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Abstract – We present two complementary analytical approaches for calculating the distribution
of shortest path lengths in Erdős-Rényi networks, based on recursion equations for the shells
around a reference node and for the paths originating from it. The results are in agreement
with numerical simulations for a broad range of network sizes and connectivities. The average
and standard deviation of the distribution are also obtained. In the case in which the mean
degree scales as Nα with the network size, the distribution becomes extremely narrow in the
asymptotic limit, namely almost all pairs of nodes are equidistant, at distance d = �1/α� from
each other. The distribution of shortest path lengths between nodes of degree m and the rest
of the network is calculated. Its average is shown to be a monotonically decreasing function
of m, providing an interesting relation between a local property and a global property of the
network. The methodology presented here can be applied to more general classes of networks.

Copyright c� EPLA, 2015

The increasing interest in network research in recent
years is motivated by the realization that a large variety
of systems and processes which involve interacting objects
can be described by network models [1–4]. In these mod-
els, the objects are represented by nodes and the inter-
actions are expressed by edges. Pairs of connected nodes
can affect each other directly. However, the interactions
between most pairs of nodes are indirect, mediated by
intermediate nodes and edges. Important properties of
these indirect interactions such as their strengths, delay
times, coordination, correlation and synchronization de-
pend on the paths between different nodes. A pair of
nodes, i and j, may be connected by a large number of
paths. The shortest among these paths are of particular
importance because they are likely to provide the fastest
and strongest interaction between these two nodes. There-
fore, it is of interest to study the distribution of shortest
path lengths (DSPL) between nodes in different types of

networks. Such distributions are expected to depend on
the network structure and size.

Random networks of the Erdős-Rényi (ER) type were
studied extensively since the 1950s [5–7] using mathemat-
ical methods and computer simulations [8]. The increas-
ing availability of empirical data on networks since the
late 1990s stimulated much theoretical interest, leading to
new results for ER networks [9,10]. Measures such as the
diameter and the average path length were studied ex-
tensively [11,12]. However, apart from a few studies, the
entire DSPL has attracted little attention [13–15]. This
distribution is of great importance for the temporal evo-
lution of dynamical processes on networks, such as signal
propagation, navigation and epidemic spreading [16]. It
determines the number of nodes exposed to a propagating
signal originated from a given node as a function of time.
More generally, the shortest paths can be considered as the
backbone of a more complete set of paths between pairs of

26006-p1



Eytan Katzav et al.

nodes. While the shortest paths provide the fastest prop-
agation, signals also utilize longer paths which are more
numerous. This was demonstrated in studies of first pas-
sage times in diffusive processes on networks [17].

In this letter we present two analytical approaches
for calculating the DSPL between nodes in the ER net-
work, referred to as the recursive shells approach (RSA)
and the recursive paths approach (RPA). Using recursion
equations we study this distribution in different regimes,
namely sparse and dense networks of small as well as
asymptotically large sizes. Consider an ER network of
N nodes, where each pair of nodes is independently con-
nected with probability p. We denote such a network by
ER(N, p). Its degree sequence follows the Poisson distribu-
tion with the parameter Np, which is equal to the average
degree. Such networks are often studied in the asymp-
totic limit, where N → ∞. In this limit, one can identify
different regimes, according to the scaling of p vs. N .

For sparse networks, denoted by ER(N, c/N), the aver-
age degree is c = Np. At c = 1 there is a percolation tran-
sition. For c < 1, the network consists of small isolated
clusters. For c > 1, a giant component of size which scales
linearly with N is formed, in addition to the small, isolated
components of maximal size which scales as ln N [8]. For
dense networks, the parameter p scales as Nα−1, where
0 < α < 1, the mean connectivity grows with the net-
work size as Nα and the number of isolated components
vanishes.

When a pair of nodes resides on the same connected sub-
network, one can identify paths connecting these nodes.
The path length is the number of edges along the path.
The distance dij between a pair of different nodes i and
j is the length of the shortest path connecting them.
When i and j reside on different sub-networks, there is
no path between them and thus dij ≡ ∞. The tail dis-
tribution FN (k) = Pr(d > k), k = 0, 1, 2, . . . , N − 1,
is the probability that the distance d between a ran-
dom pair of nodes in an ER network of size N is larger
than k. Clearly, the probability that two distinct ran-
dom nodes are at a distance d > 0 from each other is
FN (0) = 1, while the probability that d > 1, i.e. they are
not directly connected, is FN (1) = q, where q = 1 − p.
The probability distribution PN (k) can be recovered as
PN (k) = FN (k − 1) − FN (k), k = 1, 2, . . . , N − 1. The
probability FN (k) does not necessarily converge to zero in
the limit k → ∞. Its asymptotic value F (∞) is equal to
the fraction of pairs of nodes in the network which belong
to different clusters, namely for which dij = ∞. In fact,
F (∞) can be estimated independently by using known
properties of the fraction of nodes, g, which belongs to
the giant component in the asymptotic limit [8]. This
fraction satisfies g = 1 − exp(−cg) and F (∞) = 1 − g2.
In a finite network F (∞) can be replaced by FN (N − 1)
since the longest possible distance is d = N − 1.

In the RSA, one picks a random node, i, as a refer-
ence node and examines the shell structure of the rest of
the network around it. The number of nodes which are

at a distance d > k, k = 0, 1, 2, . . . , N − 1, from the ref-
erence node is denoted by Nk. The number of nodes at
distance d = k from the reference node is denoted by Nk,
where N0 = 1 and Nk = Nk−1 − Nk for k ≥ 1. The Nk’s
obey the recursion equation Nk+1 = Nk(1 − qNk), which
can be re-written as a second-order difference equation of
the form Nk+1 = NkqNk−1−Nk , where N0 = N − 1 and
N1 = (N − 1)q. Using the relation Nk = (N − 1) · FN (k),
it can be expressed as

FN (k + 1) = FN (k)q(N−1)[FN (k−1)−FN (k)], (1)

where FN (0) = 1 and FN (1) = q.
In the RPA one first picks two distinct random nodes,

i and j. The probability that the distance between them
is larger than k can be related to the probability that it
is larger than k − 1 by FN (k) = FN (k − 1)PN (d > k|d >
k − 1), where PN (d > k|d > k − 1) is the conditional
probability that the distance is larger than k, given that
it is larger than k − 1. The iteration of this relation yields

FN (k) = FN (1)
k�

m=2

PN (d > m|d > m − 1). (2)

This means that in order to obtain the distribution FN (k),
all we need to calculate are the conditional probabilities
PN (d > m|d > m − 1), for all values of 2 ≤ m ≤ k.

Consider a path of length k starting at node i and ending
at node j (assuming that there is no such path of length
k − 1 or less). The path can be decomposed into a single
edge from node i to an intermediate node � and a shorter
path of length k − 1 from � to j. Such a path can be ruled
out in two ways: either there is no edge between i and
� (with probability q), or, in case that there is such an
edge, there is no path of length k − 1 between � and j.
The probability of the latter is PN−1(d > k−1|d > k−2),
since the remaining path is embedded in a smaller network
of N −1 nodes. Combining the two possibilities yields the
recursion equation

PN (d > k|d > k − 1) =
�
q + p · PN−1(d > k − 1|d > k − 2)

�N−2
, (3)

where the right-hand side is raised to the power N − 2
in order to account for all possible ways to choose the
intermediate node �. In fig. 1 we present the possible paths
of length k between i and j. This approach follows the
spirit of the renormalization group theory [18], since the
removal of a node from the network reduces the size of
the configuration space by a factor of 2N−1. This process
is repeated k −1 times, reducing the network down to size
N � = N − k + 1 and closing the recursion equations with
PN �(d > 1|d > 0) = FN �(1) = q.

Interestingly, inserting k = 2 in eq. (3) gives rise to the
simple and exact expression

PN (d > 2|d > 1) = (1 − p2)N−2. (4)
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Fig. 1: (Color online) Illustration of the possible paths of length
k between two random nodes i and j in an ER network of N
nodes. The first edge of such path connects node i to some
other node �, which may be any one of the remaining N − 2
nodes. The rest of the path, from � to j is of length k − 1 and
it resides on a smaller network of N − 1 nodes. The path of
length k from i to j exists only when both the edge from i to
� and the path of length k − 1 from � to j exist.

Each path of length k = 2 between nodes i and j consists
of a single intermediate node and two edges. These paths
do not overlap and are thus independent. Paths of lengths
k > 2 may share edges with other paths of the same length
as well as with shorter paths. Therefore, in the calculation
of the DSPL we use conditional probabilities to ensure that
no shorter paths exist. This approach eliminates the cor-
relations between paths of different lengths. On the other
hand, nodes i and j may be connected by several paths
of the same length, which may share some edges and thus
become correlated. The RPA does not account for such
correlations, because it assumes that the sub-networks of
size N − 1 are independent. Averaging over the quenched
randomness in each instance of such network, the RPA
provides the distribution over an ensemble of networks.

In the limit p → 0 one can simplify the recursion equa-
tions and obtain the approximate closed form expression

PN (d > k|d > k − 1) = (1 − pk)(N−2)...(N−k), (5)

for any value of k. This expression is obtained using in-
duction, based on eq. (3) and the exact result given above
for k = 2. This can be understood intuitively since the
total number of possible paths of length k between nodes
i and j is given by the product (N − 2) . . . (N − k), and
the probability for each of these paths to be connected is
given by pk. This approximation breaks down for values of
p which are not exceedingly small, where the correlations
between different paths build up and cannot be ignored.

The regime of sparse networks was studied extensively,
focusing on the diameter (namely, the largest distance
between any pair of nodes) of the giant cluster, which
scales like a constant times ln N , where the constant
is 1/ ln c − 2/ ln c�, where c� < 1 satisfies the equation
c� exp(−c�) = c exp(−c) [19]. In the strongly connected
regime, we focus on the case in which p = bNα−1, where
b > 0 and 0 < α < 1. In this case the average degree in-
creases with the network size as Nα. We will now derive
an asymptotic result for the limit N → ∞. In this limit

p → 0 and therefore the simplified results of eq. (5) can
be used. Plugging the scaling of p vs. N into eq. (5) one
obtains

PN (d > k|d > k − 1) �
�

1 − bk

Nk(1−α)

�Nk−1

. (6)

For N → ∞, PN (d > k|d > k − 1) → P (d > k|d > k − 1),
where P (d > k|d > k − 1) = 1 for k < 1/α, exp (−b1/α)
for k = 1/α and 0 for k > 1/α. Note that the second
case in the above equation is obtained only in the special
case of α = 1/r, where r is an integer. Therefore, we
will first consider the generic case in which α is not an
exact inverse of an integer. Inserting the result for the
conditional probabilities into eq. (2) we obtain

P (k) =

�
1, k = � 1

α	 + 1,

0, otherwise,
(7)

where �x	 is the integer part of x. In case that α = 1/r
we obtain that

P (k) =

⎧
⎪⎪⎨
⎪⎪⎩

1 − e−br

, k = r,

e−br

, k = r + 1,

0, otherwise.

(8)

These results can be understood intuitively using the fol-
lowing argument. Starting from node i, we define the shell
of radius d = 1 around it as the set of nodes which are di-
rectly connected to i. The expected value for the number
of nodes in this shell is N1 ∼ Nα. Proceeding by induc-
tion, the shell of radius d is denoted as the set of nodes
which are directly connected to nodes in the shell of radius
d − 1. Thus, the number of nodes in the shell of radius d
is given by Nd ∼ Ndα. In the asymptotic limit, as long as
dα < 1, the shell of radius d still consists of an exceedingly
small fraction of the nodes in the network. On the other
hand, once dα > 1, this shell includes almost every node
in the network. This means that almost all the nodes in
the network are at a distance d = �1/α	 + 1 from node
i. Since node i was chosen at random, this means that
the shortest path between almost any pair of nodes in the
network is of length d.

The case of α = 1/r, where r is an integer, requires a
special consideration. Based on the argument presented
above, the neighborhood of radius d = r from node i
should include all the N nodes. However, this counting
includes duplications, namely nodes which are connected
to node i by several paths of length r. As a result, there
are other nodes which are not reached by any of these
paths. Since the number of nodes of distance r from node
i scales with N , it is clear that each one of the remaining
nodes is connected to at least one of them. Therefore, the
remaining nodes are at a distance d = r + 1 from node i.

Before presenting the results obtained from the two
approaches, we refer to an earlier study of the DSPL
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Fig. 2: (Color online) (a) The tail distribution FN(k) vs. k for
the ER(N, c/N) network with N = 1000 and c = 2.5, obtained
from numerical simulations for all pairs of nodes (×) and for
pairs of nodes on the same cluster (+). The results of the
RSA (�) agree well with the numerical results for all pairs
of nodes, except for the asymptotic tail. The results of the
RPA (◦) agree well with the numerical results for pairs of nodes
on the same cluster.

in ER networks [13]. We briefly summarize their ap-
proach, adapting the notation where appropriate. The
expectation value for the number of nodes at a distance
k − 1 or less from the reference node is given by n(k) =
[1 − FN (k − 1)]N . This is due to the fact that the proba-
bility for a random node to be at a distance smaller than
k is (1 − FN (k − 1)), and multiplying by N one obtains
n(k). In order for a node to be at a distance larger than k
from the reference node, it must not be directly connected
to any of the n(k) nodes which are at distance k − 1 or
less from the reference node. Picking a random node, the
probability that it will not be connected to any of these
nodes is given by [13]

FN (k) = q[1−FN (k−1)]N . (9)

This recursion equation can be iterated, starting from
FN (0) = (N − 1)/N , to obtain FN (k) for k = 1, 2, . . . .
A potential problem with this approach is that in the es-
timation of the probability, FN (k), that a random node
will be at distance larger than k from the reference node,
eq. (9) ignores the possibility that the random node is al-
ready connected to the reference node by a path of length
k − 1 or less. This is expected to bias the distribution
towards larger distances.

In fig. 2 we present the tail distribution FN (k) vs. k, for
an ER network of N = 1000 nodes and p = c/N , where
c = 2.5, obtained from numerical simulations for all pairs
of nodes (×) and for pairs of nodes on the same cluster
(+). We also present the theoretical results obtained from
the RSA (�) and from the RPA (◦). The results of the
RSA agree well with the numerical results for all pairs,
except for the limit of large distances where the plateau
in FN (k) is lower than the empirical curve. This means
that this approach underestimates the fraction of pairs for
which dij = ∞, which is equal to F (∞). The results of
the RPA agree well with the numerical results for pairs
which reside on the same cluster. This is due to the fact
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Fig. 3: (Color online) The average �d� (a) and the standard
deviation σ (b) of the DSPL in the ER(N, bNα−1) network vs.
1/α for b = 1 and N = 103 (solid line) 106 (dashed line) and
109 (dotted line), obtained from the RPA. It is observed that
�d� � �1/α� + 1, decorated by a rounded step function, while
σ exhibits oscillations with maxima at integer values of 1/α.

that this approach reconstructs the remaining network at
each iteration of the recursion equations. As a result, the
quenched randomness of the connectivities in each realiza-
tion of the network is annealed, eliminating the isolated
nodes and the small, isolated clusters. In the RSA there is
no such annealing. Therefore, the RSA applies to all pairs
of nodes in the network while the RPA applies to pairs of
nodes on the same cluster. In the limit of dense networks
there are no isolated components and the two approaches
coincide.

The distribution PN (k) can be characterized by its
moments. The n-th moment, �kn, can be obtained
using the tail-sum formula �kn =

�N−1
k=0 [(k + 1)n −

kn]FN (k). In particular, the first moment is given by
�k =

�N−1
k=0 FN (k) and the second moment by �k2 =�N−1

k=0 (2k + 1)FN (k). The width of the distribution can
be characterized by the variance σ2 = �k2−�k2. Related
topological indices [20] such as the Wiener index [21] and
the Harary index [22–24] were studied in the context of
chemical graphs. It was shown that important properties
of molecules can be obtained using such indices for the
graphs representing their structure [21].

In fig. 3(a) we present the average distance �d between
pairs of nodes vs. 1/α in dense ER networks. Following
eqs. (7), (8), these functions converge to a staircase form
as N → ∞. In fig. 3(b) we present the standard deviation
σ vs. 1/α. For finite networks it exhibits oscillations of
unit period. In the asymptotic limit the peaks become
vanishingly narrow around the integers.

So far we have studied the DSPL between all pairs of
nodes in the network. Below, we consider a reference node
i of a known degree, m, and study the DSPL between
this node and the rest of the network. We denote the
DSPL between a random node i of degree m and other
random nodes, j, by FN |m(k) = FN (k| deg(i) = m) and
the corresponding conditional probability by PN |m(d >
k|d > k−1). In this case, the first iteration of the recursion
equation takes the form

PN |m(d > k|d > k − 1) = [PN−1(d > k − 1|d > k − 2)]m,
(10)
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Fig. 4: (Color online) The DSPL FN|m(k) vs. k between a
random node i of a given degree, m, and all other nodes which
reside on the same cluster in a dilute ER network of N = 1000
and c = 2.5. The results of the RPA for m = 1 (�), 3 (�) and
7 (◦) are in good agreement with the corresponding numerical
results: m = 1 (+), 3 (×) and 7 (∗).

where the expression on the right-hand side is obtained
from eq. (3). In fig. 4 we present the tail distribution
FN |m(k) vs. k, obtained from numerical simulations for
m = 1 (+), 3 (×) and 7 (∗), in a dilute ER network of
N = 1000 and c = 2.5. Each data point is averaged over 20
independent realizations of the network. The results of the
RPA for m = 1 (�), 3 (�) and 7 (◦) are in good agree-
ment with the numerical results. Clearly, the distribution
is strongly affected by the local connectivity of the refer-
ence node. The knee of the distribution FN |m(k) (which
coincides with the peak of the corresponding probability
density function) moves to the left as m is increased. This
means that nodes which are strongly connected at the lo-
cal level are closer to the rest of the network than weakly
connected nodes.

In summary, we have studied the distribution of short-
est path lengths in ER networks using two complementary
theoretical approaches and showed that they are in good
agreement with numerical results. For large and dense
networks the distribution becomes extremely narrow and
is exactly captured by both approaches. A slight modi-
fication enables us to calculate the DSPL around a node
with a given degree, m. The results exemplify the im-
pact of local features (such as the degree of a node) on
global properties (such as the distance distribution) in
complex networks. The proposed theoretical approaches
are highly flexible and can be applied to more general
networks [25,26].
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