likewise, we generally expect that multiplying element-wise the eigenvectors by 
a smooth function of the energy will not change the qualitative behaviour of I2(λ). This idea 
is confirmed by the numerical results presented in this appendix. Figure E1 shows the IPR 
of left, right and symmetrised eigenvectors across the entire λ-range (except for the ground 
state λ = 0) for the case of random regular graphs with mean connectivity c  =  5 and temper-
ature T  =  1.5. We observe that the different choices of eigenvectors have qualitatively the same 
localisation behaviour, except in the range of small r = −λ, where there is a natural crossover 
to the ground state value. We also observe that the IPR values in the scatterplots are mostly
concentrated on their bin-wise average (bottom-right). The latter also indicates that symmetric 
and right eigenvectors have almost overlapping values of I2. Figure E2 shows the average IPR 
of left, right and symmetric eigenvectors across the λ-range, for different values of the system 
size N, together with the DOS and the extrapolated mobility edge from population dynamics 
(see section 4). The N-dependence is as expected: the average IPR scales as 1/N in delocalised

Figure E1. Scatterplots of IPR values of the symmetrised vα, right uα and left wα

eigenvectors against r = −λ for the case of random regular graphs with system 
parameters c  =  5, and T  =  1.5. The data have been collected across M  =  2000 samples 
of size N  =  2000. The bottom-right plot shows the bin-wise average of the IPR values 
in the scatterplots, together with the DOS.

R G Margiotta et alJ. Phys. A: Math. Theor. 51 (2018) 294001



36

regions and it is of order 1 for localised regions. The scaling with 1/N is illustrated by the hori-
zontal lines in the right plot. These are separated by a factor of 2 on the y-axis corresponding to
the change from N  =  2000 to N  =  4000. The separation on the r-axis between the two regimes 
(localised and delocalised) is consistent with the extrapolated mobility edge (see particularly 
the right plot), though the decrease of the IPR towards values of order 1/N is slow in the delo-
calised regime near the mobility edge.
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