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In modern society people are being exposed to numerous information, with some of
them being frequently repeated or more disruptive than others. In this paper we use
a model of opinion dynamics to study how this news impact the society. In particular,
our study aims to explain how the exposure of the society to certain events deeply
change people’s perception of the present and future. The evolution of opinions which
we consider is influenced both by external information and the pressure of the society.
The latter includes imitation, differentiation, homophily and its opposite, xenophobia.
The combination of these ingredients gives rise to a collective memory effect, which is
triggered by external information. In this paper we focus our attention on how this
memory arises when the order of appearance of external news is random. We will
show which characteristics a piece of news needs to have in order to be embedded
in the society’s memory. We will also provide an analytical way to measure how
many information a society can remember when an extensive number of news items
is presented. Finally we will show that, when a certain piece of news is present in the
society’s history, even a distorted version of it is sufficient to trigger the memory of the
originally stored information.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, thanks to the world-wide diffusion of digital technologies, people are bombarded by a myriad of different
ews. With the increasing popularity of social media, news items incessantly appear on all screens, triggering people’s
ttention and influencing the way in which they think and act. Understanding how opinions and choices are affected
y external events has thus become of particular interest for different research fields, such as sociology, politics and
arketing. In the last years, physicists have proposed many mathematical models [1–3] to understand how humans
ehave and form their opinions, giving birth to a new research field called sociophysics. Some of the most famous works in
his field concern the use of models borrowed from statistical mechanics, such as the Ising model to study consensus [4–6].
thers introduced a variety of different models such as the Voter model [7,8] or the Majority rule model [9,10]. A part
f these works is dedicated to the study of how the society reacts to external information [11,12] coming from a single
ource [13] or multiple ones [14].
In our recent paper [15] we presented a model of a society where opinions are formed through the combined effect of

utual influence among agents and driving through multiple external events. The key ingredient of the model is the way
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n which agents interact: when two agents have often been in agreement, they tend to be in agreement also in the future
nd the same happens with disagreement. This behaviour is the result of the combination of different human tendencies
argely studied and applied in different social models. Together with imitation, which is the main ingredient of all of the
reviously mentioned models, we consider differentiation [12,16–20], homophily (an attractive influence or the tendency
o become more similar to people in agreement with us) [21,22] and its opposite, xenophobia (a repulsive influence or the
endency to become different from people in disagreement with us) [23–27]. Our study shows that the history of mutual
greement or disagreement between agents is encoded in the interaction matrix of our model in a way that prompts
he emergence of a Hopfield-like [23,28] collective memory by which the society embeds the information coming from
xternal news and recalls them in the future. Note that the memory effect which appears in our model is a memory of
ast relations and must not be confused with the memory of past actions or opinions of single agents that has been more
ften considered in the literature of social interactions [29–31]. Studies about collective memory appear instead in [32],
hile a model which consider memory of past relationships is presented in [33].
While the focus of our previous paper was on finite number of news cyclically presented, in this new work we study

he behaviour of the same model but focusing our attention on items of information which are presented in random order
nd with non-uniform intensity. The exploration of this new scenario goes in the direction of making the model more
ealistic. In fact, in the real world, the news that a person may receive are plenty, with some of them appearing more often
han others. We begin by exploring a simple scenario in which only a finite number of news items is presented, before
oving on to more complicated ones in which information consists of extensively many items of news. In this second
cenario we will use techniques common in statistical mechanics (i.e. replica calculations) to calculate the maximum
umber of pieces of information a society can retain in its collective memory.
In that context we also investigate the question, how well a society is able to collectively recall a piece of information

mbedded in its collective memory at some point in the past, if exposed to a news item which is a more or less distorted
ersion of that ancient memory, thus bearing only imperfect similarity with it.
We will present our results by organizing the paper in the following way. In Section 2 we present the model analysed in

he paper. In Section 3 we present the behaviour of the society under the effect of a finite number of news items presented
n a random order. In Section 3.1 we show how the frequency and the strength of this news are determinant for their
torage in the society’s memory. In Section 3.2 we perform a similar analysis testing a large spectrum of parameters. In
ection 4 we focus on a different setting in which many different news invest the society and we calculate how many
mong them will be effectively remembered, i.e. the storage capacity of our society, comparing analytical results with
imulations. Finally in Section 4.2 we show how a society which has received a certain signal, is able to remember it
hen the noisy version of the same signal is shown.

. The model

In this paper we will analyse a model, firstly introduced in [15], of a fully connected society of N interacting individuals
which are influenced by the pressure of their peers and by an external disruptive signal. In particular, with each agent
we associate a continuous variable ui which evolves following

u̇i = −ui + Ii +
N∑

j(̸=i)

Jijvj + ηi . (1)

In this model, ui represents the preference field of an agent i on an issue, while vi = g(ui) represents the opinion he/she
express to the other agents. We chose g(uj) = erf(uj) to be a sigmoid function of the preference field uj, such that the
expressed opinions remain bounded. The dynamics of ui is driven by the agent’s perception of external information Ii
and the pressure of the society, defined as the weighted sum of the expressed opinions of all the agents. The weights Jij,
which change in time as described later, characterize the type of relation between the pair (i, j) of agents: a positive weight
entails an assimilation of opinions while a negative one entails differentiation. Both, assimilation and differentiation are
graded, as the weights are not just characterized by their sign, but also by their magnitude.

The evolution of ui depends also on a mean reversion term −ui which entails that, when external influences are absent,
the preference field of each agent fluctuates around zero. The last term ηi is a white noise with Gaussian distribution with
zero mean and finite variance ⟨ηi(t)ηj(t ′)⟩ = σ 2δijδ(t− t ′) which accounts for stochastic effects in opinion dynamics which
are not controlled by the other terms.

The novelty of our model is the way in which the couplings, and so the interpersonal relations of the agents’, evolve
in time. The tendency of two agents to agree or disagree is based on their history of agreement and disagreement.
People which have a past history of agreement will be more likely to agree in future, and the analogous happens with
disagreement. This behaviour is encoded in the couplings Jij which evolve in time following

Jij(t) =
J0 · γ

N

∫ t

0
ds vi(s)vj(s)e−γ (t−s) . (2)

Given two agents i and j, the product of their expressed opinions vi(s) and vj(s) is weighted with an exponentially decaying
function in time. This entails that the more recent history has a larger influence than the distant past in determining the
2
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ign and the strength of the interactions between the two agents. The rate of decay of this function is described by the
onstant γ ; its inverse τγ = 1/γ thus determines a memory time scale, or more specifically, the length of the memory
pan. In this way our society uses the past history to interpret the instantaneous inputs that it receives from outside. The
refactor J0 sets an overall scale for the strength of the interactions, while the N−1 scaling of couplings with system size
is to ensure that a large system limit of the dynamics exists. A detailed study of the behaviour of this model under the

nfluence of constant or periodic external information can be found in [15]. In the case of constant external information,
e observed that at stationarity the ui are approximately Gaussian distributed ui ∼ N (⟨ui⟩, σu), with:

⟨ui⟩ =

∑
j(̸=i)

Jij⟨vj⟩ + Ii (3)

σ 2
u = σ 2/2 , (4)

nd

⟨vi⟩ = erf

(
⟨ui⟩√

1 + 2σ 2
u

)
(5)

where σ 2 is the noise variance. In the scenarios which will be analysed in the present paper, the couplings keep evolving
in time while the external signal changes. However, in order to probe the evolving memory of the society at any given
point in time, we will use a protocol which determines the information processing capabilities of a system using couplings
that are frozen at the values they attained at that moment in time. We will, for instance, see that after a long exposure to
a random sequence of external news the couplings will reach statistical stationarity, entailing that information processing
capabilities of the society become statistically stationary as well. In this paper we will use the Gaussian approximation
used in [15] to obtain Eq. (3), (4) and (5) to analyse the society under the effect of different kinds of random external
signals. Firstly we will study the behaviour of the society under the influence of a finite number of different news items
presented at random. Then we will study a society influenced by an infinite sequence of different news items and we will
focus on how many of these can be actually remembered.

3. Random presentation of a finite number of patterns

In our previous paper [15] on the model described by Eqs. (1)–(2), we examined the society under the effect of
sequential periodic external news. In particular, the signal Ii(t) as perceived by agent i was constructed in terms of
ifferent pieces of news, each switched on for a period ∆0, with the different news items appearing periodically in an

ordered sequence. Each piece of news Iµ = I0ξµ
= I0(ξ

µ

i ), labelled by µ ∈ {1, . . . , p} is characterized by its amplitude
I0, which was chosen to be uniform (i.e. µ independent) in [15], and a vector ξµ, with components ξ

µ

i describing the
agent-dependent idiosyncratic perceptions of a news item. For example ξ

µ

i = +1 means that the agent i has a positive
attitude towards the piece of information µ. In [15] the ξ

µ

i were modelled as unbiased, binary i.i.d. random variables
uniformly chosen from {±1}. The resulting expression of the signal was:

Ii(t) = I0ξ
µ(t)
i , (6)

with

µ(t) = 1 +

⌊
t

∆0

⌋
mod p , (7)

In that case the order of presentation determined which information was most clearly remembered. More realistically,
however, we expect to see news appearing in a less regular fashion, with some signals more frequent or stronger than
others. In this section we show how the society responds when news items may have a variable strength or are received in
a random order, each returning with a given probability. In this case we will have a finite set of possible news labelled by
µ ∈ {1, . . . , p} appearing with probabilities {π1, . . . , πp}. The signal will be made of a sequence of patterns Iµk(t)

0 ξ
µk(t)
i

switched on for a time ∆0, each one labelled by a randomly chosen index µk(t) ∈ {1, . . . , p}, where k counts the
presentation times:

Ii(t) = Iµk(t)
0 ξ

µk(t)
i for (k − 1)∆0 < t < k∆0 , (8)

µk(t) = µ with Prob(µk = µ) = πµ . (9)

Unlike in the previous paper, the strengths Iµ0 of the different news items are now µ-dependent. When the Iµ0 are
sufficiently large, the agents’ opinions will quickly align with the information received, so that ui becomes very large
ith its sign determined by ξ

µ

i , and consequently vi = erf(ui) ≃ ξ
µ

i almost immediately after the signal ξµ is switched
on. This corresponds to a situation in which the external information is disruptive and captures the attention of the whole
society. In this case we are able to calculate the couplings Jij, proceeding as in [15] for periodically presented patterns,
splitting the integral over intervals of length ∆ , during which v (t) ∼ ξ

µ. We adopt a convention different from that
0 i i

3
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sed in [15], counting ‘‘backward’’ in time, and using k = 1 to label the final presentation period, k = 2 the previous one,
and so forth. This gives

Jij(t) =
J0
N

p∑
µ=1

ξ
µ

i ξ
µ

j

Np∑
k=1

wk δµ,µk , (10)

ith Np denoting the total number of news presentation periods up to time t , i.e. t = Np∆0, and

wk = (1 − e−γ∆0 ) e−γ (k−1)∆0 . (11)

he k-sum in Eq. (10) is a large weighted sum of Bernoulli random variables δµ,µk . It can be evaluated as a sum of averages
y appeal to the Law of Large Numbers, giving

Jij =
J0
N
(1 − e−γ∆0Np )

p∑
µ=1

πµξ
µ

i ξ
µ

j . (12)

We will be mostly dealing with the limit γ∆0 ≪ 1 ≪ γ∆0Np for which
∑Np

k=1 wk = 1 − e−γ∆0Np ≃ 1, and for which
t can be shown that corrections to Eq. (12) are negligible, being smaller than the dominant contribution by a factor
(
√

γ0∆0). If πµ = 1/p for µ = 1, . . . , p, couplings are (apart from a factor 1/p) equal to Hebb–Hopfield couplings [28,34]
used in the well known Hopfield model of associative neural network. This similarity was already discussed in [15],
suggesting that our network of agents can behave in a manner analogous to a network of neurons, in which firing patterns
are stored in the couplings. Instead of neural patterns we will have opinion patterns ξµ that under suitable conditions can
be stored and recalled by the society by means of a reshaping of individuals’ interactions. For periodic news presentation,
we showed in [15] that at stationarity each opinion pattern contributed to the couplings with a weight depending on
the presentation order of the corresponding signal. Instead in Eq. (12) we see that, when news items are presented in
a random order, after long time each pattern contributes to the couplings with a weight which depends only on the
probability of appearance of its corresponding signal. In the context of this paper we will only analyse the scenario in
which a very large number of signal presentations occur. This allow us to neglect the effect of the order of presentation
of the patterns on each realization of the dynamics, which may be important when only few patterns are shown.

A measure of the similarity between the stored opinion patterns and a given piece of news µ is the overlap between
the pattern µ and the system state

mµ(t) =
1
N

∑
i

ξ
µ

i ⟨vi(t)⟩ . (13)

he overlap mµ will be close to one during the presentation of the signal contribution µ and close to zero when other
ignal contributions are presented. Most importantly, when the signal is totally removed, the value of mµ tells us whether
he society’s opinions remain aligned with one of the previously presented news.

To investigate this question, we evaluate the mµ in a stationary regime with fixed external signal Ii, after couplings
re frozen at their values given by Eq. (12). Exploiting the fact that the ui(t) in the stationary regime are Gaussian, with
eans and variances defined in terms of Eqs. (3), (4) and (5), we obtain

mµ
=

1
N

∑
i

ξ
µ

i erf

(
⟨ui⟩√

1 + 2σ 2
u

)
=

1
N

∑
i

ξ
µ

i erf
(∑

j Jij⟨vj⟩ + Ii
√
1 + σ 2

)
=

1
N

∑
i

ξ
µ

i erf
(
J0
∑

ν ξ ν
i πνmν

+ Ii
√
1 + σ 2

)
, (14)

.e., a set of self-consistency equations for the overlaps {mµ
}, µ = 1, . . . , p. Here we have used the approximation

− e−γ∆0Np ≃ 1 valid in the large Np limit as discussed above. For large N , the fixed point equations can be expressed in
erms of averages over the statistics of the ξ

µ

i and the Ii by appeal to the LLN, giving

mµ
=

⟨⟨
ξµerf

(
J0
∑

ν ξ νπνmν
+ I

√
1 + σ 2

)⟩⟩
{ξµ

},I
, (15)

n which the double angled brackets denote an average over the distribution of the {ξµ
} and the external stationary

ignals I . In much of what follows we will be interested in so-called retrieval solutions in the absence of external signals,
or which it is assumed that the system state is aligned with only a single opinion pattern, so that the vector m of overlaps
as only a single non-vanishing component, m = (0, . . . ,mµ, . . . , 0), for some µ ∈ {1, . . . , p}, for which the system of
elf-consistency Eqs. (13) simplifies to

mµ
= erf

(
J0πµmµ

√

)
. (16)
1 + σ 2

4
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Fig. 1. The figure shows the comparison between the analytical (full line) and simulated (dots) value of mµ as a function of the presentation time
length ∆0 , for J0 = 6, I0 = 10 and πµ = 1/3 ∀µ.

The solution of Eq. (16) can be compared to the value of mµ estimated by simulating the model dynamics described in
Eqs. (1), (2), (8), using presentation probabilities πµ for the different patterns. Equations of motion are integrated using a
simple Euler algorithm. During the dynamics the couplings evolve and reach a plateau corresponding to their stationary
value. When this happens we stop the dynamics and we freeze the couplings at their current value. We then switch
on each signal pattern in turn for a brief period, sufficient to have the society aligned with the patterns, after which
the signal is removed. We then wait until the value of mµ converges to a ‘‘stationary’’ level around which, due to the
noise, it oscillates with a small variance. The final average value of mµ is evaluated averaging over 700 values of mµ(t) at
tationarity. Results are then averaged over 10 simulations performed with different random pattern realizations.
In the simulation we assume that Iµ0 = I0 and – initially – for πµ = 1/p for all µ. In this way all the patterns have

he same probability of appearance and the same strength. Other details of how simulations are performed can be found
n Appendix C. In Fig. 1 we compare the results for mµ as a function of the presentation period ∆0 as obtained from
imulations with the analytical predictions. For the simulations we use systems of size N = 100, and p = 3 for the
umber of patterns which, as argued in [15], is representative of a system at low loading. As ∆0 becomes large, results for
andom patterns begin to deviate from the theoretical predictions. This is mainly due to the effect that random patterns
ave non-zero mutual overlaps in systems of finite size N , which is in contrast to assumptions used in the derivation
f the fixed-point equation for retrieval solutions in the thermodynamic limit N → ∞. Indeed, using a set of mutually
rthogonal patterns in the simulation, i.e. random patterns extracted with the condition that their scalar product is exactly
ull, we observe a much better agreement between analytical predictions and results from simulations.
To better understand this aspect we must carefully think of the role played by non-orthogonality: given two positively

orrelated patterns, the memory of the first gets reinforced while the second is presented and vice versa. When two
atterns are anti-correlated, the opposite happens and their memory is instead weakened. This phenomenon is amplified
hen ∆0 is large because the same patterns have more time to get mutually reinforced or weakened as the case may
e. The creation of this pattern imbalance may lead to some patterns having a smaller overlap than others, or even being
orgotten, which explains the deviation from predictions by numerical data for non-orthogonal patterns.

When the signal strength Iµ0 and the probability πµ vary between patterns, the behaviour of the society is non trivially
ffected. The influence of varying these two parameters is investigated in the following by performing two different
umerical experiments. In the first experiment, described in Section 3.1, we show how the recovery of a piece of news
epends on the probability of its appearance and on its strength in the news stream. In the second experiment, described
n Section 3.2, we investigate the recovery of patterns when their parameters are chosen at random, such to observe
ow the probability of a piece of news to be embedded in the society depends on the properties of the other news also
resented in the same dynamics.

.1. Storing random news with different strengths and frequencies of appearance

In the previous experiment we analysed the behaviour of a society under the effect of news items presented randomly
ith equal probability. With the aim of modelling a more realistic scenario we consider now an external signal made of
andom news which have a different probability of being presented to the society as well as different intensities. To start
his new analysis we will assign to the first pattern a probability π1 and a signal strength I10 and equal parameters to the
ther two with π2 = π3 = (1 − π1)/2 and I20 = I30 . In this experiment we will follow the same simulation protocols as
efore, except that we do not average the value ofmµ over several realizations. Rather than recording average overlaps, we
5
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Fig. 2. (a) Fraction of instances in which pattern one is recovered as a function of its probability of appearance. (b) Same for pattern two. The
uantities f1 and f2 have been calculated over 50 tests and then normalized on the interval [0, 1]. The simulations have been performed using the
ollowing parameters: I20 = I30 = 10, J0 = 8, ∆0 = 10.

Fig. 3. Black and red dots, corresponding to recovered and unrecovered patterns, are plotted as a function of their signal strength and probability
of presentation. The parameters of the simulation are N = 100, J0 = 8 and ∆0 = 17.

measure the fraction of instances fµ in which mµ exceeds a critical value mc = 0.4. This value is chosen to be significantly
arger than the value of random mutual overlaps between different patterns (see Appendix C for other simulations details.)

In Fig. 2 we show f1 and f2 as a function of π1 for different values of I10 keeping I20 = 10 fixed. For all signal strengths,
the fraction f1 increases steeply as the pattern probability π1 increases. We expect that for N → ∞ the curve presents a
iscontinuous transition between 0 and 1. As anticipated, when the probability π1 grows beyond 0.33 (the point where
he three patterns are equally probable), the pattern µ = 1 is always recovered, while the other two are progressively less
requently remembered. However the most interesting effect is linked to the signal strength. In a real society we expect
hat the intensities Iµ0 of external information are not equal for all pieces of news but that some are significantly weaker
r stronger than others. In Fig. 2 we show the effect of this variability in our model. The recovery of the first pattern
ecomes easier for I10 > I20 = I30 and more difficult for I10 < I2,30 . This result suggests that even a rarer piece of news, if
articularly intense and disruptive, can leave a strong mark on the society.
In Fig. 2 we can also notice that the increased strength of pattern one results in a more difficult recovery of pattern
even if its signal strength is not changed. This effect suggests that the possibility for a piece of news to impress the

ociety depends not only on its own immediate impact but also on the impact of other news that is present in the news
tream. This means that a piece of news strong enough to be remembered on its own can be forgotten when presented
longside stronger or more frequent information. This can explain, for example, how news about politics that would be
emembered when broadcast alone may be forgotten when presented with other shocking news, such as those about
error-attacks or earthquakes.
6
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.2. Storing random news with random intensities and frequencies of appearance

In the previous experiment we have shown that, when we fix the parameters of two pieces of information, the third one
resented in the same experiment is more likely to be recovered if presented more often or if it is presented with bigger
ntensity. This gives us only a partial information on how our society reacts to random news. To complete this picture,
e investigated the recovery of opinion patterns using a broad range of parameters. Using the protocol of Section 3.1, we
ow measure the recovery of patterns in a society where the signal strengths and probabilities of appearance are chosen
niformly at random in the intervals πµ ∈ [0, 1], with

∑p
µ=1 πµ = 1 and Iµ0 ∈ [0, 10]. As before we take p = 3. The

total number of samples of triplets taken is 3600. In Fig. 3 we plot a map of recovered (black dots) and unrecovered (red
crosses) patterns as a function of their probabilities of appearance and their strengths. For weak signals the patterns will
not be remembered by the society even when they appear very often. For larger signal strengths, there is a separation
between recovered and unrecovered patterns around π = 0.3.

We will call recovery zone the region of the graph where pattern recovery is predominant and will refer to the
complementary region as non-recovery zone. However Fig. 3 shows that some of the patterns around the boundary
between the two zones do not behave as expected, e.g. some news around I10 = 5 and π = 0.2 are recovered, while
some others around I10 = 5 and π = 0.4 are not. More generally, the separation between the two zones is not sharp and
we observe a large transition area. A smooth transition is to be expected due to finite size effects, as discussed earlier. In
fact, we present patterns only for a finite number of times in any realization of the dynamics, giving rise to fluctuations
in their effective frequency of appearance. However, other aspects may play a role, broadening even further the transition
area visible in Fig. 3. For instance as also discussed in the previous subsection the relative strength (and in this case the
relative probability of appearances) of concomitant news in the recent history can result in a systematically more frequent
recovery of news that would be otherwise unrecovered and vice versa. An attempt to disentangle these two aspects is
presented in Appendix A.

4. Extensively many patterns and society’s storage capacity

Real-life news are divulged with different intensity and characterized by different frequency of appearances. Moreover,
it is also conceivable that the number of different news the society receives should not be considered to be very small in
comparison to system size, as assumed when analysing the situation of a finite number of external signals that we have
considered so far.

We present here the analysis of a society hit by a stream of different news items, with each pattern µ presented
only once. For each presentation, a pattern is generated choosing each component ξ

µ

i uniformly at random from {±1}.
In particular, we will investigate the number of associated opinion patterns that the society can effectively remember, or
the storage capacity of the society, whose interactions have been shaped by such a history of news. In order to store a
large number of patterns, proportional to the number N of agents of the system, the society needs to receive a number of
news items of order N within the memory time τγ = 1/γ . For this reason we need to consider a scaling of the memory
decay rate of the form γ = γ0/N , as it is needed to ensure that an extensive number of patterns remains within ‘‘memory
range‘‘. In the initial formulation of the model (Eq. (2)) we used an explicit scaling factor 1/N in the couplings in order to
get a meaningful theory in the thermodynamic limit N → ∞. In the present case, there is no need to introduce such an
explicit scaling factor by hand, as the correct scaling follows automatically from the scaling of γ . Adopting such a scaling,
the couplings Jij are thus seen to take the form

Jij =
J0γ0

N

∫ t

0
dsvi(s)vj(s)e−γ0(t−s)/N . (17)

We should note that this scaling is correct in the limit of a large number of agents (thermodynamic limit), only when the
society receives a series of different random news. We consider an external signal made of a sequence of news labelled
by µ = 1, 2, 3, . . . , p, with p = αmaxN . Given that we are eventually considering a history of infinitely many patterns
presented, i.e. αmax → ∞, it is convenient to count them in reverse order, with µ = 1 indicating the most recent pattern
received and αmaxN indicating the oldest one. We should remark that αmax tending to infinity does not mean that the
society is able to store an infinite number of patterns, but only that the number of patterns presented is very large. The
time dependent external signal will thus be of the form

I(s) = I0ξ
µ

i (µ − 1)∆0 < t − s < µ∆0 . (18)

As before, we assume signal intensities to be large. Each signal pattern µ is presented for a time ∆0, during which the
society’s opinions are well aligned with the signal with vi(s) ≃ ξ

µ

i . We can use this to evaluate the integral in Eq. (17),
plitting it in pieces of length ∆0 and calculating them separately as described in [15]. The resulting couplings for small
0∆0 are:

Jij =
J0γ̃0

N

αmaxN∑
ξ

µ

i ξ
µ

j e−
(µ−1)γ̃0

N + o(γ̃ 2
0 ) . (19)
µ=1

7
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here we introduced γ̃0 ≡ γ0∆0. We will use αc to denote the storage capacity of the society, i.e., αcN is the maximum
umber of patterns that the society is able to recall. The concept of storage capacity was introduced in neural networks
nd first computed for the Hopfield model in [35]. Our couplings in Eq. (19) are in fact reminiscent of a particular type
f neural network model, the Hopfield model with forgetful memory [36–39]. In the present paper, we investigate the
torage capacity of a society in the noiseless limit of our model (1). In this case, the dynamics of the ui is known to be
overned by a Lyapunov function [40,41], provided the interaction matrix is symmetric and the function vj describing
he expressed opinions as functions of the preference fields uj are monotone increasing functions of their argument. Both
onditions met in our case. Following [42,43] we can locate the minima of the Lyapunov function, and thus the attractors
f the dynamics, by taking the zero-temperature limit of the free-energy of a system with the Lyapunov function as its
nergy function. The analysis can be found in Appendix B. We will describe the collective properties of the society using
hree order parameters:

1. the overlap between the society state and a given opinion pattern presented by the signal (taken to be pattern µ)

m =
1
N

∑
i

ξ
µ

i ⟨vi⟩ , (20)

where angled brackets denote a thermal average and over-bars an average over the disorder embodied by the other
opinion patterns ν(̸= µ) embedded in the society. For a finite number of patterns, this parameters corresponds to
the one defined in Eq. (13).

2. the mean of averaged squared opinions, which are the off-diagonal elements of the replica symmetric matrix of
Edwards–Anderson order parameters (see Appendix B)

q =
1
N

∑
i

⟨vi⟩
2 , (21)

3. a susceptibility-type parameter

C = β(qd − q) =
β

N

∑
i

(
⟨v2

i ⟩ − ⟨vi⟩
2
)

, (22)

where the qd are diagonal elements of the replica symmetric matrix of Edwards–Anderson order parameters.

aking use of replica theory (details of the calculations in Appendix B) we obtain the following three fixed point equations,
he solutions of which self-consistently determine these three order parameters and their dependence on the parameters
haracterizing the system:

m =

⟨⟨
ξµ v̂

⟩⟩
,

C =
1

J0
√
r

⟨⟨
zv̂
⟩⟩

, (23)

q =

⟨⟨
v̂2
⟩⟩

,

here

v̂(ξµ, I, z) = g
(
mξµJ0γ̃0e−γ̃0α

+ J0
√
rz + I − J0

(
1 +

ln(1 − J0γ̃0C)
J0γ̃0C

)
v̂

)
, (24)

ith

r =
q
J0C

[
1

1 − J0γ̃0C
+

ln(1 − J0γ̃0C)
J0γ̃0C

]
, (25)

nd where z is a normally distributed random variable of zero-mean and unit variance. The double angled brackets denote
n average over the site-random variables, i.e. ξµ and I , and over the Gaussian random variable z. We note that the

equations above have been obtained under the assumption that during every presentation time the society is perfectly
aligned with the signal patterns presented i.e. in the large I0 limit. The I appearing in Eq. (24) is not the signal described
by Eq. (18) that appeared during the history of pattern presentations to the society, but a node-dependent perceived
signal to which agents of the society may be subjected at the end of an extensive number of such pattern presentations.
In the following subsections we will study two different retrieval scenarios, one is the spontaneous retrieval of patterns
ξµ obtained setting I to 0, the other is the retrieval of old patterns when one of them is presented again, though in the
form of a weak randomly distorted version of the original.

In both cases the problem of solving z-dependent fixed-point equations within the set (23) of fixed-point equations is
avoided by transforming the Gaussian z- distribution into a v̂-distribution as done in [43] and then taking the averages
respect to the v̂-distribution.
8
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Fig. 4. Spontaneous retrieval of patterns in a society with an infinite history of news. (a) Critical capacity of the society as a function of γ̃0 for
ifferent values of J0 . (b) Comparison between analytical solutions of m for different values of α at γ̃0 = 15 and J0 = 0.2 and simulations of societies
f different sizes with Gaussian noise with mean 0 and variance σ 2

= 0.01. The dashed line corresponds to the analytical critical capacity.

.1. Spontaneous retrieval

We solved Eqs. (23) numerically for I = 0 and different values of α and γ̃0. We expect this system to have two solutions
hen α ≤ αc , one with m = 0 and one with m > 0, the latter disappearing for α > αc . We thus computed the storage
apacity αc as the threshold of α after which the system has a unique solution with m = 0. In Fig. 4(a) the values of
c found for different values of J0 are plotted as a function of γ̃0. Whatever the value of J0, the storage capacity is zero
hen γ̃0 is too small; it becomes non-zero at a critical value of γ̃0 and grows until it reaches a peak and then decreases
gain. A small value of γ̃0 corresponds to a long memory time or very short pattern presentation periods. This results
n a society being exposed to too many patterns within its memory time, which interfere with each other and make the
etrieval of these memories impossible. Conversely, when γ̃0 is too large, the memory of the patterns fades too quickly for
large number of patterns to be remembered. These phenomena are similar to those observed in [36–39] in the context
f forgetful Hopfield networks.
In Fig. 4(b) we show an example of how the solution jumps from m ∼ 1 to m = 0 when α > αc . The numerical

olution is compared to the values of m found using the simulated dynamics at low temperature for the model described
n Eq. (1). In the simulations we present a sequence of p = N signal patterns to a society of N = 800 and N = 200
ndividuals. We record the values of m in absence of signal as described at the end of Section 3 and we averaged them
ver 50 simulations with different patterns realizations. Other simulation details can be found in Appendix C. Fig. 4(b)
hows the values obtained as a function of α = µ/N , which are in good agreement with the theory. Given that we have a
inite N , the transition from one solution to the other at α = αc is not abrupt, but is rounded and becomes steeper with
ncreasing N . For the same reason there is a non-zero overlap of order O(1/

√
N) between the patterns, which results in

a residual m for α > αc .

4.2. Noisy signal

In this last subsection we study the ability of a society to retrieve patterns of news after having been exposed to an
infinite series of such news items. In particular, we focus on what happens when one of these pieces of news is presented
again to the society, albeit at low intensity and distorted by some amount of noise. How will the society respond? Will
it develop a reaction in line with the new pattern as presented, or will the interpersonal relations formed in response to
the society’s history of news exposures allow it to recognize and retrieve the information in its ‘‘pure’’ form as previously
stored? The answer depends not only on the strength of the signal presented and on how much it is distorted by the
noise, but also on how long ago in the past the society had been exposed to the original un-distorted version of it. In
other words, it depends on how well the memory of the original opinion pattern is still embedded in the system. In order
to model this situation, we consider a noisy signal of the form:

Ii = Ĩ0ξ
µ

i + σIzi (26)

where ξµ is one of the news presented in the society’s history, Ĩ0 the amplitude of the new signal to be presented and
σIzi is a Gaussian noise with mean 0 and variance σ 2

I .
First we comment on the average behaviour of the society. Fig. 5 shows the overlap m with the original pattern for

different values of σ and Ĩ at γ̃ = 10 and α = 0.012. In panel (a) it is visible how the retrieval of the original opinion
I 0 0

9
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Fig. 5. Recovery of patterns through a noisy signal in a society which has received an infinite history of news. (a) Solution of m as a function of
he level of noise of the applied signal, for different values of Ĩ0 , given J0 = 0.15, γ̃0 = 10 and α = 0.012. (b) Solution of m as a function of α for
ifferent level of noise and fixed Ĩ0 = 0.2, J0 = 0.15 and γ̃0 = 10. The dashed line indicates the value of αc in absence of the noisy signal. (c) Plot
f the distribution of expressed opinions p±(v̂) (corresponding to p(v̂) at ξµ

= ±1), for α = 0.012, J0 = 0.15, Ĩ0 = 0.015 and σI = 0.15. The dashed
ines correspond to the plots of the noisy signals with average ±Ĩ0 . (d) Same plot with σI = 0.1.

attern becomes more difficult as σI grows, until the pattern is no longer recovered. Naturally, as Ĩ0 gets bigger, the point
t which this happens moves towards larger values of σI . Conversely, when the noise is too disruptive the pattern is
ostly not retrieved but the presence of the signal still guarantees a non zero value of m.
We show in panel (b) how the distortion of the signal also changes the maximal ‘age’ αc of a news item that the

ociety is able to retrieve when exposed to a distorted version of it. While we use the same symbol as for the storage
apacity, i.e. the maximum number of opinion patterns a society can spontaneously retrieve, these quantities are obviously
ot strictly the same. In particular in absence of distortion, the presence of a signal aligned with one news already seen
roduces a larger αc than the storage capacity of spontaneous retrieval. In other words, the presence of Ĩ0 allows the
etrieval of opinion patterns that would have not been recovered spontaneously. When some amount of distortion is also
resent, how far in the past these opinion patterns can have been presented and still be recalled, clearly depends on
he level σI of distortion of the pure memories. Fig. 5(b) shows how the value of αc at which the solution for m jumps
etween a high and a low value, depends on σI when the distortion is added to a signal of strength Ĩ0 = 0.2. When the
oise increases, the degree of similarity with an item originally stored decreases implying that older opinion patterns,
hich are less strongly embedded, cannot be recalled any longer; this is confirmed by the fact that the corresponding αc
ecreases with increasing level σI of pattern distortion.
These results on the average behaviour can be complemented by looking at the distribution of expressed opinions,

hich reveal the emergence of an interesting behaviour. Figs. 5(c) and 5(d) show how the distributions of expressed
pinions in response to a distorted incoming piece of news, change in a very non trivial way with its noise level σ . The
I
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unctions I+ and I− show the distribution of the external fields corresponding to positive and negative values of ξ
µ

i , with

I± = ±Ĩ0 + σIzi . (27)

he function p+(v̂) is the distribution of expressed opinions of all agents i which originally received the signal I = I0ξ
µ

i
ith ξ

µ

i = +1, while p−(v̂) is the same for ξ
µ

i = −1. When expressed opinions have the same sign as the original signal
e can conclude that the society has successfully retrieved the corresponding news.
Panels (c) and (d) show two scenarios in which the signal is in both cases very distorted and the distributions of I+ and

− barely differ, being just slightly shifted versions of each other, yet the response of the society is very different. Panel
c) shows that in presence of a very large distortion p+(v̂) and p−(v̂) are approximately symmetrical and almost identical.
his means that the society is not able to retrieve the original opinion pattern and individuals’ opinions are uncorrelated
ith the original un-distorted opinion pattern the society had been exposed to in the past.
A small reduction of the noise level or the amount of distortion of an original news item leads to a completely different

ehaviour in terms of the distributions of expressed opinions. The results corresponding to this scenario are shown in
anel (d), with distributions of expressed opinions being strongly asymmetric and biased in the direction of the original
n-distorted signal with, p+(v̂) (p−(v̂)) peaked at 1 (−1) only. In this case individual’s opinions are almost perfectly aligned

with the originally presented information, despite the fact that the society is exposed to an external signal which has very
little resemblance with it.

The important message delivered by these results is that even a weak and distorted signal can trigger the society to
retrieve old stored memories. The society described by our model is able to remember information from the past, even
when exposed to very noisy versions of it. The collective memory that emerges in this context connects distorted pieces
of information to their clear un-distorted versions embedded in the collective memory. The maximum amount of noise
tolerated for this to happen depends on the signal strength Ĩ0 and the value of α, i.e. how far in the past an original news
item has impacted the society. In a real society shaped by a history of intense events, like terror attacks, earthquakes, or
other crises, a new signal which resembles one of the old memories, even if only barely, can trigger in the population
the same reactions it had shown in the past. These results open the way to design social experiments to understand how
collective memory is formed and activated or re-activated by new information, and to test whether this mechanism can
explain strong and pronounced collective responses to news items that do not appear to be particularly disruptive.

5. Conclusions

In this paper we studied how exposure to strong external information can shape the behaviour of a society within a
model of opinion dynamics introduced in our previous paper [15] that produces interactions between individual agents
based on their recent history of mutual agreement or disagreement. In this way people tend to agree with others if they
have a history of predominant of mutual agreement, whereas they will be more likely to disagree with them in case of a
history of predominant recent disagreement. This mechanism gives rise to a collective memory effect by which a society
can remember past configurations of opinions. As mentioned initially, the opinion configurations we are interested in
are those produced in reaction to external news. In the present paper we studied the effect of random news and how
properties, such as their frequency of appearance, their strength or their relative intensity with respect to other news,
determine whether the corresponding opinion patterns can be remembered or not. Unsurprisingly, we have seen that
opinions in reaction to strong and frequent news are more easily remembered. However, we observe that even rare signals
can have a deep impact on the society if they are powerful enough. Moreover, we showed that the memory formation of
an opinion pattern depends not only on its own strength and frequency of appearance, but also on the characteristics of
the other news presented within the memory span of a society. In fact, a piece of news which has a sufficient strength
to be remembered if presented along with news items which have a similar amplitude, can be forgotten if were instead
presented along with stronger news. A different aspect of the model behaviour is the proportion of consecutive news
that a society can remember when a very long sequence of information is presented. Using techniques borrowed from
statistical mechanics, we found this proportion analytically and confirmed it using simulations. The results which we found
are compatible with the behaviour of models appearing in the literature of forgetful Hopfield networks [36–39]. The last
result concerns how noisy information is perceived by the society. We showed that if a piece of news was presented
in the recent history of a society, and it is confronted with distorted version of it, the society is able to reconnect the
distorted version with the clean memory it corresponds to, recalling the originally stored memory of it. This implies that
the collective memory of a society is able to produce interesting effects that modulate the collective perception of current
news or affairs, and it could be used to understand attitudes of people towards external events that may be only weakly
correlated with past ones. This means that a shocking event that hits a society can change its perception of future similar
events.

In the future we would like to extend our work by adding other interesting features to our model. We know for example
that in the real world not all people receive the same news or perceive them with the same strength, so we aim to take
this into account. Another possible improvement consists in personalizing the intensity of the pressure of the society
for different agents. In this way some people will be more influenced by their peers and others less. Another possibility
is to consider multiple opinions related to a set of different issues that may be relevant at the same time, and to have
interactions depending on the history of such sets of opinions on a range of different topics. Apart from the addition of
further ingredients to the model, a possible research direction would be the validation of our predictions with data from
the real world. While we foresee some difficulties in finding readily available data suitable for this purpose, a way to
circumvent this problem could be to design social experiments to collect the necessary data.
11
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ppendix A. Patterns mutual influence

To inspect the effect of mutual interactions between patterns of news concomitantly presented to the society, we
tudied several societal dynamics where random news are presented in triplets with random probability of appearance
nd random intensity. In Fig. 3 we report the information on the final recovery or non-recovery of the patterns from the
ociety, as a function of the probability and the intensity with which they were presented. In the graph we can notice
smooth transition region between a recovery zone and a non-recovery zone with some patterns within the recovery
one remaining un-recovered and, conversely, some patterns in the non-recovery zone apparently being recovered. Apart
rom an expected finite size effect, a factor which can also contribute to this phenomenon is the influence of the relative
trengths and the relative probabilities of patterns presented during the same run of the dynamics. In fact, in Section 3.1,
ig. 2(b) we saw that, when there is one pattern in a triplet of patterns with a stronger amplitude, the other two are
ecovered less frequently than the strong pattern in question. In order to understand if this is a reason for anomalously
ecovered or un-recovered patterns, we propose to isolate outliers in the recovery and non-recovery zone which we
dentify as those patterns that have an anomalous behaviour when compared to their neighbours in the parameter space
f frequency of occurrence and intensity, i.e. they are points corresponding to recovered patterns which are predominantly
urrounded by those corresponding to un-recovered patterns and vice versa. Fig. A.6(a) shows a selection of points µ which
ave at least 50% of neighbours µ′ with opposite retrieval outcome (and opposite colour in our representation) within

istance d =

√
(Iµ0 − Iµ

′

0 )2 + ((πµ − πµ′ ) · 10)2 = 0.2. We multiplied the difference in probability to a factor 10 in order
to account for the difference in scale between the probability which is randomly drawn between 0 and 1, and the signal
strength which is randomly drawn between 0 and 10.

To investigate whether mutual interactions between patterns influences recovery, we evaluate where the anomalous
patterns are located relative to the other patterns in within their triplet which have the opposite recovery state. This
means for example, that given a pattern that is unexpectedly recovered, we want to know how it is located relative to
the un-recovered patterns presented within the same run of the dynamics. We thus calculate the average coordinate
difference between the anomalously recovered point and the patterns in their triplets with opposite behaviour. Given
a recovered pattern µ = 1, assuming that both the patterns µ = 2 and µ = 3 are un-recovered, we calculate the
coordinate difference in the I0 direction as ∆I0 =

I10−I20
2 +

I10−I30
2 . If only µ = 2 is un-recovered then ∆I0 = I10 − I20 .

nalogous formulae apply to the difference in the π direction. We thus replot the points in Fig. A.6(a) as a function of
the coordinate differences.1

Interestingly, we notice that recovered (unrecovered) patterns typically fall into their ‘natural’ or expected top-right
(bottom-left) regions when plotted in terms of their new coordinates. In other words, unexpected recovery (or non-
recovery) of patterns, as highlighted in the right panel, can be explained by the fact that they were appearing together
with particularly weak (strong) or less (more) frequent patterns, which affected their likelihood of retrieval despite their
own features.

Additional evidence about the mutual influence of news retrievals can be obtained by looking directly at the statistics
of news, which belong to the triplets of patterns that are anomalously retrieved or unretrieved by the society. Figs. A.6(c)
and A.6(d) show in yellow respectively the anomalously recovered and unrecovered patterns of Fig. A.6(a), accompanied
only by the patterns presented in the same run of the dynamics. The accompanying patterns are presented in red when
they are not recovered and in black when they are recovered. In Fig. A.6(c) we observe that anomalously recovered

1 Given that we are looking at the relative location of patterns behaving differently in the same triplet, we do not plot the points in dynamics
where all the three patterns are recovered (little circles in Fig. A.6(a)). Dynamics in which all the three patterns are not recovered are not present
in the simulations performed.
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Fig. A.6. (a) A selection of points from Fig. 3 which have more than 50% of neighbours of the opposite colour within a circle of radius of 0.05,
plotted as a function of their signal strength and probability of presentation. Black markers correspond to recovered patterns and red markers to
unrecovered patterns. Circles highlight patterns belonging to dynamics in which all three patterns presented have been recovered. Panel (b) shows
a subset of the data of (a), excluding those that belong to triplets of patterns that are all recovered. Points are plotted as a function of their average
istance from the patterns in the same run of the dynamics which have a different recovery state. (c) Yellow dots represent the recovered patterns
n panel (a) while the red crosses and black dots represent respectively the unrecovered and recovered patterns in a run of the dynamics that gives
ise to the yellow points. (d) Same as (c) but this time yellow crosses indicate unrecovered patterns from panel (a). The parameters of the simulation
re N = 100, J0 = 8 and ∆0 = 17.

atterns are often accompanied by other recovered patterns with medium probability of appearance, which rarely reaches
> 0.5. Conversely, anomalously unrecovered patterns are accompanied by other recovered patterns with probability

f appearance often in the range 0.5 − 0.8, as visible in Fig. A.6(d). These observations give additional evidence to
the hypothesis that very frequent news can hinder the ability of other news to be retrieved. Moreover, we note that
anomalously recovered patterns often appear concomitantly with very weak news with medium probability of appearance,
see the dense cluster of unrecovered patterns with π around 0.3 − 0.6 and I0 between 0 and 1 in Fig. A.6(c). The same
egion of parameters is totally empty in Fig. A.6(d), which contain information about triplets of anomalously unretrieved
atterns. This last observation supports the idea that the retrieval of a pattern is enhanced when accompanying patterns,
hich appear often in the dynamics, are weak enough.
Unfortunately, even in the simple case of societal dynamics involving only three patterns discussed here, these

henomena do not establish quantitative causal relations on the possibility to retrieve or not retrieve a pattern, although it
ecomes clear that fluctuations of retrieval probabilities cannot be simply ascribed to finite-size effects. We have, however,
ollected indirect evidence that the relative strength and probability of the patterns in the system can influence the
ikelihood of their recovery. In particular, a pattern which has a probability and/or a strength which is small in magnitude
an be recovered if the other patterns in the same dynamics are weaker in probability or signal strength. Similarly,
13
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atterns in a triplet of patterns with medium/high probability and/or high signal strength can end up being unexpectedly
nrecovered.

ppendix B. Replica calculations for an infinite flow of patterns

In this Appendix we derive the system of Eqs. (23), which defines the order parameters of the model in the noiseless
imit of Eq. (1). The society described by this model is subject to an infinite sequence of external signals representing
xposure to an infinite history of news items (Eq. (18)), as introduced in Section 4. Using replica calculations, we obtain
he free-energy of the model and we derive and solve the corresponding fixed-point equations in the zero-temperature
imit. The calculation follows standard reasoning. For further details, we refer to [43].

.1. Replica approach

We start assuming that the asymptotic state of our system is macroscopically correlated with at most one of the
resented patterns, taken to be pattern µ. We want to obtain the average of the free energy of the system taken over
he randomness in all but pattern µ = αN . This is done using replica trick, for which we can write the free energy in the
orm

f (β) = −
1
β

lim
N→∞

lim
n→0

(Nn)−1 ln Zn
N (B.1)

here β is the reciprocal of the thermodynamic temperature which tends to infinity in the noiseless limit, while n is the
umber of replica and

Zn
N =

∫ ∏
iσ

dviσ exp
{
−β

n∑
σ=1

H({vσ })
}

. (B.2)

s the replicated partition function. One can write the Hamiltonian of a replica σ appearing in this expression as follows

H({vσ }) = −
NJ0γ̃0

2
mµ

σ
2 e−γ̃0α

−
J0γ̃0

2

∑
ν(̸=µ)

Xν
σ
2 e−γ̃0ν/N

+
J0
2

(
1 − e−γ̃0αmax

)∑
i

v2
iσ −

∑
i

Iiviσ +

∑
i

G(viσ ) . (B.3)

Here

mµ
σ =

1
N

∑
i

ξ
µ

i viσ

Xν
σ =

1
√
N

∑
i

ξ ν
i viσ , ν(̸= µ) ,

and G(v) is the integrated inverse input–output relation

G(v) =

∫ v

dv′g−1(v′) . (B.4)

The disorder due to the patterns ν(̸= µ) appears only through the Xν
σ , which for any fixed configuration {vσ } are Gaussian

random variables of zero mean and covariance

⟨Xν
σX

ν′

σ ′⟩ =
δνν′

N

∑
i

viσ viσ ′ = δνν′qσσ ′ . (B.5)

The average over the patterns disorder can therefore be performed as a Gaussian integral, resulting in

Zn
N =

∫ ∏
iσ

dviσ exp

{
N

[
β
J0γ̃0

2

∑
σ

mµ
σ
2 e−γ̃0α

+ (B.6)

−
1
2

∫ αmax

0
dx tr ln

(
I − βJ0γ̃0 e−γ̃0xQ

) ]

−
βJ0
2

(
1 − e−γ̃0αmax

)∑
v2
iσ + β

∑
Iiviσ − β

∑
G(viσ )

}

i,σ i,σ iσ
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n which Q is a matrix with elements qσσ ′ . The standard procedure now is to introduce the overlaps mµ
σ and Edwards–

nderson order parameters qσσ ′ as integration variables, using conjugate variables for Fourier representations of δ-
unctions that enforce the definition of these order parameters. This results in

⟨Zn
N⟩ =

∫ ∏
σ

dmµ
σ dm̂

µ
σ

2π/N

∏
σσ ′

dqσσ ′dq̂σσ ′

2π/N
exp

{
N

[
β
J0γ̃0

2

∑
σ

mµ
σ
2 e−γ̃0α

−
1
2

∫ αmax

0
dx tr ln

(
I − βJ0γ̃0 e−γ̃0xQ

)
−

∑
σ

im̂σmσ −

∑
σσ ′

iq̂σσ ′qσσ ′

+
1
N

∑
i

ln
∫ ∏

σ

dvσ exp

{∑
σ

im̂σ ξ
µ

i vσ +

∑
σσ ′

iq̂σσ ′vσ vσ ′

−
βJ0
2

(
1 − e−γ̃0αmax

)∑
σ

v2
σ + βIi

∑
σ

vσ − β
∑

σ

G(vσ )

}]}
. (B.7)

his is now of a form that can be evaluated by the saddle-point method. In the thermodynamic limit, the (empirical)
verage over single site free energies 1

N

∑
i ln
∫ ∏

σ dvσ exp{. . . } appearing in the last two lines of (B.7) will, by the law
of large numbers, converge to a joint average over all forms of on-site randomness present in the average, i.e., the Ii, and
the ξ

µ

i .
The stationarity requirement on the exponent w.r.t. variations of the conjugate variables gives two self-consistency

equations

mµ
σ =

⟨⟨
ξµ

⟨vσ ⟩

⟩⟩
, qσσ ′ =

⟨⟨
⟨vσ vσ ′⟩

⟩⟩
, (B.8)

while the stationarity requirement w.r.t. the order parameters mµ
σ and qσσ ′ results in

im̂µ
σ = βJ0γ̃0mµ

σ e−γ̃0α , (B.9)

iq̂σσ ′ =
βJ0γ̃0

2

∫ αmax

0
dx e−γ̃0x

(
I − βJ0γ̃0 e−γ̃0xQ

)−1

σσ ′
. (B.10)

Inner averages in (B.8) denote thermal averages over effective i-dependent replicated single-site Hamiltonians defined via
(B.7); after inserting the values of the conjugate order parameters as defined via Eqs. (B.9) and (B.10), it is seen to take
the form

H (i)
eff({vσ }) = −J0γ̃0 e−γ̃0α

∑
σ

ξ
µ

i mµ
σ vσ

−
J0γ̃0

2

∑
σσ ′

∫ αmax

0
dx e−γ̃0x

(
I − βJ0γ̃0 e−γ̃0xQ

)−1

σσ ′
vσ vσ ′

+
J0
2

(
1 − e−γ̃0αmax

)∑
σ

v2
σ − Ii

∑
σ

vσ +

∑
σ

G(vσ ) (B.11)

he i dependence originates from the on-site disorder in (B.7), and the outer average denoted by double angle brackets
n (B.8) denotes an average over the joint distribution of this remaining on-site disorder.

.2. Replica symmetry

Assuming replica symmetry (RS) for the solutions of the fixed point equations, with

mµ
σ = m , qσσ = qd , and qσσ ′ = q for σ ̸= σ ′ , (B.12)

one can decouple the replica and take the n → 0-limit of the theory as required. Using the shorthand a(x) = βJ0γ̃0 e−γ̃0x,
we notice that the term coupling replica in the effective single-site Hamiltonian H (i)

eff({vσ }) in Eq. (B.11) is

1
2

∑
σσ ′

∫ αmax

0
dx a(x)

(
I − a(x)Q

)−1

σσ ′
vσ vσ ′ (B.13)

=
1
2

∑∫ αmax

dx a(x)
((

1 − a(x)(qd − q)
)
I − a(x)q1

)−1

σσ ′
vσ vσ ′
σσ ′ 0

15
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n which I is the n × n unit matrix, while 1 is the n × n with all elements equal to 1. Using the algebra of these matrices
one finds

(AI − B1)−1
=

1
A
I +

B
A(A + Bn)

1 −→
1
A
I +

B
A2 1 , as n → 0 .

We thus get

1
2

∑
σσ ′

∫ αmax

0
dx a(x)

((
1 − a(x)(qd − q)

)
I − a(x)q1

)−1

σσ ′
vσ vσ ′

=
1
2

∫ αmax

0
dx

a(x)
1 − a(x)(qd − q)

∑
σ

v2
σ

+
1
2

∫ αmax

0
dx

a(x)2q(
1 − a(x)(qd − q)

)2 (∑
σ

vσ

)2
(B.14)

Exploiting the fact that a′(x) = −γ̃0a(x), we find (assuming αmax → ∞) the first integral to give

1
2

∫
∞

0
dx

a(x)
1 − a(x)(qd − q)

= −
1
2

ln
(
1 − βJ0γ̃0(qd − q)

)
γ̃0(qd − q)

(B.15)

o evaluate the second integral, use

d
dx

[
a(x)

1 − a(x)(qd − q)

]
=

−γ̃0a(x)
1 − a(x)(qd − q)

−
a(x)2γ̃0(qd − q)(
1 − a(x)(qd − q)

)2 , (B.16)

ence
1
2

∫
∞

0
dx

a(x)2q(
1 − a(x)(qd − q)

)2
=

1
2

q
γ̃0(qd − q)

[
βJ0γ̃0

1 − βJ0γ̃0(qd − q)
+

ln
(
1 − βJ0γ̃0(qd − q)

)
(qd − q)

]

=
1
2

βJ0q
qd − q

[
1(

1 − βJ0γ̃0(qd − q)
) +

ln
(
1 − βJ0γ̃0(qd − q)

)
βJ0γ̃0(qd − q)

]
(B.17)

lthough it is not obvious at this point, this integral is positive by construction.
It is expected that C = β(qd − q) will remain finite in the β → ∞-limit we are interested in.
This gives

1
2

∫
∞

0
dx

a(x)
1 − a(x)(qd − q)

= −
βJ0
2

ln
(
1 − J0γ̃0C

)
J0γ̃0C

nd

1
2

∫
∞

0
dx

a(x)2q(
1 − a(x)(qd − q)

)2 =
1
2
(βJ0)2q
J0C

[
1

1 − J0γ̃0C
+

ln
(
1 − J0γ̃0C

)
J0γ̃0C

]

≡
1
2
(βJ0)2r (B.18)

The coupling between replica through a complete square embodied in the second contribution in (B.14) is then dealt with
in the usual way by Gaussian linearization.

The fixed point equations for m, q and C finally take the form

m =

⟨⟨
ξµ

⟨v⟩

⟩⟩
, C =

1
J0

√
r

⟨⟨
z ⟨v⟩

⟩⟩
, q =

⟨⟨
⟨v⟩

2
⟩⟩

, (B.19)

in which r is defined through Eq. (B.18):

r =
q
J0C

[
1

1 − J0γ̃0C
+

ln
(
1 − J0γ̃0C

)
J0γ̃0C

]
. (B.20)

he inner average in Eq. (B.19) is now a thermal average over effective RS single-site Hamiltonians of the form

HRS = −

(
ξµmJ̃0e−γ0∆0α

+ J0
√
r z + I

)
v +

J0 (1 +
ln(1 − J0γ̃0C))

v2
+ G(v) (B.21)
2 J0γ̃0C
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hile outer averages are over the on-site disorder and over the additional zero-mean unit-variance Gaussian z appearing
n HRS. In the limit for β → ∞, given a generic function F the inner averages can be written as:

⟨F (v)⟩ = F (v̂) (B.22)

where v̂ is the value of v which minimizes HRS

v̂(ξµ, I, z) = g
(
mξµJ0γ̃0e−γ̃0α

+ J0
√
rz + I − J0

(
1 +

ln(1 − J0γ̃0C)
J0γ̃0C

)
v̂

)
. (B.23)

e are thus left with the problem of solving a z-dependent fixed-point equation, Eq. (B.23), within the system (B.19) of
ixed-point equations, which is avoided by transforming the Gaussian z-distribution into a v̂-distribution and then taking
he averages respect to v̂. For a vanishing signal, i.e. I = 0, the resulting p(v̂) will be given by

p(v̂) =
e−z2/2

√
2π

dz
dv̂

,

=
e−z2/2

J0
√
2πr

[√
π

2
eerf

−1(v̂)
2
+ J0

(
1 +

ln(1 − J0γ̃0C)
J0γ̃0C

)]
, (B.24)

with:

z =
1

J0
√
r

[
erf−1(v̂) − mξµJ0γ̃0e−γ̃0α

− I + J0v̂
(
1 +

ln(1 − J0γ̃0C)
J0γ̃0C

)]
. (B.25)

If instead we consider a Gaussian signal, as described in Eq. (26), the value of v̂ can be written as:

v̂(ξµ, z, z ′) = g
(

ξµ(mJ0γ̃0e−γ̃0α
+ Ĩ0) + J0

√
rz + σIz ′

− J0
(
1 +

ln(1 − J0γ̃0C)
J0γ̃0C

)
v̂

)
. (B.26)

in which z, z ′ are two independent standard Gaussians. Using the fact that the sum of Gaussians is itself Gaussian (with
variances given by the sum of variances), we can write

v̂(ξµ, z) = g
(

ξµ(mJ0γ̃0e−γ̃0α
+ Ĩ0) +

√
J20 r + σ 2

I z − J0
(
1 +

ln(1 − J0γ̃0C)
J0γ̃0C

)
v̂

)
. (B.27)

o

z =
1√

J20 r + σ 2
I

[
erf−1(v̂) − ξµ(mJ0γ̃0e−γ̃0α

+ Ĩ0) + J0v̂
(
1 +

ln(1 − J0γ̃0C)
J0γ̃0C

)]
. (B.28)

and

p(v̂) =
e−z2/2

√
2π
√
J20 r + σ 2

I

[√
π

2
eerf

−1(v̂)
2
+ J0

(
1 +

ln(1 − J0γ̃0C)
J0γ̃0C

)]
. (B.29)

Appendix C. Methods

C.1. Simulations

In this paper we simulate the dynamics of the society described by Eq. (1) in order to measure the spontaneous retrieval
of opinion patterns induced by the presentation of different kind of external signals.

In order to do this, we discretize the Eq. (1) with a time step dt = 0.1, where smaller dt were seen not to significantly
change the results. At each time step we use Euler method to calculate the preference of each agent ui, and the couplings
Jij, discretizing with the same time step its differential equation (obtained differentiating Eq. (2)):

J̇ij(t) = γ

[
J0
N

vi(t)vj(t) − Jij(t)
]

. (C.1)

Even if the Euler method is a simple integration method, it is accurate enough for our purposes.
There are many parameters to be set up for these simulations. In Section 3 we simulate a society which receives p = 3

patterns in a random order. The size of the system is set to be N = 100, the strength of the interactions J0 = 6 and the
memory factor γ = 10−3. Other parameters, as the time length of the external signal and the amplitude I0 of the polarizing
ignal, change in different simulations and are indicated under the corresponding figures. The number of agents N = 100
s a good approximation of the thermodynamic limit at finite p. Although these numbers seem small, they produce results
hat are representative of the N → ∞ limit with p ≪ N .
17
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In Section 4 we perform the same kind of simulations to describe a society which receives an infinite number of
external news. In this case J0 is fixed to 0.2, a value at which was possible to obtain analytical results to be compared to
he simulations. The signal strength was chosen to be I0 = 10 while the size of the system explored where N = 200 and
= 800. The value of γ̃0 is chosen to be 15, close to the point at which the corresponding critical capacity is maximum.

he value of γ̃ is varied through different simulations, with only the value of ∆0 changing and γ0 always kept at 1. Through
ll the paper we used a low noise level, with variance σ 2

= 0.01, to ensure that non-trivial collective states can emerge.
All simulations start with random initial conditions ui ∼ N (0, σ 2/2) which would be the equilibrium distribution in a
non-interacting system without external signal.

C.2. Numerical solutions

Numerical solutions of Eq. (23) are obtained iteratively. The double angle bracket are evaluated as an average over
ξµ

= ±1 and an integral over p(v̂) (Eq. (B.24)).
We would like to find a solution close to m = 1 so we start with an initial guess of m ∼ 1, c ∼ 0 and q ∼ 1, and we

iterate as follow:

m(i + 1) = ρm(i) + (1 − ρ)
1
2

[∫ 1

−1
dv̂v̂p+(v̂) −

∫ 1

−1
dv̂v̂p−(v̂)

]
,

C(i + 1) = ρC(i) + (1 − ρ)
1

2J0
√
r

[∫ 1

−1
dv̂zp+(v̂) +

∫ 1

−1
dv̂zp−(v̂)

]
,

q(i + 1) = ρq(i) + (1 − ρ)
1
2

[∫ 1

−1
dv̂v̂2p+(v̂) +

∫ 1

−1
dv̂v̂2p−(v̂)

]
, (C.2)

where z is expressed as a function of v̂ as described by Eq. (B.25). The notation p±(v̂) indicates the distribution p(v̂)
evaluated at ξµ

= ±1. We consider the iterative algorithm converged when the difference between the values found
at step i + 1 and i is smaller than 10−9. Numerical solutions of the set are found for different values of α and γ̃0. For
ach couple of parameters, the iterative algorithm is initialized in the solution found in the closest point in the parameter
pace.
We should finally notice that for

J0

(
1 +

log(1 − J0γ̃0C)
J0γ̃0

)
< 0 (C.3)

the slope of the error function appearing in Eq. (24) induces the solution of v̂ to be discontinuous. In particular v̂ is
negative from −1 to −v0, jumps to a positive value v0 which must be found numerically, and remains positive from v0
to 1. In this case the integrals appearing in Eq. (C.2) must be split and taken from −1 to −v0 and from v0 to 1. For the
arameters used in this paper the condition in Eq. (C.3) is not met, so this split is not necessary.
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