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Sample Auto-Covariance Matrices

Consider a (second order stationary) stochastic process

X = (Xt)t∈Z = . . . ,X−2,X−1,X0,X1,X2, . . .

Sample auto-covariance matrix of a realization:

Cij =
1

M

M

∑
t=1

xi+txj+t , 1 ≤ i, j ≤ N .

Can write this in terms of a matrix X with entries Xit = xi+t as

Cij =
1

M
(XX T )ij .

Expect finite sample fluctuation around mean

Cij = 〈xixj〉±O(1/
√

M) = C̄(|i − j|)±O(1/
√

M)

⇒ C is a symmetric randomly perturbed Toeplitz matrix.
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Sample Auto-Covariance Matrices – Spectrum

We are interested in the spectrum of C as N → ∞ & M → ∞.

Expect that the spectrum depends on the aspect ratio α = N/M.

Take limit N → ∞ & M → ∞ @ fixed α.

Known results

Existence of limiting spectral density for auto-covariance matrices

of moving average processes with i.i.d. driving @ α = 1 (Basak,

Bose, Sen 2011).

Universality of results @ α = 1: independence of statistics of i.i.d.

driving (numerical, Sen 2010)

Existence of limiting spectral density for random Toeplitz, Hankel

and Markov matrices with i.i.d. entries (Bryc, Dembo Jiang, 2007)

In the α → 0-limit ⇔ no sampling noise: Szegö’s Theorem

ρ0(λ) =
∫ 2π

0

dq

2π
δ(λ− Ĉ(q)) , Ĉ(q) = ∑

n∈Z
C̄(n)eiqn
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Comparison with Wishart-Laguerre Ensemble

Sample covariances for N-dimensional data — sample-size M,

Cij =
1

M

M

∑
t=1

xitxjt

Express in terms of N ×M matrices X = (xit) as

Cij =
1

M
(XX T )ij .

Expect finite sample fluctuation around mean. For i.i.d. entries xit

Cij = 〈xixj〉±O(1/
√

M) = δij ±O(1/
√

M)

Spectrum of C as N → ∞, M → ∞ @ fixed α = N/M

⇒ Marčenko Pastur-Law

ρα(λ) =

√

4α− (λ− (1+α))2

2παλ
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Principal Differences

Columns of X for the covariance problem are i.i.d. random

vectors in R
N

X =











x11 x12 x13 . . . x1M

x21 x22 x23 . . . x2M

...
. . .

...

xN1 xN2 xN3 . . . xNM
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Principal Differences

Columns of X for the auto-covariance problem are sections of a

single time series (xt)t∈Z

X =











x1 x2 x3 . . . xM

x2 x3 x4 . . . x1+M

...
. . .

...

xN xN+1 xN+2 . . . xN−1+M
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Principal Differences

Columns of X for the auto-covariance problem are sections of a

single time series (xt)t∈Z

X =











x1 x2 x3 . . . xM

x2 x3 x4 . . . x1+M

...
. . .

...

xN xN+1 xN+2 . . . xN−1+M











In the auto-covariance problem, X is a rectangular Hankel matrix.

Number of random variables in the problem is O(N), rather than

O(N2) as in the Wishart Laguerre ensemble.

Extensive body of knowledge about the Wishart-Laguerre

ensemble and its variants (applications in multivariate statistics,

signal-processing, finance, . . . )

Comparatively little is known about the auto-covariance problem

(although many applications in time-series analysis, signal

processing, information theory).
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Main Result

For stationary processes with true auto-covariance C̄(n) ∈ ℓ1(Z)

ρα(λ) =
∫ 2π

0

dq

2π

1

Ĉ(q)
ρ
(0)
α

(

λ

Ĉ(q)

)

(1)

Note 1: As Ĉ(q)≡ 1 for uncorrelated data the scaling function

ρ
(0)
α (x) must be associated with the spectral density for auto-

covariance matrices of i.i.d. data.

Note 2: We have a good analytic approximation for ρ
(0)
α (x).

Note 3: Our tests suggest that the result Eq. (1) is exact, but so

far no complete proof.
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Main Result

Note 4: Our scaling result is essentially a generalization of

Szegö’s result about spectra of Toeplitz matrices to the case

including sampling noise.

Recall (Szegö)

ρ0(λ) =
∫ 2π

0

dq

2π
δ(λ− Ĉ(q))

Can write this as

ρ0(λ) =
∫ 2π

0

dq

2π

1

Ĉ(q)
ρ
(0)
0

( λ

Ĉ(q)

)

,

in which

ρ
(0)
0 (λ) = δ(λ−1)

is indeed the spectral density of the auto-covariance matrix for i.i.d

sequences in the α → 0-limit of vanishing sampling noise.
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Spectral Density and Resolvent

Spectral density of sample covariance matrix from resolvent

ρ(λ) = lim
N→∞

1

πN
Im Tr

〈

[

λε1I−C
]−1
〉

, λε = λ− iε

Express as (S F Edwards & R C Jones, JPA, 1976)

ρα(λ) = lim
N→∞

1

πN
Im

∂

∂λ
Tr

〈

ln
[

λε1I−C
]

〉

= lim
N→∞

− 2

πN
Im

∂

∂λ

〈

lnZN

〉

,

where ZN is a Gaussian integral:

ZN =
∫ N

∏
k=1

duk
√

2π/i
exp

{

− i

2
∑
k ,ℓ

uk(λεδkℓ−Ckℓ)uℓ

}
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Closed Form Approximation & Scaling

. . . several approximations needed (not all controlled (!)) to

manage the calculation.

⇒ allow closed form expression of 〈ZN〉, and hence ρα(λ)

〈ZN〉=
(N−1)/2

∏
ν=0

{

2 i

αĈ(pν)

∫ ∞

0
dy

e
−iyλε2/(αĈ(pν))

(

1− iy
)2/α

}

Gives

ρα(λ) =
∫ 2π

0

dq

2π

1

Ĉ(q)
ρ
(0)
α

(

λ

Ĉ(q)

)

Our approximations give

ρ
(0)
α (λ) =− lim

ε→0

1

π
Im

∂

∂λ
ln Iα

(

2

α
λε

)

with

Iα(x) = i(−x)−1+2/α
e
−xΓ(1−2/α,−x) , Imx < 0 .
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The Scaling Function — Spectrum for i.i.d. Data

Spectral density for xn ∼ N (0,1) i.i.d. @ α = 0.1
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Simulation results (green); analytic approximation for ρ
(0)
α (λ) (red),

Marčenko-Pastur law (blue-dashed).
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AR-1 Process @ α = 0.1

(Logarithmic) Spectral density for AR-1 process @ α = 0.1

xn = a1 xn−1 +
√

1−a2
1 ξn
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Left: i.i.d. data, simulation (green) and analytic result (red).

Right: a1 = 0.8. Comparing scaling based on the empirical scaling

function (black) with that based on the analytic result (red) and

simulations (green).
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AR-1 Process @ α = 0.8

(Logarithmic) Spectral density for AR-1 process @ α = 0.8
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Left: i.i.d. data, simulation (green) and analytic result (red).

Right a1 = 0.8. Comparing scaling based on the empirical scaling

function (black) with that based on the analytic result (red) and

simulations (green).
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AR-2 Process (Two Real Eigenvalues)

(Logarithmic) Spectral density for AR-2 process

xn +a1xn−1 +a2xn−2 = σξn

a1 = 0.5, a2 =−3/16 , σ such that C̄(0) = 1 .
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Comparing scaling based on the empirical scaling function (black) with

that based on the analytic result (red) and simulations (green).

Left: α = 0.1, Right: α = 0.8.
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AR-2 Process (Complex Conjugate Eigenvalues)

(Logarithmic) Spectral density for AR-2 process

xn +a1xn−1 +a2xn−2 = σξn

a1 = 0.5, a2 = 5/16 , σ such that C̄(0) = 1 .
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Comparing scaling based on the empirical scaling function (black) with

that based on the analytic result (red) and simulations (green).

Left: α = 0.1, Right: α = 0.8.
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A Process with Long Range Auto-Correlation

A process with power-law decay of auto-correlation

C̄(n) =
1

1+(n/2)2
,
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Comparing scaling based on the empirical scaling function (black) with

that based on the analytic result (red) and simulations (green).

Left: α = 0.1, Right: α = 0.8.
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Applications

Spectral estimation & time series analysis: Use

ρα(λ) =
∫ 2π

0

dq

2π

1

Ĉ(q)
ρ
(0)
α

(

λ

Ĉ(q)

)

to fit a functional form of Ĉ(q) to sample data ρα(λ).

For finitely parameterized Ĉ(q) (e.g. ARMA(p,q) models), can

use standard fitting routines.

Differential entropy rate of a Gaussian process X = (Xt)t∈Z:

h(X) =
1

2
log(2πe)+

∫ 2π

0

dq

2π
log Ĉ(q)

Estimate using sample auto-covariances of aspect ratio α:

⇒ hα(X) = h(X)+ 〈logλ〉(0)α
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Applications – contd.

Lossy compression & Shannon rate distortion theory: Parametric

form of rate distortion function

Dθ =
∫ 2π

0
dq min

(

θ, Ĉ(q)
)

Rθ =
∫ 2π

0
dq max

(

0,
1

2
log

Ĉ(q)

θ

)

Influence of sampling noise when estimated using auto-covariance

matrices of aspect ratio α:

Dθ(α) =
〈

Dθ/λ

〉(0)

α

Rθ(α) =
〈

Rθ/λ

〉(0)

α

Would need inversion formula to to use this as an estimator ???

One-step prediction error δ1 of best linear predictor for weakly

stationary stationary processes

δ1(α) = δ1 ×exp

(

〈logλ〉(0)α

)
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Summary

Computed DOS of sample auto-covariance matrices.

Equivalent to finding distribution of singular values of random

rectangular Hankel matries.

[Key ingredient: Szegö’s theorem for Toeplitz matrices]

Obtain a scaling form for DOS in terms of DOS for i.i.i data.

amounts to generalization to Szegö’s result to situations with

sampling noise.

results suggest that scaling is exact

ideas for an independent proof

Applications: time-series analysis, signal processing, information

theory, finance . . .

Thanks! K. Anand, L. Dall’Asta, P. Vivo
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