New Results on the Spectral Problem for Sample Auto-Covariance Matrices

Reimer Kühn

Disordered Systems Group
Department of Mathematics, King's College London
joint work with Peter Sollich

IEEE CAMAD 2015, Guildford, Sept 72015

Outline

(1) Sample Auto-Covariance Matrices
(2) Comparison with Wishart-Laguerre Ensemble
(3) Main Result

44 (Practically no) Outline of the Calculation

- Spectral Density and Resolvent
- Closed Form Approximation \& Scaling
(5) Numerical Tests

6 Applications
(7) Summary

Outline

(9) Sample Auto-Covariance Matrices
(2) Comparison with Wishart-Laguerre Ensemble
(3) Main Result
(4) (Practically no) Outline of the Calculation

- Spectral Density and Resolvent
- Closed Form Approximation \& Scaling
(5) Numerical Tests

6. Applications
(-) Summary

Sample Auto-Covariance Matrices

- Consider a (second order stationary) stochastic process

$$
X=\left(X_{t}\right)_{t \in \mathbb{Z}}=\ldots, X_{-2}, X_{-1}, X_{0}, X_{1}, X_{2}, \ldots
$$

- Sample auto-covariance matrix of a realization:

$$
C_{i j}=\frac{1}{M} \sum_{t=1}^{M} x_{i+t} x_{j+t}, \quad 1 \leq i, j \leq N
$$

- Can write this in terms of a matrix X with entries $X_{i t}=x_{i+t}$ as

$$
C_{i j}=\frac{1}{M}\left(X X^{\top}\right)_{i j}
$$

- Expect finite sample fluctuation around mean

$$
C_{i j}=\left\langle x_{i} x_{j}\right\rangle \pm O(1 / \sqrt{M})=\bar{C}(|i-j|) \pm O(1 / \sqrt{M})
$$

- $\Rightarrow C$ is a symmetric randomly perturbed Toeplitz matrix.

Sample Auto-Covariance Matrices - Spectrum

- We are interested in the spectrum of C as $N \rightarrow \infty \& M \rightarrow \infty$.
- Expect that the spectrum depends on the aspect ratio $\alpha=N / M$.
- Take limit $N \rightarrow \infty \& M \rightarrow \infty$ @ fixed α.
- Known results
- Existence of limiting spectral density for auto-covariance matrices of moving average processes with i.i.d. driving @ $\alpha=1$ (Basak, Bose, Sen 2011).
- Universality of results $@ \alpha=1$: independence of statistics of i.i.d. driving (numerical, Sen 2010)
- Existence of limiting spectral density for random Toeplitz, Hankel and Markov matrices with i.i.d. entries (Bryc, Dembo Jiang, 2007)
- In the $\alpha \rightarrow 0$-limit \Leftrightarrow no sampling noise: Szegö's Theorem

$$
\rho_{0}(\lambda)=\int_{0}^{2 \pi} \frac{\mathrm{~d} q}{2 \pi} \delta(\lambda-\hat{C}(q)), \quad \hat{C}(q)=\sum_{n \in \mathbb{Z}} \bar{C}(n) \mathrm{e}^{\mathrm{i} q n}
$$

Outline

(1) Sample Auto-Covariance Matrices
(2) Comparison with Wishart-Laguerre Ensemble
(3) Main Result
(4) (Practically no) Outline of the Calculation

- Spectral Density and Resolvent
- Closed Form Approximation \& Scaling
(5) Numerical Tests
(6) Applications
(7) Summary

Comparison with Wishart-Laguerre Ensemble

- Sample covariances for N-dimensional data - sample-size M,

$$
C_{i j}=\frac{1}{M} \sum_{t=1}^{M} x_{i t} x_{j t}
$$

- Express in terms of $N \times M$ matrices $X=\left(x_{i t}\right)$ as

$$
C_{i j}=\frac{1}{M}\left(X X^{T}\right)_{i j}
$$

- Expect finite sample fluctuation around mean. For i.i.d. entries $x_{i t}$

$$
C_{i j}=\left\langle x_{i} x_{j}\right\rangle \pm O(1 / \sqrt{M})=\delta_{i j} \pm O(1 / \sqrt{M})
$$

- Spectrum of C as $N \rightarrow \infty, M \rightarrow \infty$ @ fixed $\alpha=N / M$
\Rightarrow Marčenko Pastur-Law

$$
\rho_{\alpha}(\lambda)=\frac{\sqrt{4 \alpha-(\lambda-(1+\alpha))^{2}}}{2 \pi \alpha \lambda}
$$

Principal Differences

- Columns of X for the covariance problem are i.i.d. random vectors in \mathbb{R}^{N}

$$
X=\left(\begin{array}{ccccc}
x_{11} & x_{12} & x_{13} & \ldots & x_{1 M} \\
x_{21} & x_{22} & x_{23} & \ldots & x_{2 M} \\
\vdots & & & \ddots & \vdots \\
x_{N 1} & x_{N 2} & x_{N 3} & \ldots & x_{N M}
\end{array}\right)
$$

Principal Differences

- Columns of X for the auto-covariance problem are sections of a single time series $\left(x_{t}\right)_{t \in \mathbb{Z}}$

$$
X=\left(\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & \ldots & x_{M} \\
x_{2} & x_{3} & x_{4} & \ldots & x_{1+M} \\
\vdots & & & \ddots & \vdots \\
x_{N} & x_{N+1} & x_{N+2} & \ldots & x_{N-1+M}
\end{array}\right)
$$

Principal Differences

- Columns of X for the auto-covariance problem are sections of a single time series $\left(x_{t}\right)_{t \in \mathbb{Z}}$

$$
X=\left(\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & \ldots & x_{M} \\
x_{2} & x_{3} & x_{4} & \ldots & x_{1+M} \\
\vdots & & & \ddots & \vdots \\
x_{N} & x_{N+1} & x_{N+2} & \ldots & x_{N-1+M}
\end{array}\right)
$$

- In the auto-covariance problem, X is a rectangular Hankel matrix.
- Number of random variables in the problem is $O(N)$, rather than $O\left(N^{2}\right)$ as in the Wishart Laguerre ensemble.
- Extensive body of knowledge about the Wishart-Laguerre ensemble and its variants (applications in multivariate statistics, signal-processing, finance, ...)
- Comparatively little is known about the auto-covariance problem (although many applications in time-series analysis, signal processing, information theory).

Outline

(9) Sample Auto-Covariance Matrices
(3) Comparison with Wishart-Laguerre Ensemble
(3) Main Result
(4) (Practically no) Outline of the Calculation

- Spectral Density and Resolvent
- Closed Form Approximation \& Scaling
(5) Numerical Tests

6 Applications
(7) Summary

Main Result

- For stationary processes with true auto-covariance $\bar{C}(n) \in \ell_{1}(\mathbb{Z})$

$$
\begin{equation*}
\rho_{\alpha}(\lambda)=\int_{0}^{2 \pi} \frac{\mathrm{~d} q}{2 \pi} \frac{1}{\hat{C}(q)} \rho_{\alpha}^{(0)}\left(\frac{\lambda}{\hat{C}(q)}\right) \tag{1}
\end{equation*}
$$

- Note 1: As $\hat{C}(q) \equiv 1$ for uncorrelated data the scaling function $\rho_{\alpha}^{(0)}(x)$ must be associated with the spectral density for autocovariance matrices of i.i.d. data.
- Note 2: We have a good analytic approximation for $\rho_{\alpha}^{(0)}(x)$.
- Note 3: Our tests suggest that the result Eq. (1) is exact, but so far no complete proof.

Main Result

- Note 4: Our scaling result is essentially a generalization of Szegö's result about spectra of Toeplitz matrices to the case including sampling noise.
- Recall (Szegö)

$$
\rho_{0}(\lambda)=\int_{0}^{2 \pi} \frac{d q}{2 \pi} \delta(\lambda-\hat{C}(q))
$$

- Can write this as

$$
\rho_{0}(\lambda)=\int_{0}^{2 \pi} \frac{\mathrm{~d} q}{2 \pi} \frac{1}{\hat{C}(q)} \rho_{0}^{(0)}\left(\frac{\lambda}{\hat{C}(q)}\right),
$$

in which

$$
\rho_{0}^{(0)}(\lambda)=\delta(\lambda-1)
$$

is indeed the spectral density of the auto-covariance matrix for i.i.d sequences in the $\alpha \rightarrow 0$-limit of vanishing sampling noise.

Outline

(9) Sample Auto-Covariance Matrices
(2) Comparison with Wishart-Laguerre Ensemble

(3) Main Result

4 (Practically no) Outline of the Calculation

- Spectral Density and Resolvent
- Closed Form Approximation \& Scaling
(5) Numerical Tests
(6) Applications
(7) Summary

Spectral Density and Resolvent

- Spectral density of sample covariance matrix from resolvent

$$
\rho(\lambda)=\lim _{N \rightarrow \infty} \frac{1}{\pi N} \operatorname{Im} \operatorname{Tr}\left\langle\left[\lambda_{\varepsilon} \llbracket-C\right]^{-1}\right\rangle, \quad \lambda_{\varepsilon}=\lambda-\mathrm{i} \varepsilon
$$

- Express as (S F Edwards \& R C Jones, JPA, 1976)

$$
\begin{aligned}
\rho_{\alpha}(\lambda) & =\lim _{N \rightarrow \infty} \frac{1}{\pi N} \operatorname{Im} \frac{\partial}{\partial \lambda} \operatorname{Tr}\left\langle\ln \left[\lambda_{\varepsilon} \mathbf{I}-C\right]\right\rangle \\
& =\lim _{N \rightarrow \infty}-\frac{2}{\pi N} \operatorname{Im} \frac{\partial}{\partial \lambda}\left\langle\ln Z_{N}\right\rangle
\end{aligned}
$$

where Z_{N} is a Gaussian integral:

$$
Z_{N}=\int \prod_{k=1}^{N} \frac{\mathrm{~d} u_{k}}{\sqrt{2 \pi / \mathrm{i}}} \exp \left\{-\frac{\mathrm{i}}{2} \sum_{k, \ell} u_{k}\left(\lambda_{\varepsilon} \delta_{k \ell}-C_{k \ell}\right) u_{\ell}\right\}
$$

Closed Form Approximation \& Scaling

- ...several approximations needed (not all controlled (!)) to manage the calculation.
- \Rightarrow allow closed form expression of $\left\langle Z_{N}\right\rangle$, and hence $\rho_{\alpha}(\lambda)$

$$
\left\langle Z_{N}\right\rangle=\prod_{v=0}^{(N-1) / 2}\left\{\frac{2 \mathrm{i}}{\alpha \hat{C}\left(p_{v}\right)} \int_{0}^{\infty} \mathrm{d} y \frac{\mathrm{e}^{-\mathrm{i} y \lambda_{\varepsilon} 2 /\left(\alpha \hat{C}\left(p_{v}\right)\right)}}{(1-\mathrm{i} y)^{2 / \alpha}}\right\}
$$

- Gives

$$
\rho_{\alpha}(\lambda)=\int_{0}^{2 \pi} \frac{\mathrm{~d} q}{2 \pi} \frac{1}{\hat{C}(q)} \rho_{\alpha}^{(0)}\left(\frac{\lambda}{\hat{C}(q)}\right)
$$

- Our approximations give

$$
\rho_{\alpha}^{(0)}(\lambda)=-\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi} \operatorname{Im} \frac{\partial}{\partial \lambda} \ln I_{\alpha}\left(\frac{2}{\alpha} \lambda_{\varepsilon}\right)
$$

with

$$
I_{\alpha}(x)=\mathrm{i}(-x)^{-1+2 / \alpha} \mathrm{e}^{-x} \Gamma(1-2 / \alpha,-x), \quad \operatorname{Im} x<0 .
$$

Outline

(9) Sample Auto-Covariance Matrices
(3) Comparison with Wishart-Laguerre Ensemble
(3) Main Result
(4) (Practically no) Outline of the Calculation

- Spectral Density and Resolvent
- Closed Form Approximation \& Scaling
(5) Numerical Tests

6. Applications
(7) Summary

The Scaling Function - Spectrum for i.i.d. Data

- Spectral density for $x_{n} \sim \mathcal{N}(0,1)$ i.i.d. $@ \alpha=0.1$

Simulation results (green); analytic approximation for $\rho_{\alpha}^{(0)}(\lambda)$ (red), Marčenko-Pastur law (blue-dashed).

AR-1 Process @ $\alpha=0.1$

- (Logarithmic) Spectral density for AR-1 process @ $\alpha=0.1$

$$
x_{n}=a_{1} x_{n-1}+\sqrt{1-a_{1}^{2}} \xi_{n}
$$

Left: i.i.d. data, simulation (green) and analytic result (red).
Right: $a_{1}=0.8$. Comparing scaling based on the empirical scaling function (black) with that based on the analytic result (red) and simulations (green).

AR-1 Process @ $\alpha=0.8$

- (Logarithmic) Spectral density for AR-1 process @ $\alpha=0.8$

Left: i.i.d. data, simulation (green) and analytic result (red).
Right $a_{1}=0.8$. Comparing scaling based on the empirical scaling function (black) with that based on the analytic result (red) and simulations (green).

AR-2 Process (Two Real Eigenvalues)

- (Logarithmic) Spectral density for AR-2 process

$$
x_{n}+a_{1} x_{n-1}+a_{2} x_{n-2}=\sigma \xi_{n}
$$

$$
a_{1}=0.5, a_{2}=-3 / 16, \quad \sigma \text { such that } \bar{C}(0)=1
$$

Comparing scaling based on the empirical scaling function (black) with that based on the analytic result (red) and simulations (green).

Left: $\alpha=0.1$, Right: $\alpha=0.8$.

AR-2 Process (Complex Conjugate Eigenvalues)

- (Logarithmic) Spectral density for AR-2 process

$$
x_{n}+a_{1} x_{n-1}+a_{2} x_{n-2}=\sigma \xi_{n}
$$

$$
a_{1}=0.5, a_{2}=5 / 16, \quad \sigma \text { such that } \bar{C}(0)=1
$$

Comparing scaling based on the empirical scaling function (black) with that based on the analytic result (red) and simulations (green).

Left: $\alpha=0.1$, Right: $\alpha=0.8$.

A Process with Long Range Auto-Correlation

- A process with power-law decay of auto-correlation

$$
\bar{C}(n)=\frac{1}{1+(n / 2)^{2}}
$$

Comparing scaling based on the empirical scaling function (black) with that based on the analytic result (red) and simulations (green).

Left: $\alpha=0.1$, Right: $\alpha=0.8$.

Outline

(9) Sample Auto-Covariance Matrices
(3) Comparison with Wishart-Laguerre Ensemble
(3) Main Result
(4) (Practically no) Outline of the Calculation

- Spectral Density and Resolvent
- Closed Form Approximation \& Scaling
(5) Numerical Tests
(6) Applications
(7) Summary

Applications

- Spectral estimation \& time series analysis: Use

$$
\rho_{\alpha}(\lambda)=\int_{0}^{2 \pi} \frac{\mathrm{~d} q}{2 \pi} \frac{1}{\hat{C}(q)} \rho_{\alpha}^{(0)}\left(\frac{\lambda}{\hat{C}(q)}\right)
$$

to fit a functional form of $\hat{C}(q)$ to sample data $\rho_{\alpha}(\lambda)$.

- For finitely parameterized $\hat{C}(q)$ (e.g. $\operatorname{ARMA}(p, q)$ models), can use standard fitting routines.
- Differential entropy rate of a Gaussian process $X=\left(X_{t}\right)_{t \in \mathbb{Z}}$:

$$
h(X)=\frac{1}{2} \log (2 \pi \mathrm{e})+\int_{0}^{2 \pi} \frac{\mathrm{~d} q}{2 \pi} \log \hat{C}(q)
$$

Estimate using sample auto-covariances of aspect ratio α :

$$
\Rightarrow \quad h_{\alpha}(X)=h(X)+\langle\log \lambda\rangle_{\alpha}^{(0)}
$$

Applications - contd.

- Lossy compression \& Shannon rate distortion theory: Parametric form of rate distortion function

$$
\begin{aligned}
& D_{\theta}=\int_{0}^{2 \pi} \mathrm{~d} q \min (\theta, \hat{C}(q)) \\
& R_{\theta}=\int_{0}^{2 \pi} \mathrm{~d} q \max \left(0, \frac{1}{2} \log \frac{\hat{C}(q)}{\theta}\right)
\end{aligned}
$$

Influence of sampling noise when estimated using auto-covariance matrices of aspect ratio α :

$$
\begin{aligned}
D_{\theta}(\alpha) & =\left\langle D_{\theta / \lambda}\right\rangle_{\alpha}^{(0)} \\
R_{\theta}(\alpha) & =\left\langle R_{\theta / \lambda}\right\rangle_{\alpha}^{(0)}
\end{aligned}
$$

- Would need inversion formula to to use this as an estimator ???
- One-step prediction error δ_{1} of best linear predictor for weakly stationary stationary processes

$$
\delta_{1}(\alpha)=\delta_{1} \times \exp \left(\langle\log \lambda\rangle_{\alpha}^{(0)}\right)
$$

Outline

(1) Sample Auto-Covariance Matrices
(3) Comparison with Wishart-Laguerre Ensemble
(3) Main Result
(4) (Practically no) Outline of the Calculation

- Spectral Density and Resolvent
- Closed Form Approximation \& Scaling
(5) Numerical Tests

6) Applications
(7) Summary

Summary

- Computed DOS of sample auto-covariance matrices.
- Equivalent to finding distribution of singular values of random rectangular Hankel matries.
- [Key ingredient: Szegö's theorem for Toeplitz matrices]
- Obtain a scaling form for DOS in terms of DOS for i.i.i data.
- amounts to generalization to Szegö's result to situations with sampling noise.
- results suggest that scaling is exact
- ideas for an independent proof
- Applications: time-series analysis, signal processing, information theory, finance ...
- Thanks! K. Anand, L. Dall'Asta, P. Vivo

