Spectra of Sparse Random Matrices and Localization on Random Graphs

Reimer Kühn
Department of Mathematics, King's College London

IV BRUNEL Workshop on Random Matrix Theory - Dec 19-20, 2008

Overview

- Look at spectra of sparse symmetric random matrices
- Follow replica formulation of Edwards and Jones (76), Rodgers and Bray (88)
- Use techniques recently developed for StatMech of finitely coordinated random systems
- Use different representation of replica symmetric ansatz
- Identify DOS of localized and extended states
- Deconvolution: local DOS of vertices with different coordination
- Explore for various ensembles
- Some details in
- RK, J Phys A41, 295002, (2008), cond-mat/0803.2886
- T. Rogers, I. Perez Castillo, RK, and K. Takeda Phys Rev E 78, 031116 (2008), cond-mat/0803.1553

Spectral Density and Resolvent

- Spectral density of random matrix M from resolvent

$$
\overline{\rho(\lambda)}=\lim _{N \rightarrow \infty} \frac{1}{\pi N} \operatorname{Im} \operatorname{Tr} \overline{\left[\lambda_{\varepsilon} I-M\right]^{-1}}, \quad \lambda_{\varepsilon}=\lambda-i \varepsilon
$$

- express (S F Edwards \& R C Jones, JPA, 1976) aS

$$
\begin{aligned}
\overline{\rho(\lambda)} & =\lim _{N \rightarrow \infty} \frac{1}{\pi N} \operatorname{Im} \frac{\partial}{\partial \lambda} \operatorname{Tr} \overline{\ln \left[\lambda_{\varepsilon} I-M\right]} \\
& =\lim _{N \rightarrow \infty}-\frac{2}{\pi N} \operatorname{Im} \frac{\partial}{\partial \lambda} \overline{\ln Z_{N}}
\end{aligned}
$$

where Z_{N} is a Gaussian integral:

$$
Z_{N}=\int \prod_{i=1}^{N} \frac{\mathrm{~d} u_{i}}{\sqrt{2 \pi / i}} \exp \left\{-\frac{i}{2} \sum_{i, j} u_{i}\left(\lambda_{\varepsilon} \delta_{i j}-M_{i j}\right) u_{j}\right\}
$$

Sparse Random Matrices

- Sparse symmetric matrix M given, e.g. by

$$
M_{i j}=c_{i j} K_{i j}
$$

with $\left\{c_{i j}\right\}$ adjacency matrix of a random graph. E. g.

$$
c_{i j}=\left\{\begin{array}{lll}
0 & \text {; with prob } & 1-\frac{c}{N} \\
1 & \text {; with prob } & \frac{c}{N}
\end{array}\right.
$$

\equiv Posisssonian (Erdös Renyi) random graph. Others: regular, scale-free, small-world ...

- Distribution of $K_{i j}$ arbitrary (Gaussian, bimodal, non-random ...)
- Exploit StatMech techniques for sparsely coordinated amorphous systems. (RK, J van Mourik, M Weigt, A Zippelius J Phys A, 2007)

Performing the Average - Replica Method

- Replica identity

$$
\overline{\ln Z_{N}}=\lim _{n \rightarrow 0} \frac{1}{n} \ln \overline{Z_{N}^{n}}
$$

- For integer n, Z_{N}^{n} is partition function of n identical copies of the system (n-th power of Gaussian integral)

$$
\begin{aligned}
\overline{Z_{N}^{n}}=\int \prod_{i a} \frac{\mathrm{~d} u_{i a}}{\sqrt{2 \pi / i}} & \exp \left\{-\frac{i}{2} \lambda_{\varepsilon} \sum_{i, a} u_{i a}^{2}\right. \\
& \left.+\frac{c}{2 N} \sum_{i j}\left(\left\langle\exp \left(i K \sum_{a} u_{i a} u_{j a}\right)\right\rangle_{K}-1\right)\right\}
\end{aligned}
$$

- Decoupling of sites by introducing the replicated density

$$
\rho(\boldsymbol{u})=\frac{1}{N} \sum_{i} \prod_{a} \delta\left(u_{a}-u_{i a}\right)
$$

- Enforce definition via (functional) δ-distribution

$$
1=\int \mathcal{D} \rho \mathcal{D} \hat{\rho} \exp \left\{-i \int \mathrm{~d} \boldsymbol{u} \widehat{\rho}(\boldsymbol{u})\left(N \rho(\boldsymbol{u})-\sum_{i} \prod_{a} \delta\left(u_{a}-u_{i a}\right)\right)\right\}
$$

- Gives

$$
\begin{aligned}
\overline{Z_{N}^{n}}= & \int \mathcal{D} \rho \int \mathcal{D} \hat{\rho} \exp \left\{N \left[\frac{c}{2} \int \mathrm{~d} \rho(\boldsymbol{u}) \mathrm{d} \rho(\boldsymbol{v})\left(\left\langle\exp \left(i K \sum_{a} u_{a} v_{a}\right)\right\rangle_{K}-1\right)\right.\right. \\
& \left.\left.-\int \mathrm{d} \boldsymbol{u} i \widehat{\rho}(\boldsymbol{u}) \rho(\boldsymbol{u})+\ln \int \prod_{a} \frac{\mathrm{~d} u_{a}}{\sqrt{2 \pi / i}} \exp \left(i \hat{\rho}(\boldsymbol{u})-\frac{i}{2} \lambda_{\varepsilon} \sum_{a} u_{a}^{2}\right)\right]\right\}
\end{aligned}
$$

- Evaluation of $N^{-1} \ln \overline{Z_{N}^{n}}$ by saddle point method
- Stationarity w.r.t. ρ and $\hat{\rho}$

$$
\begin{align*}
\frac{\delta}{\delta \rho(\boldsymbol{u})}: & i \widehat{\rho}(\boldsymbol{u}) & =c \int \mathrm{~d} \rho(\boldsymbol{v})\left(\left\langle\exp \left(i K \sum_{a} u_{a} v_{a}\right)\right\rangle_{K}-1\right) \tag{*}\\
\frac{\delta}{\delta \hat{\rho}(\boldsymbol{u})}: & \rho(\boldsymbol{u}) & =\frac{\exp \left(i \hat{\rho}(\boldsymbol{u})-\frac{i}{2} \lambda_{\varepsilon} \sum_{a} u_{a}^{2}\right)}{\int \mathrm{d} \boldsymbol{u} \exp \left(i \hat{\rho}(\boldsymbol{u})-\frac{i}{2} \lambda_{\varepsilon} \sum_{a} u_{a}^{2}\right)} \tag{**}
\end{align*}
$$

- Problem: $n \rightarrow 0$ limit. (GJ Rodgers, AJ Bray, PRB 37, 1988)

Ansatz: permutation \& rotational symmetry in replica space

$$
i \widehat{\rho}(\boldsymbol{u})=c g(|\boldsymbol{u}|)
$$

exploit to perform 'angular integrals in (*),(**)

- For $K \in\{ \pm 1\}$ get

$$
g(u)=-u \int_{0}^{\infty} \mathrm{d} v \exp \left[c g(v)-\frac{i}{2} \lambda_{\varepsilon} v^{2}\right] J_{1}(u v), \text { as } n \rightarrow 0
$$

Independent SuSy derivation (YV Fyodorov, AD Mirlin, JPA 24, 1991)

- Rodgers-Bray Equation extremely difficult to analyze.
- Here: different representation of permutation \& rotational symmetry. Superpositions of Gaussians:

$$
\begin{aligned}
\rho(\boldsymbol{u}) & =\int \mathrm{d} \pi(\omega) \prod_{a} \frac{\exp \left[-\frac{\omega}{2} u_{a}^{2}\right]}{Z(\omega)} \\
i \widehat{\rho}(\boldsymbol{u}) & =c \int \mathrm{~d} \hat{\pi}(\widehat{\omega}) \prod_{a} \frac{\exp \left[-\frac{\hat{\omega}}{2} u_{a}^{2}\right]}{Z(\widehat{\omega})}
\end{aligned}
$$

\Leftrightarrow solve $\left(*^{*}\right),\left(*^{*}\right)$ in terms of an integral transformation

- Get saddle point equations for π and $\hat{\pi}$

Population Dynamics

- Self-consistency equations for π and $\hat{\pi}$: pair of non-linear integral equations

$$
\begin{aligned}
& \widehat{\pi}(\widehat{\omega})=\int \mathrm{d} \pi(\omega)\langle\delta(\widehat{\omega}-\hat{\Omega}(\omega, K))\rangle_{K} \\
& \pi(\omega)=\sum_{k \geq 1} \frac{k}{c} p_{c}(k) \int \prod_{\ell=1}^{k-1} \mathrm{~d} \widehat{\pi}\left(\widehat{\omega}_{\ell}\right) \delta\left(\omega-\Omega_{k-1}\right)
\end{aligned}
$$

with

$$
\hat{\Omega}(\omega, K)=\frac{K^{2}}{\omega}, \quad \Omega_{k-1}=i \lambda_{\varepsilon}+\sum_{\ell=1}^{k-1} \widehat{\omega}_{\ell}
$$

- Structure suggests solving via stochastic population based algorithm; note: get complex $\omega, \widehat{\omega}$, but $\operatorname{Re}(\omega) \geq 0, \operatorname{Re}(\widehat{\omega}) \geq 0$ selfconsistently in population.

Spectral Density

- Spectral density from solution (using $\{\hat{\boldsymbol{\omega}}\}_{k}=\sum_{\ell=1}^{k} \hat{\omega}_{\ell}$)

$$
\overline{\rho(\lambda)}=\frac{1}{\pi} \sum_{k=0}^{\infty} p_{c}(k) \int \prod_{\ell=1}^{k} \mathrm{~d} \widehat{\pi}\left(\widehat{\omega}_{\ell}\right) \frac{\operatorname{Re}\{\hat{\boldsymbol{\omega}}\}_{k}+\varepsilon}{\left(\operatorname{Re}\{\hat{\boldsymbol{\omega}}\}_{k}+\varepsilon\right)^{2}+\left(\lambda+\operatorname{Im}\{\hat{\boldsymbol{\omega}}\}_{k}\right)^{2}}
$$

- With

$$
P(a, b):=\sum_{k} p_{c}(k) \int \prod_{\ell=1}^{k} \mathrm{~d} \widehat{\pi}\left(\widehat{\omega}_{\ell}\right) \delta\left(a-\operatorname{Re}\{\widehat{\omega}\}_{k}\right) \delta\left(b-\operatorname{Im}\{\widehat{\omega}\}_{k}\right)
$$

get

$$
\overline{\rho(\lambda)}=\int \frac{\mathrm{d} a \mathrm{~d} b}{\pi} P(a, b) \frac{a+\varepsilon}{(a+\varepsilon)^{2}+(b+\lambda)^{2}} .
$$

- Note: singular nature of integrand for $a=0$, as $\varepsilon \rightarrow 0$:

$$
P(a, b)=P_{0}(b) \delta(a)+\widetilde{P}(a, b)
$$

- Identify localized DOS $\quad \overline{\rho_{\text {loc }}(\lambda)}=P_{0}(-\lambda)$
(R Abou-Chacra, PW Anderson, DJ Thouless, JPC 6, 1973)

Results - Poisson Random Graphs

Spectral densities for $\left\langle K_{i j}^{2}\right\rangle=1 / c$, on Poissonian random graphs with $c=4$ (left), and $c=2$ (right) using $\varepsilon=10^{-300}$ (full line); in both panels: numerical diagonalization results for graphs of size $N=2000$ (dashed).

More on the Posisson $c=2$ case

Upper left: zoom into the central region; upper right: results on logarithmic scale; lower: results regularized at $\varepsilon=10^{-3}$. In all panels: numerical diagonalization results for graphs of size $N=2000$ (dashed). Localization for $|\lambda|>2.295$!

Localization - IPRs

$$
\operatorname{IPR}(\boldsymbol{v})=\frac{\sum_{i=1}^{N} v_{i}^{4}}{\left(\sum_{i=1}^{N} v_{i}^{2}\right)^{2}}
$$

- $\operatorname{IPR}=\mathcal{O}(1)$ for localized, $\mathcal{O}\left(N^{-1}\right)$ for de-localized states

Continuous and full densities of state, and average IPRs for Poissonian random graphs with $c=2$ (left) and $c=4$ (right). Average IPRs from numerical diagonalization of matrices with $N=250, N=500, N=1000$ and $N=2000$. Scaling of IPRs confirms location of mobility edges seen in DOS.

IPRs - Scaling with System Size

Scaling of average IPRs with system size for Poisson Random graphs with $c=2$ (upper) and $c=2$ (lower). The fraction of sites not in the giant cluster is $x_{i} \simeq 0.205$ at $c=2$ and $x_{i} \simeq 0.02$ at $c=4$.

Orther Ensembles

- Poisson random graphs with bimodal couplings
- Regular random graphs with Gaussian or bimodal couplings (recover Wigner semi-circle law in the $c \gg 1$ limit)
- Scale free graphs (power law degree distribution) — For $p(k)=P_{0} k^{-\gamma}$ confirm $\overline{\rho(\lambda)} \sim \lambda^{1-2 \gamma}$ at large λ.
- In all cases: localization \& mobility edges.

Results - Graph-Laplacians

- Spectra of matrices with row-constraints

$$
M_{i j}=c_{i j} K_{i j}-\delta_{i j} \sum_{k} c_{i k} K_{i k} ; \quad K_{i j}=1 / c \Leftrightarrow M=\Delta
$$

Spectral density for the Laplacian on a Poissonian random graph with $c=2$ as computed via the present algorithm. Left: $\varepsilon=10^{-3}$-results; right: results from numerical diagonalisation of $N \times N$ matrices of the same type with $N=2000$.

Continuous Spectrum and 'Low-Energy' Lifshithz Tail

Spectral density for the Laplacian on a Poissonian random graph with $c=2$. Left: continuous part of the spectrum obtained using $\varepsilon=10^{-300}$ as a regularizer. Right: zoom into the small $|\lambda|$ region, exhibiting a mobility edge and a localized $\operatorname{DOS}\left(\varepsilon=10^{-5}\right.$ and $\left.10^{-6}\right)$ compatible with Lifshitz tail behaviour.

Results - Unfolding Spectral Densities

Spectral density for the Laplacian on a Poissonian random graph with $c=2$ (full upper line), shown together with its unfolding according to contributions of different coordination. Identifiable humps from left tor right: $k=9, k=8, \ldots k=3$. Several notable humps from $k=2$, together with the $k=1$ contribution mainly responsible for dip at $\lambda=-1$. The $k=0$ contribution is mainly responsible for the δ-peak at $\lambda=0$

Results - Random Schrödinger Operators

- Spectral properties of discrete random Schrödinger operator

$$
H=-\Delta+V, \quad V_{i j}=v_{i} \delta_{i j}, \quad v_{i} \in[-W, W]
$$

RSO on a Poissonian random graph with $c=4$, and $W=1$. Left: Spectral density and IPRs ($N=250,500,1000$, and 2000. Right: Continuous DOS and its unfolding ($k=1, \ldots 13$)

RSO on a Poissonian random graph with $c=4$, and $W=1$. DOS and its unfolding $(k=0, \ldots 5)$.

Summary

- Computed DOS of sparse random matrices using replica. For single instances see T. Rogers, et al PRE (2008).
- Techniques, ansätze etc inspired by previous work on Stat Mech of heterogeneous systems.
- Allows to disentangle pure point and continuous spectrum.
- Allows to compute local DOS unfolded according to coordination.
- Method is versatile (Poissonian and other degree distributions); Laplacians; discrete random Schrödinger operators; Anderson localisation.
- To do: asymmetric matrices (Rogers, Anand); modular\& small world systems; eigenvector distributions, spectral correlations...

