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Sample Auto-Covariance Matrices
Consider a (second order stationary) stochastic process
X = (Xl)tGZ = .. 7X727X717X07X17X27 s

Sample auto-covariance matrix of a realization:

1 .
CU:MZXHHXHM 1<ij<N.
t=1

Can write this in terms of a matrix X with entries X = x;1; as
1 T
Expect finite sample fluctuation around mean
Cj = (xx)) £ O(1/VM) = C(|i—j|) + O(1/V'M)

= C is a symmetric randomly perturbed Toeplitz matrix.
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Sample Auto-Covariance Matrices — Spectrum

@ We are interested in the spectrum of Cas N — oo & M — oo,
@ Expect that the spectrum depends on the aspect ratio oo = N/M.

@ Take limit N — o0 & M — o0 @ fixed 0.
@ Known results
o Existence of limiting spectral density for auto-covariance matrices
of moving average processes with i.i.d. driving @ o = 1 (Basak,
Bose, Sen 2011).
@ Universality of results @ oo = 1: independence of statistics of i.i.d.
driving (numerical, Sen 2010)
o Existence of limiting spectral density for random Toeplitz, Hankel
and Markov matrices with i.i.d. entries (Bryc, Dembo Jiang, 2007)
@ In the o — 0-limit < no sampling noise: Szegd’s Theorem

oul1) = [ 5H80-Cla) . Bla)= X Bl
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Comparison with Wishart-Laguerre Ensemble

@ Sample covariances for N-dimensional data — sample-size M,

1M
Cj= I, t; Xit Xjt
@ Express in terms of N x M matrices X = (x;) as
1 T
@ Expect finite sample fluctuation around mean. For i.i.d. entries x;
Cj = (xix;) = 0(1/v/'M) = §;+ O(1/VM)

@ Spectrum of C as N — co, M — o @ fixed o = N/M
= Mar€enko Pastur-Law

~ VAa—(A—(1+a))?
N 2O

Pa(A)
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Principal Differences

@ Columns of X for the covariance problem are i.i.d. random
vectors in RN
X1 X2 X413 ... Xim
Xo1 X2 Xz ... Xom
X =

XN1 XN2 XN3 ... XNM
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Principal Differences

@ Columns of X for the auto-covariance problem are sections of a
single time series (X;)tez
X1 X2 X3 e XMm
Xo X3 X4 cen X14+M
X = .

XN XN+1 XN+2 oo XN—14M
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Principal Differences

Columns of X for the auto-covariance problem are sections of a
single time series (X;)tez

Xq X2 X3 e XMm

Xo X3 X4 cen X14+M
X = .

XN XN+1 XN+2 oo XN—14M

In the auto-covariance problem, X is a rectangular Hankel matrix.

Number of random variables in the problem is O(N), rather than
O(N?) as in the Wishart Laguerre ensemble.

Extensive body of knowledge about the Wishart-Laguerre
ensemble and its variants (applications in multivariate statistics,
signal-processing, finance, ...)

Comparatively little is known about the auto-covariance problem
(although many applications in time-series analysis, signal
processing, information theory).
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Main Result

@ For stationary processes with true auto-covariance C(n) € ¢1(Z)
2t dg 1 (0) A

A :/ ~ ., < EVEN 1

Pa(r)= | oo & ™\ 30 (1)

@ Note 1: As C(q) = 1 for uncorrelated data the scaling function
p&o)(x) must be associated with the spectral density for auto-

covariance matrices of i.i.d. data.
@ Note 2: We have a good analytic approximation for p&o)(x).

@ Note 3: Our tests suggest that the result Eq. (1) is exact, but so
far no complete proof.
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Main Result

@ Note 4: Our scaling result is essentially a generalization of
Szegd’s result about spectra of Toeplitz matrices to the case
including sampling noise.

@ Recall (Szeg0)

o) = [ 5250 E(a))

@ Can write this as

2tdg 1 (0) A
A) = — = = s
Po(M) o 21 &(q) Po (C(q))

in which

P (A) = 8(A—1)

is indeed the spectral density of the auto-covariance matrix for i.i.d
sequences in the oo — 0-limit of vanishing sampling noise.
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Spectral Density and Resolvent

@ Spectral density of sample covariance matrix from resolvent

p(A) = lim iImTr<[er—c]’1>, he = A —ie

N—oo TN

*] Express AS (S F Edwards & R C Jones, JPA, 1976)

d
pu(h) = MMNImﬁTr@n[xgl c])

= g m 5 (n20).

where Zy is a Gaussian integral:

/Hm { Zuklskg—ckg)}
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Closed Form Approximation & Scaling

@ ...several approximations needed (not all controlled (!)) to
manage the calculation.
@ = allow closed form expression of (Zy), and hence pq (1)

N=D2 [ pi e e-ivhe2/(C(p)
a2 o)

vo | aC(pv) (1—iy

_ [*dg 1 @ A
pul) = [ 52 5o P ( &(q)>

@ Our approximations give

@ Gives

O = — fim ~Im2in s (2
Po’ (M) = sllno nlmaklnla(oc}%)

with
lo(x) = i(=x)""*?%eT(1—2/a,—x), Imx<O0.
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The Scaling Function — Spectrum for i.i.d. Data

@ Spectral density for x, ~ A((0,1) i.i.d. @ o0 = 0.1
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Simulation results (green); analytic approximation for p((f)(k) (red),
Marcenko-Pastur law (blue-dashed).
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AR-1 Process @ o0 = 0.1

@ (Logarithmic) Spectral density for AR-1 process @ o = 0.1
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Left: i.i.d. data, simulation (green) and analytic result (red).
Right: a; = 0.8. Comparing scaling based on the empirical scaling
function (black) with that based on the analytic result (red) and
simulations (green).
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AR-1 Process @ o0 = 0.8

@ (Logarithmic) Spectral density for AR-1 process @ o = 0.8
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Left: i.i.d. data, simulation (green) and analytic result (red).
Right a; = 0.8. Comparing scaling based on the empirical scaling
function (black) with that based on the analytic result (red) and
simulations (green).
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AR-2 Process (Two Real Eigenvalues)

@ (Logarithmic) Spectral density for AR-2 process
Xp+ a1 Xp—1+ & Xp—2 = G&n

ay=0.5, a=—-3/16, o suchthat C(0)=1.

pinA
o
=

pinA

Inx Inx

Comparing scaling based on the empirical scaling function (black) with
that based on the analytic result (red) and simulations (green).
Left: o« = 0.1, Right: o = 0.8.
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AR-2 Process (Complex Conjugate Eigenvalues)

@ (Logarithmic) Spectral density for AR-2 process
Xp+ a1 Xp—1+ & Xp—2 = G&n

a;=0.5, a=>5/16, o suchthat C(0)=1.
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Comparing scaling based on the empirical scaling function (black) with
that based on the analytic result (red) and simulations (green).
Left: o« = 0.1, Right: o = 0.8.
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A Process with Long Range Auto-Correlation

@ A process with power-law decay of auto-correlation
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Comparing scaling based on the empirical scaling function (black) with
that based on the analytic result (red) and simulations (green).
Left: oo = 0.1, Right: o = 0.8.
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Applications

@ Spectral estimation & time series analysis: Use

_ [Tdg 1 o A
Pl = [ 5 5 P ( é(q)>

to fit a functional form of C(q) to sample data py(1).

@ For finitely parameterized €(q) (e.g. ARMA(p, g) models), can
use standard fitting routines.

@ Differential entropy rate of a Gaussian process X = (X;)tez:

A

h(X) = ~log (2 )+/2ndq|o &(q)
=—lo e —

5 g o 21 gllq
Estimate using sample auto-covariances of aspect ratio o

= he(X) = h(X)+ (logh)®)
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Applications — contd.

@ Lossy compression & Shannon rate distortion theory: Parametric

form of rate distortion function
2T

Dy = A dqmin(@,@(q))

2m 1. C(q)
Ry = d max(O,ro —)
0 o q 5 g 0
Influence of sampling noise when estimated using auto-covariance

matrices of aspect ratio o:

Do(at) = <De/x>fx0)
Ro() = (Rop)\)

@ Would need inversion formula to to use this as an estimator ???
@ One-step prediction error 81 of best linear predictor for weakly
stationary stationary processes

d1(a) = &1 x exp ( (log 7»>((10)>
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Summary

Computed DOS of sample auto-covariance matrices.

Equivalent to finding distribution of singular values of random
rectangular Hankel matries.

[Key ingredient: Szegd’s theorem for Toeplitz matrices]
Obtain a scaling form for DOS in terms of DOS for i.i.i data.

@ amounts to generalization to Szegd'’s result to situations with
sampling noise.

@ results suggest that scaling is exact

@ ideas for an independent proof

Applications: time-series analysis, signal processing, information
theory, finance ...

Thanks! K. Anand, L. Dall’Asta, P. Vivo
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