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Distribution of shortest cycle lengths in random networks
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We present analytical results for the distribution of shortest cycle lengths (DSCL) in random networks. The
approach is based on the relation between the DSCL and the distribution of shortest path lengths (DSPL). We
apply this approach to configuration model networks, for which analytical results for the DSPL were obtained
before. We first calculate the fraction of nodes in the network which reside on at least one cycle. Conditioning on
being on a cycle, we provide the DSCL over ensembles of configuration model networks with degree distributions
which follow a Poisson distribution (Erdős-Rényi network), degenerate distribution (random regular graph), and
a power-law distribution (scale-free network). The mean and variance of the DSCL are calculated. The analytical
results are found to be in very good agreement with the results of computer simulations.
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I. INTRODUCTION

Network models provide a useful conceptual framework
for the study of a large variety of systems and processes in
science, technology, and society [1–4]. These models consist
of nodes and edges, where the nodes represent physical objects,
while the edges represent the interactions between them.
Unlike regular lattices in which all the nodes have the same
coordination number, network models are characterized by a
degree distribution P (K = k), k = 0,1,2, . . . , with a mean
degree denoted by 〈K〉. An important distinction is between
networks which exhibit a narrow degree distribution (such
as the Poisson distribution) and those which exhibit a broad
degree distribution, which is typically a power-law distribution
of the form P (K = k) ∼ k−γ . The latter networks are called
scale-free networks. They exhibit some highly connected
nodes, called hubs, which are essential for the integrity of these
networks and play a dominant role in dynamical processes.

While pairs of adjacent nodes exhibit direct connections,
the interactions between most pairs of nodes are mediated by
intermediate nodes and edges. A pair of nodes, i and j , may
be connected by many paths of different lengths. However, the
distance, �ij , between nodes i and j is given by the length of
the shortest path between them. The mean distance between all
pairs of nodes in a network is denoted by 〈L〉. A central feature
of random networks is the small-world property, namely the
fact that the mean distance scales like 〈L〉 ∼ ln N where N is
the network size [5–8]. Moreover, it was shown that scale-free
networks may be ultrasmall depending on the exponent γ .
In particular, for 2 < γ < 3, their mean distance scales like
〈L〉 ∼ ln ln N [9].

The distribution of shortest path lengths (DSPL) between
all pairs of nodes in a network is a fundamental property
of the network structure. The DSPL regulates the temporal
evolution of dynamical processes on networks, such as signal
propagation [10], navigation [11–13], and epidemic spreading
[14,15]. Properties of the DSPL have been studied in different
types of networks [16–23]. However, in spite of its importance
it has not attracted nearly as much attention as the degree
distribution.

Recently, an analytical approach was developed for cal-
culating the DSPL [24] in the Erdős-Rényi (ER) network,

which is the simplest mathematical model of a random network
[25–27]. The study of the DSPL was later extended to other
network models [28–30]. Using recursion equations, analytical
results for the DSPL were obtained in different regimes,
including sparse and dense networks of small as well as
asymptotically large sizes. The resulting distributions were
found to be in good agreement with the results of computer
simulations.

ER networks are random graphs which exhibit a Pois-
son degree distribution, with no degree-degree correlations
between pairs of adjacent nodes. In fact, ER networks can
be considered as a maximum entropy ensemble, under the
constraint that the mean degree is fixed. Moreover, the broader
class of configuration model networks generates maximum
entropy ensembles under conditions in which the entire degree
distribution is constrained [2,16,31–33]. For any given degree
distribution, one can produce an ensemble of configuration
model networks and perform a statistical analysis of its
properties. Therefore, the configuration model provides a
powerful platform for the analysis of random networks. It is the
ideal model to use as a null model when one tries to analyze an
empirical network of which the degree distribution is known.
To this end, one constructs configuration model networks of
the same size and the same degree distribution as the empirical
network. Properties of interest such as the DSPL [34], the
betweenness centrality [35], and the abundance of network
motifs [36–38] are compared between the two networks. The
discrepancies provide a rigorous test of the systematic features
of the empirical network versus the corresponding ensemble
of random networks.

In addition to open paths between pairs of distinct nodes,
networks may exhibit cycles, namely closed paths which return
to their initial nodes. The length of a cycle is given by the
number of edges (or nodes) which reside along the cycle. The
shortest possible cycle is the triangle, of length � = 3. The
longest possible cycle is a Hamiltonian cycle of length � = N .
Some nodes in a network may not reside on any cycle. Other
nodes may reside on one or more cycles. In the latter case,
the shortest among these cycles is of particular importance.
The shortest cycle on which a given node resides provides
the shortest feedback loop for signals originated from that
node and the strongest correlations between signals reaching

2470-0045/2017/96(6)/062307(16) 062307-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.062307


BONNEAU, HASSID, BIHAM, KÜHN, AND KATZAV PHYSICAL REVIEW E 96, 062307 (2017)

the node via different links. Therefore, the distribution of
shortest cycle lengths (DSCL) provides useful information on
chemical networks [39], biological networks [40], feedback
processes [41], oscillations [42–44], and synchronization [4]
in complex networks, as well as for ranking of nodes [45,46].
Moreover, the partition functions of statistical physics models
on networks can be expressed in terms of the combinatorial
properties of the cycles, using high temperature expansions
and low temperature expansions [47].

An important class of networks consists of tree networks, in
which any pair of nodes is connected by a single path. Thus, in
tree networks the shortest path between any pair of nodes is the
only path between them and there are no cycles. Tree structures
appear in the dilute limit of random networks such as the
ER network and the configuration model network, below the
percolation transition. Above the percolation transition long
cycles start to emerge in the giant cluster. As the network
becomes more strongly connected, the size of the giant cluster
increases and the cycles become more numerous and shorter.

In this paper we present analytical results for the DSCL
in configuration model networks. We first calculate the
probability that a random node resides on at least one cycle.
We then calculate the DSCL for all the nodes which reside on
at least one cycle. We apply this approach to networks with
Poisson, degenerate, and power-law degree distributions. It is
found that the analytical results are in very good agreement
with numerical simulations. Using the tail-sum formula we
calculate the mean and the variance of the DSCL for these
networks.

The paper is organized as follows. In Sec. II we present
the configuration model. In Sec. III we consider the perco-
lation transition and the giant cluster in configuration model
networks. In Sec. IV we consider properties of the DSPL to
be used in the calculation of the DSCL. In Sec. V we present
analytical results for the fraction of nodes which reside on
at least one cycle. In Sec. VI we present analytical results
for the DSCL of configuration model networks, expressed in
terms of the degree distributions and the DSPL. In Sec. VII
we apply these results to ER networks, regular graphs, and
scale-free networks. The results are discussed in Sec. VIII
and summarized in Sec. IX. In Appendix A we present the
short-distance behavior of the DSPL between pairs of nodes
of given degrees. In Appendices B, D, and E we summarize the
properties of the giant clusters in ER networks, random regular
graphs, and scale-free networks, respectively. In Appendix C
we provide some explicit expressions for the probabilities that
random nodes of given degrees reside on at least one cycle.

II. THE CONFIGURATION MODEL

The configuration model is a maximum entropy ensemble
of networks under the condition that the degree distribution
is imposed [2,16]. Here we focus on the case of undirected
networks, in which all the edges are bidirectional. To construct
such a network of N nodes, one can draw the degrees
of all nodes from a desired degree distribution, P (K = k),
producing a degree sequence of the form {ki}i=1,...,N (where∑

ki must be even). The mean degree over the ensemble of
networks is 〈K〉 = ∑

k kP (K = k). For brevity, in the rest of
the paper we use a more compact notation, in which P (K = k)

is replaced by P (k), except for a few places in which the more
detailed notation is needed for clarity.

A convenient way to construct a configuration model
network is to prepare the N nodes such that each node, i,
is connected to ki half edges [2]. Pairs of half edges from
different nodes are then chosen randomly and are connected to
each other in order to form the network. The result is a network
with the desired degree sequence but no correlations. Note that
towards the end of the construction the process may get stuck.
This may happen in the case in which the only remaining pairs
of half edges belong to the same node or to pairs of nodes
which are already connected to each other. In such cases one
may perform some random reconnections in order to enable
completion of the construction.

III. THE PERCOLATION TRANSITION
AND THE GIANT CLUSTER

Configuration model networks generically consist of many
connected components. In some cases the size of the largest
component scales linearly with the network size, N . In such
cases, the largest component is called a giant cluster. All the
other components are nonextensive and are called finite or
isolated components, and below are referred to as nongiant
components. The size of the giant cluster is determined
by the degree distribution, P (k). Some families of degree
distributions can be parametrized such that in a certain
range of parameters there is no giant cluster, while in the
complementary range there is a giant cluster. On the boundary
between these two domains in the parameter space there is a
phase transition, which is referred to as a percolation transition.

Consider a configuration model network of N nodes with
a given degree distribution P (k). In this paper we will employ
two different sampling procedures. The degrees of nodes
which are sampled randomly from the network follow the
overall degree distribution P (k). However, nodes which are
sampled as random neighbors of random nodes follow a
modified degree distribution, which takes the form

P̃ (k) = k

〈K〉P (k). (1)

This is due to the fact that such nodes are selected proportion-
ally to their degrees. Each one of these degree distributions
has a generating function associated with it. The generating
function of P (k) is

G0(x) =
∞∑

k=0

P (k)xk, (2)

while the generating function of P̃ (k) is

G1(x) =
∞∑

k=0

P̃ (k)xk−1. (3)

From the definitions of G0(x) and G1(x) in Eqs. (2) and (3),
respectively, we find that G0(1) = 1 and G1(1) = 1. In some
networks there are no isolated nodes (of degree k = 0) and
no leaf nodes (of degree k = 1). In such networks P (k) > 0
only for k � 2. For these networks we find that G0(0) = 0 and
G1(0) = 0. This implies that in such networks both x = 0 and
x = 1 are fixed points of both G0(x) and G1(x).
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In what follows we review the well known analysis of
the percolation probability in configuration model networks,
following Refs. [1,2]. Our main motivation for doing so is
that it allows us to highlight two lesser known facts about the
problem, which we will need in our evaluation of the DSCL
below. These concern the degree-dependent probabilities of
randomly chosen nodes and randomly chosen neighbors of
randomly chosen nodes to belong to the giant cluster. The
probability that a random node resides on the giant cluster
is denoted by g. In the case in which a giant cluster exists,
g > 0, while in the case in which there is no giant cluster,
g = 0. To obtain the probability g, one needs to first calculate
the probability g̃ that a random neighbor of a random node, i,
belongs to the giant cluster in the reduced network, which does
not include the node i. In the thermodynamic limit, N → ∞,
the probability g̃ is given as a solution of the self-consistency
equation [1]

1 − g̃ = G1(1 − g̃). (4)

The left hand side of this equation is the probability that a
random neighbor of a random node does not reside on the
giant cluster. The right hand side represents the same quantity
in terms of its neighbors, namely as the probability that none
of the neighbors of such node resides on the giant cluster. Once
g̃ is known, the probability g can be obtained from

g = 1 − G0(1 − g̃). (5)

This relation is based on the same consideration as Eq. (4),
where the difference is that the reference node is a random
node rather than a random neighbor of a random node.

Below we consider the more specific case of nodes of a
given degree. The probability that a random node of a given
degree, k, resides on the giant cluster is denoted by gk . Using
the degree distribution, P (k), the probability, g, that a random
node of an unspecified degree resides on the giant cluster can
be expressed in terms of gk by

g =
∞∑

k=0

P (k)gk. (6)

Such a node resides on the giant cluster if at least one of its k

neighbors resides on the giant cluster. Therefore,

gk = 1 − (1 − g̃)k. (7)

Thus, high degree nodes are more likely to reside on the giant
cluster than low degree nodes. Similarly, the probability g̃ that
a random neighbor of a random node resides on the giant
cluster can be expressed in the form

g̃ =
∞∑

k=0

P̃ (k)g̃k, (8)

where g̃k is the probability that a random neighbor of a random
node resides on the giant cluster, under the condition that its
degree is k. Using similar considerations, we find that the
probability g̃k is given by

g̃k = 1 − (1 − g̃)k−1. (9)

In Appendices B, D, and E we apply these considerations
to the analysis of the giant clusters in ER networks, random
regular graphs, and scale-free networks, respectively.

IV. THE DISTRIBUTION OF SHORTEST PATH LENGTHS

Consider a pair of random nodes, i and j , in a network
of N nodes. Assuming that the two nodes reside on the same
connected component, they may be connected to each other
by a large number of paths. The distance between the two
nodes is equal to the length of the shortest among these
paths (possibly more than one). Below we briefly review the
approach introduced in Ref. [28] for the calculation of the
DSPL in configuration model networks of a given size, N , and
a given degree distribution, P (k). The DSPL can be expressed
in the form of a tail distribution, where PPL(L > �) is the
probability that the shortest path length between a random
pair of nodes is larger than �. The tail distribution can be
expressed as a product of the form

PPL(L > �) =
�∏

�′=1

PPL(L > �′|L > �′ − 1), (10)

where PPL(L > �|L > � − 1) is the conditional probability
that the distance between a random pair of nodes is larger than �

conditioned on it being larger than � − 1. In the analysis below
we use different types of tail distributions for the DSPL. In
Table I we summarize these distributions and list the equations
from which each one of them can be evaluated.

A path of length � from node i to node j can be decomposed
into a single edge connecting node i and node r ∈ ∂i (where
∂i is the set of all nodes directly connected to i), and a shorter
path of length � − 1 connecting r and j . Thus, the existence
of a path of length � between nodes i and j can be ruled out if
there is no path of length � − 1 between any of the nodes r ∈ ∂i

and j . For sufficiently large networks, the argument presented
above translates into the recursion equation [28]

PPL(L > �|L > � − 1) = G0[P̃PL(L > � − 1|L > � − 2)],

(11)

where the generating function G0(x) is given by Eq. (2). Here
we distinguish between the conditional probability PPL(L >

�|L > � − 1) between nodes i and j and the probability
P̃PL(L > �|L > � − 1) between a node r ∈ ∂i and node j ,
on the reduced network from which node i was removed.
The reason for this distinction is that the former probability
involves two random nodes, while the latter probability
involves a node, r , which is a random neighbor of a random
node, and a random node, j . The conditional probability
P̃PL(L > �|L > � − 1) satisfies the recursion equation

P̃PL(L > �|L > � − 1) = G1[P̃PL(L > � − 1|L > � − 2)],

(12)

where G1(x) is given by Eq. (3), which is valid for � � 2.
The case of � = 1 deserves special attention. On a network

of size N (sufficiently large), the probability that two random
nodes are not connected is given by [28]

PPL(L > 1|L > 0) 	 1 − 〈K〉
N − 1

+ O

(
1

N2

)
, (13)
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TABLE I. The different tail distributions for the DSPL and DSCL and the equations from which each one of them can be evaluated

Distribution Equation Description

PPL(L > �|L > � − 1) Eq. (11) Conditional DSPL between pairs of random nodesa

P̃PL(L > �|L > � − 1) Eq. (12) Conditional DSPL between random nodes and RNRNsa,b

P̂PL(L > �|L > � − 1) Eq. (18) Conditional DSPL between pairs of RNRNsa

PPL(L > �) Eq. (10) DSPL between pairs of random nodesa

P̃PL(L > �) Eq. (15) DSPL between random nodes and RNRNsa

P̂PL(L > �) Eq. (19) DSPL between pairs of RNRNsa

QPL(L > �) Eq. (20) Overall DSPL between pairs of random nodes
Q̃PL(L > �) Eq. (21) Overall DSPL between random nodes and RNRNs
Q̂PL(L > �) Eq. (22) Overall DSPL between pairs of RNRNs
PPL(L > �|k,k′) Eq. (23) DSPL between pairs of random nodes of degrees k and k′a

P̃PL(L > �|k,k′) Eq. (24) DSPL between random nodes and RNRNs of degrees k and k′a

P̂PL(L > �|k,k′) Eq. (25) DSPL between pairs of RNRNs of degrees k and k′a

QPL(L > �|k,k′) Eq. (26) Overall DSPL between pairs of random nodes of degrees k and k′

Q̃PL(L > �|k,k′) Eq. (27) Overall DSPL between random nodes and RNRNs of degrees k and k′

Q̂PL(L > �|k,k′) Eq. (28) Overall DSPL between pairs of RNRNs of degrees k and k′

PCL(L > �|k) Eq. (35) DSCL of nodes of degree k

PCL(L > �) Eq. (36) DSCL

aFor pairs of nodes which reside on the same connected component.
bRNRNs: random neighbors of random nodes.

while the probability that a random neighbor of a random node
and a random node are not connected is given by

P̃PL(L > 1|L > 0) 	 1 − 〈K2〉 − 〈K〉
〈K〉(N − 1)

+ O

(
1

N2

)
. (14)

The difference between Eqs. (13) and (14) is due to the fact that
the degree distribution P̃ (k) of random neighbors of random
nodes, given by Eq. (1), is generically distinct from the degree
distribution P (k) of random nodes.

Actually, there are two other types of DSPLs in random
networks, which are needed for the analysis of shortest cycles.
One of them is the DSPL between a random node and a random
neighbor of a random node, denoted by P̃PL(L > �). The other
one is the DSPL between two random neighbors of random
nodes, denoted by P̂PL(L > �). The DSPL between a random
node and a random neighbor of a random node is expressed as
a product of the form

P̃PL(L > �) =
�∏

�′=1

P̃PL(L > �′|L > �′ − 1), (15)

where P̃PL(L > �′|L > �′ − 1) is obtained by iterating
Eq. (12), using Eq. (14) as an initial condition.

The DSPL between two random neighbors of random
nodes, P̂PL(L > �), requires careful attention. The initial
condition in this case, namely the probability that two such
nodes are not connected on a network of size N , is

P̂PL(L > 1|L > 0)

=
∞∑

k=0

P̃ (k)
∞∑

k′=0

P̃ (k′)
[

1 − k′ − 1

(N − 1)〈K〉
]k−1

. (16)

Using a binomial approximation and performing the sum-
mations, we obtain

P̂PL(L > 1|L > 0)

= 1 − 〈K〉
N − 1

( 〈K2〉 − 〈K〉
〈K〉2

)2

+ O

(
1

N2

)
. (17)

This initial condition is fed into the recursion equation

P̂PL(L > �|L > � − 1) = G1[P̂PL(L > � − 1|L > � − 2)].

(18)

The DSPL between random neighbors of random nodes is then
obtained as a product of the conditional probabilities:

P̂PL(L > �) =
�∏

�′=1

P̂PL(L > �′|L > �′ − 1). (19)

In the analysis above, we considered only pairs of nodes
which reside on the same cluster. Since not all pairs of
random nodes reside on the same cluster, the DSPL needs
to be adjusted. Taking a random pair of nodes, i and j , the
probability that they reside on the same cluster is negligible,
unless they both reside on the giant cluster. The probability
that both nodes reside on the giant cluster is g2. Therefore,
the probability that the distance between them is infinite is
PPL(L = ∞) = 1 − g2. This implies that the DSPL between
all pairs of nodes in the network (without assuming that they
reside on the same cluster) is

QPL(L > �) = g2PPL(L > �) + (1 − g2). (20)

Using a similar argument for the DSPL between a random
node and a random neighbor of a random node, we find that
the DSPL between all such pairs is given by

Q̃PL(L > �) = gg̃P̃PL(L > �) + (1 − gg̃). (21)
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Similarly, the DSPL between all pairs of random neighbors of
random nodes is given by

Q̂PL(L > �) = g̃2P̂PL(L > �) + (1 − g̃2). (22)

In cases where g < 1, the overall DSPLs, Q(L > �), Q̃(L >

�), and Q̂(L > �), approach a nonzero asymptotic value at
large �, unlike the original DSPLs, P (L > �), P̃ (L > �), and
P̂ (L > �), which decay to zero.

To obtain the DSPL between random pairs of nodes of
known degrees, consider two random nodes, i and j , of degrees
k and k′, respectively, which do not share any neighbors and
thus the distance between them satisfies � > 2. Since node i

has k neighbors and node j has k′ neighbors, the probability
that the distance between them is longer than � is equal to the
probability that the distance between any neighbor of i to any
neighbor of j is longer than � − 2. Therefore,

PPL(L > �|k,k′) = [P̂PL(L > � − 2)]kk′
, (23)

where P̂PL(L > �) is the DSPL between two random neighbors
of random nodes, given by Eq. (19). Similarly, the DSPL
between a random node, of degree k, and a random neighbor
of a random node, of degree k′, is given by

P̃PL(L > �|k,k′) = [P̂PL(L > � − 2)]k(k′−1). (24)

The DSPL between pairs of random neighbors of random
nodes, under the condition that their degrees are k and k′,
is given by

P̂PL(L > �|k,k′) = [P̂PL(L > � − 2)](k−1)(k′−1). (25)

It is important to note that Eqs. (23)–(25) are valid for � > 2.
The corresponding equations for the conditional probabilities
PPL(L > �|k,k′), P̃PL(L > �|k,k′), and P̂PL(L > �|k,k′) with
� = 1,2 are presented in Appendix A.

Using the results presented above we now provide the
overall DSPLs, between random pairs of nodes of known
degrees. Considering two random nodes of degrees k and k′,
we obtain

QPL(L > �|k,k′) = gkgk′PPL(L > �|k,k′) + (1 − gkgk′),

(26)

where gk is given by Eq. (7). Similarly, the DSPL between a
random node of degree k and a random neighbor of a random
node, of degree k′, is given by

Q̃PL(L > �|k,k′) = gkg̃k′ P̃PL(L > �|k,k′) + (1 − gkg̃k′),

(27)

where g̃k′ is given by Eq. (9). Lastly, the DSPL between pairs
of random neighbors of random nodes, conditioned on their
degrees, k and k′, is given by

Q̂PL(L > �|k,k′) = g̃kg̃k′ P̂PL(L > �|k,k′) + (1 − g̃kg̃k′).

(28)

The moments of PPL(L > �) provide useful information
about the network. The nth moment, 〈Ln〉PL, can be obtained
using the tail-sum formula [48]

〈Ln〉PL =
N−2∑
�=0

[(� + 1)n − �n]PPL(L > �). (29)

Note that the sum in Eq. (29) does not extend to ∞ because the
longest possible shortest path in a network of size N is N − 1.
The mean distance in configuration model networks has been
studied extensively [7,8,16,19,21]. It was found that

〈L〉PL 	 ln N

ln
( 〈K2〉−〈K〉

〈K〉
) + O(1). (30)

The width of the distribution can be characterized by the
variance σ 2

PL = 〈L2〉PL − 〈L〉2
PL.

V. THE FRACTION OF NODES WHICH RESIDE ON AT
LEAST ONE CYCLE

In this section we calculate the probability P (i ∈ cycle)
that a random node, i, resides on at least one cycle. To do so,
we first calculate the conditional probability, P (i ∈ cycle|k),
that a node of a given degree, k, resides on at least one
cycle. Actually, this probability can be expressed by P (i ∈
cycle|k) = 1 − P (i /∈ cycle|k). Clearly, nodes of degree k = 0
or 1 cannot reside on any cycle and thus

P (i /∈ cycle|0) = P (i /∈ cycle|1) = 1. (31)

For a node of degree k � 2 to reside on a cycle, two
of its neighbors must be connected to each other on the
reduced network from which i is removed. The probability
that a neighbor of a random node i, on the reduced network
from which i is removed, is part of the giant cluster of the
reduced network is equal to g̃. The probability that a given
pair of neighbors will reside on the giant cluster of the reduced
network is g̃2. This pair of neighbors will reside on the same
component only if this component is the giant cluster (up to
negligible probability). Hence, the probability that a given pair
of neighbors of i is not connected is 1 − g̃2. Since there are(
k

2

)
pairs of neighbors of node i, the probability that none of

these pairs are connected on the reduced network from which
node i is removed is

P (i /∈ cycle|k) = (1 − g̃2)(
k

2). (32)

Note that this result is based on the assumption that the paths
between different pairs of neighbors of i are independent. This
assumption is expected to hold in ensembles of uncorrelated
networks, such as the configuration model or any other network
model in which the clustering coefficient is small.

Using the arguments discussed above we find that the
probability that a random node of unspecified degree resides
on at least one cycle is given by

P (i ∈ cycle) = 1 −
[
P (K = 0) + P (K = 1)

+
∞∑

k=2

P (k)P (i /∈ cycle|k)

]
, (33)

where P (i /∈ cycle|k) is given by Eq. (32). Note that in the
case of g̃ = 0 one can show, using Eq. (5), that g = 0 as well,
meaning that there is no giant cluster. Equation (33) shows
that under these conditions P (i ∈ cycle) = 0. This reflects the
fact that for a network below the percolation threshold, in the
thermodynamic limit, the number of cycles does not scale with
N [49,50]. Thus, essentially all the components are trees.
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One should point out that Eq. (32) does not take into account
certain correlations between pairs of neighbors of node i. To
demonstrate this point, consider the k neighbors of node i. We
will denote their degrees by k1,k2, . . . ,kk . These degrees are
independent of each other and are all drawn from the same
distribution, P̃ (k). However, the probability that a node, rm,
resides on the giant cluster depends on its degree, km, and is
given by gkm

[Eq. (7)]. Since each neighbor of i participates
in k − 1 such pairs, the probabilities that different pairs reside
on the giant cluster are not independent. Each one of these
nodes may connect to each of the other k − 1 neighbors, with
a probability which depends on its degree. Therefore, these
k − 1 probabilities are not independent, unlike the assumption
made in Eq. (32). To account for these correlations we express
P (i /∈ cycle|k) in the form

P (i /∈ cycle|k) =
∑

k1,k2,...,kk

k∏
r=1

P̃ (kr )
∏
m<n

(
1 − g̃km

g̃kn

)
, (34)

where the product runs over all pairs of neighbors of node i.
In summary, we have presented two approaches to the

calculation of P (i /∈ cycle). The simpler approach of Eq. (32)
provides a good approximation in most cases. For highly
heterogeneous networks one may need the more detailed
approach of Eq. (34), which is much more elaborate to
implement. More specifically, it requires summation over
all possible degree sequences of length k, which becomes
prohibitive when k is large.

VI. THE DISTRIBUTION OF SHORTEST CYCLE
LENGTHS

Consider a random node, i, in a configuration model
network of size N with degree distribution P (k). A node of
degree K � 2 may reside on one or more cycles. Here we
focus on the shortest among these cycles. More specifically,
we calculate the distribution of lengths of the shortest cycles
on which a random node of degree k resides. We denote the
neighbors of node i by r1,r2, . . . ,rk . A cycle of length � on
which i resides consists of the edges connecting i to two of its
neighbors, rm and rn, and a path of length � − 2 connecting rm

and rn. The number of possible shortest cycles is
(
k

2

)
, namely

the number of pairs of neighbors of i. In Fig. 1 we present an
illustration of the cycles on which a random reference node
(black filled circle) resides. This node has k = 4 neighbors
(empty circles). The edges between the reference node and
its neighbors are shown by dashed lines. The paths connecting
pairs of neighbors are shown by solid lines. The shortest among
these paths is shown by a thick solid line (blue) of length 2;
thus the shortest cycle on which the reference node resides is
of length � = 4. The other paths, of lengths 3 and 4, are shown
by thin solid lines (red).

The tail distribution of the lengths of shortest cycles on
which random nodes of degree k reside is denoted by PCL(L >

�|K = k). In order that the shortest cycle will be longer than
�, the distances between all pairs of neighbors must satisfy
L > � − 2. Therefore

PCL(L > �|k) = Q̂PL(L > � − 2)(
k

2), (35)

FIG. 1. Illustration of the cycles on which a random reference
node (black filled circle) resides. The reference node has 4 neighbors
(empty circles). The edges connecting the reference node to its
neighbors are shown by dashed lines. The paths connecting pairs
of neighbors are shown by solid lines. The shortest path, shown by a
thick solid line (blue) is of length 2; thus the shortest cycle on which
the reference node resides is of length � = 4. The other paths between
neighbors of the reference node, which are of lengths 3 and 4, are
shown by narrower solid lines (red). They form cycles of lengths 5
and 6, respectively.

where Q̂PL(L > �) is given by Eq. (22). This equation is
based on the assumption that the distances between all pairs
of neighbors of node i are independent of each other. This
assumption is expected to be satisfied in configuration model
networks. Note that nodes of degrees k = 0 and 1 do not reside
on any cycle, and thus PCL(L > �|K = 0) = PCL(L > �|K =
1) = 1 for any value of �.

For a random node, i, of unknown degree, the DSCL is
obtained by averaging over all possible degrees according to

PCL(L > �) =
∞∑

k=0

P (k)PCL(L > �|k). (36)

Writing this equation in a more explicit form, we obtain

PCL(L > �) = P (K = 0) + P (K = 1)

+
∞∑

k=2

P (k)Q̂PL(L > � − 2)(
k

2). (37)

This equation is expected to provide an accurate description of
the DSCL of configuration model networks, when the degree
distribution is not too broad. The corresponding probability
distribution function, PCL(L = �), can be easily obtained by

PCL(L = �) = PCL(L > � − 1) − PCL(L > �). (38)

Similarly to the discussion of P (i ∈ cycle) in the previous
section, to obtain more accurate results for PCL(L > �) in a
network which exhibits a broad degree distribution, one needs
to take into account the heterogeneity of the network. Consider
the first shell around the random node, i, which consists of the
nodes r1,r2, . . . ,rk , of degrees k1,k2, . . . ,kk . The distribution
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of shortest path lengths between a pair of neighbors, rm and
rn, depends on their degrees, km and kn. Therefore, in this
analysis one should use the conditional probabilities Q̂PL(L >

� − 2|km,kn). The shortest cycle on which i resides consists
of the shortest path among all the paths connecting the

(
k

2

)
pairs of neighbors of i. Since each neighbor, such as rm, of
degree km, participates in k − 1 such pairs, these conditional
distributions are not independent. Thus, one should properly
condition on the degrees of pairs of neighbors. Implementing
these considerations, one can replace Eq. (35) by

PCL(L > �|k)

=
∑

k1,k2,...,kk

k∏
r=1

P̃ (kr )
∏
m<n

Q̂PL(L > � − 2|km,kn), (39)

where Q̂PL(L > � − 2|km,kn) is given by Eq. (28). Actually,
for � � N this equation coincides with Eq. (34). This is due
to the fact that the maximal length of a cycle is � = N . Hence,
the probability that the length of the shortest cycle is larger
than N is equivalent to the probability that there is no cycle.
Plugging Eq. (39) into Eq. (36), we obtain a more accurate
expression for the DSCL.

In practice, for networks with broad degree distributions,
the summation over the whole range of values of k and
k1,k2, . . . ,kk may be impractical. In such cases, one can eval-
uate Eq. (39) using Monte Carlo methods [51]. The simplest
approach is to draw the degree k from the distribution P (k)
and then draw the k degree k1,k2, . . . ,kk from the distribution
kP (k)/〈K〉. One then calculates Q̂PL(L > � − 2|km,kn) for
all the

(
k

2

)
combinations of degrees, km and kn, and multiplies

them to obtain one data point for PCL(L > �|k). In Fig. 2 we
present flow charts illustrating the sequence of intermediate
steps in the calculation of the DSCL. The simpler approach of
Eq. (35) is shown in Fig. 2(a) and the more detailed approach
of Eq. (39) is shown in Fig. 2(b).

The mean of the DSCL is given by the first moment

〈L〉CL =
N−1∑
�=2

PCL(L > �). (40)

The variance of the DSCL is given by

σ 2
CL = 〈L2〉CL − 〈L〉2

CL, (41)

where

〈L2〉CL =
N−1∑
�=2

(2� + 1)PCL(L > �). (42)

Similarly, higher order moments can be obtained using the
tail-sum formula, as in Eq. (29).

VII. APPLICATIONS TO SPECIFIC NETWORK MODELS

Here we apply the approach presented above for the
calculation of the DSCL in three examples of configuration
model networks, namely ER networks, random regular graphs,
and scale-free networks.

(a)

(b)

FIG. 2. Flow charts illustrating the sequence of intermediate steps
in the calculation of the distribution of shortest cycle lengths, PCL(L >

�): (a) in the simpler approach of Eq. (35); (b) in the more detailed
approach of Eq. (39).

A. Erdős-Rényi networks

The Erdős-Rényi (ER) network is the simplest kind of
a random network, and a special case of the configuration
model, in which only the mean degree, 〈K〉 = c, is constrained.
ER networks can be constructed by independently connecting
each pair of nodes with probability p = c/(N − 1). In the
thermodynamic limit the resulting degree distribution follows
a Poisson distribution of the form

P (k) = e−cck

k!
. (43)

In Appendix B we briefly summarize the properties of
the giant cluster of the ER network and present a closed
form expression for g as a function of c. More generally, in
ER networks there is no distinction between the statistical
properties of a random node and a random neighbor of a
random node. As a result, g̃ = g and the different DSPLs are
identical, namely PPL(L = �) = P̃PL(L = �) = P̂PL(L = �).
Similarly, for the overall DSPLs we obtain QPL(L = �) =
Q̃PL(L = �) = Q̂PL(L = �). Inserting the degree distribution
of Eq. (43) into the generating functions G0(x) and G1(x)
in Eqs. (11) and (12), respectively, one obtains the condi-
tional probabilities PPL(L > �|L > � − 1). Inserting them into
Eq. (10), one obtains the tail DSPL between pairs of nodes
which reside on the same cluster, denoted by PPL(L > �).
This DSPL essentially accounts only for pairs of nodes which
both reside on the giant cluster, because for a pair of nodes
on the nongiant components it is extremely unlikely that they
reside on the same nongiant component. In order to obtain
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FIG. 3. The tail distribution of shortest path lengths, QPL(L >

�), for ER networks of N = 104 nodes, and mean degree c = 2.5
(a), c = 4 (b), and c = 7 (c). The analytical results (solid lines),
obtained from Eq. (20), are found to be in very good agreement with
the results of computer simulations (circles), which were averaged
over 10 instances of the network. The tail distributions exhibit the
characteristic shape of a monotonically decreasing sigmoid function,
with a nonzero asymptotic value at large distances. The asymptotic
value of QPL(L > �) at large distances accounts for the probability
that two randomly selected nodes do not reside on the same cluster.
As c is increased, the inflection point, which corresponds to the
peak of the DSPL, shifts to the left; namely distances in the network
become shorter, in agreement with the prediction of small-world
theory. Concurrently, the asymptotic tail moves down, reflecting the
increasing size of the giant cluster.

the overall DSPL between all pairs of nodes, one needs to
adjust the results for the fraction of pairs of nodes in which
both of them reside on the giant cluster, which is given by g2.
Inserting the probability PPL(L > �) into Eq. (20), one obtains
the overall DSPL, QPL(L > �).

In Fig. 3 we present the tail distributions QPL(L > �) for
ER networks of N = 104 nodes with mean degree c = 2.5
(a), c = 4 (b), and c = 7 (c). The analytical results (solid
lines), obtained from Eq. (20), are found to be in very
good agreement with the results of computer simulations
(circles). The tail distributions exhibit the characteristic shape

FIG. 4. The probability P (i ∈ cycle) that a random node, i,
resides on at least one cycle, versus the mean degree, c, in an
ER network of N = 104 nodes. The analytical results (solid line),
obtained from Eq. (44), are found to be in excellent agreement with
the results of computer simulations (circles).

of a monotonically decreasing sigmoid function between two
plateaus. Their inflection points coincide with the peaks of
the corresponding probability distribution functions. The tail
distributions QPL(L > �) exhibit nonzero asymptotic values
at large distances, which account for the probability that two
randomly selected nodes do not reside on the same cluster, and
thus the distance between them is � = ∞. As c is increased, the
inflection point shifts to the left, which means that distances
in the network become shorter. This can be understood in the
framework of small-world theory, where the mean distance is
given by 〈L〉 	 ln N/ ln c. Concurrently, the asymptotic value
of QPL(L > �) decreases, due to the increasing size of the
giant cluster.

Using Eqs. (32) and (33), the probability that a random
node in an ER network resides on at least one cycle can be
expressed in the form

P (i ∈ cycle) = 1 −
∞∑

k=0

e−cck

k!
(1 − g2)k(k−1)/2, (44)

where g is given by Eq. (B1). In Fig. 4 we present the
probability P (i ∈ cycle) as a function of the mean degree,
c, for ER networks of N = 104 nodes. The analytical results
(solid lines), obtained from Eq. (44), are found to be in
very good agreement with the results of computer simulation
(circles). It is found that for c < 1 there are no cycles and thus
P (i ∈ cycle) = 0. As c is increased above 1, the probability
P (i ∈ cycle) increases sharply.

To obtain more accurate results, we consider a random node
i of a given degree, k, and express the probability that it resides
on at least one cycle in the form

P (i ∈ cycle|k) = 1 −
∑

k1,k2,...,kk

k∏
r=1

P̃ (kr )
∏
m<n

(
1 − g̃km

g̃kn

)
.

(45)

In the case of an ER network, where P (k) is a Poisson
distribution, g̃k = gk and krP (kr )/〈K〉 = P (kr − 1), where
kr − 1 is the degree of the rth neighbor of node i on the
reduced network from which i was removed. Therefore, in the

062307-8



DISTRIBUTION OF SHORTEST CYCLE LENGTHS IN . . . PHYSICAL REVIEW E 96, 062307 (2017)

case of an ER network

P (i ∈ cycle|k) = 1 −
∑

k1,k2,...,kk

k∏
r=1

P (kr )
∏
m<n

(
1 − gkm

gkn

)
.

(46)

The evaluation of this product requires moments of gk , which
can be expressed in a closed form as〈

gn
k

〉 =
n∑

r=0

(
n

r

)
(−1)re−c[1−(1−g)r ]. (47)

The two lowest order moments are

〈gk〉 = 1 − e−cg = g (48)

and〈
g2

k

〉 = 1 − 2e−cg + e−cg(2−g) = g2 + (1 − g)2
(
ecg2 − 1

)
.

(49)

Inserting these moments into Eq. (46) we find that the
probability that a node of degree k = 2 resides on at least
one cycle is

P (i ∈ cycle|K = 2) = g2. (50)

Incidentally, this result coincides with the simpler form which
comes from Eq. (32). For nodes of degree k = 3

P (i ∈ cycle|K = 3) = 3g2 − 3g2
〈
g2

k

〉 + 〈
g2

k

〉3
. (51)

At this order the result already deviates from those obtained
from the simpler approach of Eq. (32). Analytical expressions
for P (i ∈ cycle|K = k) with k = 4 and 5 are presented in
Appendix C.

In Fig. 5 we present the conditional probability P (i ∈
cycle|K = k) that a random node of degree k resides on at
least one cycle as a function of the mean degree c for k = 2 (a),
k = 3 (b), and k = 5 (c). The analytical results obtained from
the simpler approach of Eq. (32) are shown in dashed lines. The
analytical results obtained from the more detailed approach of
Eq. (34) are given explicitly in Eqs. (50), (51), (C1), and (C2).
These results are shown in solid lines. Incidentally, the two
analytical curves coincide for k = 2, while for k = 3 and 5,
the more detailed theory is found to be in a better agreement
with the results of computer simulations (circles).

The DSCL of an ER network is given by

PCL(L > �) = (1 + c)e−c +
∞∑

k=2

e−cck

k!
QPL(L > � − 2)(

k

2).

(52)

In Fig. 6 we present the tail distributions PCL(L > �) for ER
networks of N = 104 nodes, where c = 2.5 (a), c = 4 (b), and
c = 7 (c). The analytical results (solid lines), obtained from
Eq. (52), are in good agreement with computer simulations
(circles). The tail distribution exhibits a monotonically de-
creasing sigmoid shape from the PCL(L > �) = 1 plateau on
the left to PCL(L > �) = P (i /∈ cycle) on the right, since the
height of the second plateau represents the fraction of nodes
which do not reside on any cycle. This fraction decreases
as the mean degree, c, is increased, namely the probability

FIG. 5. The conditional probability P (i ∈ cycle|K = k) that a
random node i of degree k = 2 (a), k = 3 (b), and k = 5 (c) resides
on at least one cycle, as a function of the mean degree c in an ER
network of N = 104 nodes. For 0 < c < 1 there are no cycles and
therefore P (i ∈ cycle|K = k) = 0. For c > 1 the probability that a
random node, i, of a given degree, k, resides on at least one cycle
increases monotonically with c. This is due to the fact that as c is
increased the degrees of its neighbors increase and they are thus more
likely to be connected to each other on the reduced network which
does not include the node i. The analytical results obtained from the
simpler approach, described by Eq. (32), are shown in dashed lines,
while the analytical results obtained from the more detailed approach,
described by Eq. (34), are shown in solid lines. Incidentally, the two
analytical curves coincide for k = 2, while for k = 3 and 5, the more
detailed theory is found to be in better agreement with the results of
computer simulations (circles).

that a random node resides on at least one cycle increases
as c is increased. The peak of the corresponding probability
distribution function, PCL(L = �), shifts to the left as c is
increased. These results imply that as the network becomes
more strongly connected the shortest cycles become more
numerous and shorter.

In Fig. 7 we present the conditional tail distribution
PCL(L > �|K = k) for an ER network of N = 104 nodes
and c = 2.5, where k = 2 (a), k = 3 (b), and k = 5 (c).
The analytical results obtained from the simpler approach
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FIG. 6. The tail distribution of shortest cycle lengths, PCL(L > �),
for ER networks of N = 104 nodes, where c = 2.5 (a), c = 4 (b), and
c = 7 (c). The analytical results (solid lines), obtained from Eq. (52),
are found to be in very good agreement with the results of computer
simulations (circles).

of Eq. (35) are shown in dashed lines, while the analytical
results obtained from the more detailed approach of Eq. (39)
are shown in solid lines. The two analytical curves are
almost indistinguishable for k = 2, and are both in very good
agreement with the results of computer simulations (circles).
For k = 3 and 5, the more detailed theory provides a better
agreement with the results of computer simulations (circles).

The conditional tail distribution retains the qualitative
features of the sigmoid shape. The asymptotic value at large
� is PCL(L > �) = P (i /∈ cycle), which decreases as k is
increased, which means that the probability that a random
node of degree k resides on at least one cycle increases as
k is increased. The peak of the corresponding probability
distribution function, PCL(L = �|K = k), shifts to the left as
k is increased, which means that for node of higher degree the
shortest cycle is shorter.

The probability that a random node, i, of degree k resides
on at least one cycle is a monotonically increasing function
of k. The length � of the shortest cycle tends to decrease as
a function of k. This is due to the fact that the length of the

FIG. 7. The conditional distribution of shortest cycle lengths,
PCL(L > �|K = k), for ER networks of N = 104 nodes, where
c = 2.5 and k = 2 (a), k = 3 (b), and k = 5 (c). The analytical results
obtained from the simpler approach of Eq. (35) are shown in dashed
lines, while the analytical results obtained from the more detailed
approach of Eq. (39) are shown in solid lines. The more detailed
theory is found to be in better agreement with the results of computer
simulations (circles).

shortest cycle is determined by the shortest path among all the
paths connecting neighbors of i, and the number of such pairs
increases quadratically with k.

In Fig. 8 we present analytical results for the mean, 〈L〉CL,
of the DSCL as a function of the mean degree, c, for ER
networks of N = 103 nodes (solid line). The results are in
very good agreement with computer simulations (circles). The
mean, 〈L〉CL, is a monotonically decreasing function of c. It
exhibits a sharp decrease in the dilute network limit, which
becomes more moderate as the network becomes more dense.
For comparison, we also present analytical (dashed line) and
numerical (×) results for the mean, 〈L〉PL, of the DSPL as a
function of c (dashed line). It is found that for the entire range
of values of c, the mean of the DSCL is slightly larger than the
mean of the corresponding DSPL. This can be understood as
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FIG. 8. Analytical results for the mean, 〈L〉CL, of the distribution
of shortest cycle lengths (solid line), and for the mean, 〈L〉PL, of the
distribution of shortest path lengths (dashed line), as a function of the
mean degree, c, for ER networks of N = 103 nodes. Both curves are
found to be in very good agreement with the corresponding results
obtained from computer simulations (circles for 〈L〉CL and × for
〈L〉PL). It is found that 〈L〉CL is slightly larger than 〈L〉PL for all
values of c.

follows. The length of the shortest cycle on which a random
node, i, resides consists of the shortest path between a pair
of its neighbors, plus 2 for the two edges connecting i to
these neighbors. This suggests that 〈L〉CL should be longer
by about two units than 〈L〉PL. However, the shortest path
between neighbors of i which is incorporated in the shortest
cycle is the shortest among the shortest paths connecting all
pairs of neighbors of i. Thus, it tends to be shorter than the
path between two random nodes. As a result, the difference
� = 〈L〉CL − 〈L〉PL is smaller than 2.

In Fig. 9 we present the standard deviation of the DSCL,
σCL, as a function of the mean degree, c, for ER networks
of N = 103 nodes. For small values of c, the analytical
results (solid line) underestimate the standard deviation, as
can be seen from the comparison with the results of computer
simulations (circles). We also show the analytical (dashed line)
and numerical (×) results for the standard deviation of the
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FIG. 9. Analytical results for the standard deviations, σCL, of the
distribution of shortest cycle lengths (solid line), and σPL of the
distribution of shortest path lengths (dashed line), as a function of
the mean degree, c, for ER networks of N = 103 nodes. For small
values of c, the analytical results appear to underestimate the standard
deviations with respect to the results of computer simulations for σCL

(circles) and σPL (×).

DSPL, σPL, for the same networks, which exhibits the same
qualitative features.

B. Random regular graphs

In a random regular graph with c � 3 the giant cluster
encompasses the whole network. Therefore, g = g̃ = 1 (for
more details see Appendix D). Moreover, in this case the
DSPLs and the overall DSPLs are identical since all pairs
of nodes reside on the giant cluster. The generating functions
for the random regular graph are given by Eqs. (D1) and (D2).
The DSCL is given by

PCL(L > �) = [P̂PL(L > � − 2)](
c

2). (53)

In order to proceed we shall first calculate the conditional
probabilities P̂PL(L > �|L > � − 1) using the recursion equa-
tion (18) and the initial condition (17). This yields

P̂PL(L > �|L > � − 1) =
[

1 − (c − 1)2

(N − 1)c

](c−1)�−1

. (54)

Assuming that the size of the network is large N 
 1, we can
approximate the above to

ln P̂PL(L > �|L > � − 1) 	 − (c − 1)�+1

cN
+ O

(
1

N2

)
. (55)

By inserting the conditional distribution into Eq. (19) we can
obtain the tail distribution

P̂PL(L > �) 	 exp

[
− (c − 1)2

cN

(c − 1)� − 1

c − 2

]
. (56)

We can use this DSPL inside Eq. (53) to get

PCL(L > �) 	 exp

[
− (c − 1)3

2N

(c − 1)�−2 − 1

c − 2

]
. (57)

In Fig. 10 we present the DSCL for random regular graphs
of N = 103 nodes with c = 3 (a), c = 5 (b), and c = 7 (c).
The analytical results (solid lines), obtained from Eq. (57), are
found to be in excellent agreement with the results of computer
simulations (circles). Since Eq. (57) is based on exact results
for the DSPL, we conjecture that it is an exact result for the
DSCL of the random regular graph.

C. Scale-free networks

Consider a configuration model network with a power-law
degree distribution, P (k), given by

P (k) = k−γ

ζ (γ,kmin) − ζ (γ,kmax + 1)
, (58)

where kmin � k � kmax and ζ (s,a) is the Hurwitz zeta function
[52]. Here we focus on the case in which γ > 2, in which
the mean degree 〈K〉 is bounded even for kmax → ∞. We
further restrict our analysis to the case in which kmin � 2,
namely the network does not include isolated nodes and leaf
nodes. Under these conditions g = g̃ = 1, namely the giant
cluster encompasses the entire network (for more details see
Appendix E). As a result, Q̂PL(L > �) = P̂PL(L > �). Thus,
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FIG. 10. The tail distributions of shortest cycle lengths, PCL(L >

�), for random regular graphs of N = 103 nodes and c = 3 (a), c = 5
(b), and c = 7 (c). The analytical results (solid line), obtained from
Eq. (57), are found to be in excellent agreement with the results of
computer simulations (circles).

the DSCL can be expressed in the form

PCL(L > �) =
∞∑

k=2

P (k)P̂PL(L > � − 2)(
k

2), (59)

where P̂PL(L > � − 2) is calculated using Eqs. (17)–(19),
where 〈K〉 and 〈K2〉 are given by Eqs. (E1) and (E2),
respectively.

In Fig. 11 we present the tail distribution, PCL(L > �),
for a configuration model network of N = 103 nodes and
a power-law degree distribution with γ = 2.5 and kmin = 3
(a), 5 (b), and 8 (c). The analytical results obtained from
the simpler approach of Eq. (35) are shown in dashed lines,
while the analytical results obtained from the more detailed
approach of Eq. (39) are shown in solid lines. The results of
the more detailed approach were obtained from 104 Monte
Carlo samplings of the degrees k,k1,k2, . . . ,kk . Both results
are found to be in very good agreement with the results of
computer simulations (circles), except for one data point of the

FIG. 11. The tail distribution of shortest cycle lengths, PCL(L >

�), for scale free networks of N = 103 nodes and a power-law degree
distribution with γ = 2.5 and kmin = 3 (a), 5 (b), and 8 (c). The
analytical results obtained from the simpler approach of Eq. (35)
are shown in dashed lines, while the analytical results obtained
from the more detailed approach of Eq. (39) are shown in solid
lines. Both results are in very good agreement with the results of
computer simulations (circles), except for some deviation of the
simpler approach for kmin = 3.

simpler approach, for kmin = 3, at � = 5, which is significantly
lower than the simulation result. It is observed that as kmin is
increased, the distances in the network become shorter.

VIII. DISCUSSION

An important distinction in network theory is between
networks which exhibit a tree structure and networks which
include cycles. In network growth models, the existence of
cycles is determined by the growth rules of the network. For
example, in the Barabási-Albert model [53,54], the existence
of cycles depends on the number of nodes, m, which are added
at each time step. In the case in which m = 1, the model gives
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rise to a stochastic tree structure [55,56], while for m � 2 it
forms cycles.

In equilibrium networks such as configuration model
networks, one can distinguish between three situations, which
are determined by the degree distribution P (k). In the
subpercolation regime of dilute networks, the network consists
of finite tree components, whose size does not scale with N .
In this regime, the number of cycles does not scale with N .
Above percolation, the network consists of a giant cluster,
which includes cycles, in addition to many finite components.
As the network becomes denser, the number of cycles increases
and their typical length becomes shorter. In the regime of dense
networks, the giant cluster encompasses the entire network and
there are many short cycles.

The degree distribution plays a crucial role in shaping the
properties of cycles in a network. In particular, isolated nodes
(of degree k = 0) and leaf nodes (of degree k = 1) cannot
reside on any cycle. Only nodes of degrees k � 2 may reside
on a cycle. Still, some nodes of degrees k � 2 do not reside on
any cycle. Instead, they reside on a tree component which can
be either isolated or connected to the giant cluster.

There are interesting connections between the DSCL and
the DSPL of a configuration model network. For a random
node, i, the cycles on which it resides consist of paths between
pairs of neighbors of i and two edges from i to these neighbors.
The shortest cycle length is thus given by the shortest path
between all pairs of neighbors of i plus 2. A naive expectation
would thus be that the shortest cycles are longer than the
shortest paths by 2 units. From Fig. 8 we observe that the
mean cycle length is longer than the mean path length by about
one unit over a broad range of values of c in the ER network.
To understand this point, we recall that the shortest cycle on
which a random node i of degree k resides is composed of
the shortest path among all the

(
k

2

)
paths connecting pairs of

neighbors of i. Another issue is the fact that the degrees of
the neighbors of i are not uniformly sampled from P (k) but
from P̃ (k). The mean path length between pairs of neighbors
of i is given by 〈L̂〉, while the mean path length between pairs
of random nodes is given by 〈L〉. Clearly, the path lengths
between nodes of higher degrees are shorter than between
nodes of lower degrees, as can be seen from Eqs. (23)–(25). It
is thus interesting to compare the mean degrees of P (k) and
P̃ (k). The former is given by 〈K〉 while the latter is 〈K2〉/〈K〉.
In our context, the effective degree of a neighbor of a random
node i is given by the connective constant μ = 〈K2〉/〈K〉 − 1,
where the edge connecting i and its neighbor is removed. It
turns out that μ may be larger than, equal to, or smaller than
〈K〉 in different network ensembles. In the case of the ER
ensemble, a special symmetry gives rise to μ = 〈K〉. In the
random regular graph, it turns out that μ = c − 1 and thus
μ < 〈K〉. In configuration models with a power-law degree
distribution and 2 < γ � 3, the moment 〈K2〉 diverges and
thus μ > 〈K〉. In those cases in which μ > 〈K〉, the mean
distance between neighbors of i is smaller than the mean
distance between random nodes, and vice versa. Therefore,
the difference between the mean of the DSCL and the mean of
the DSPL is determined by a combination of these conflicting
effects.

The results presented above have implications for the
stability of configuration model networks to node deletion

processes due to failures or attacks. In particular, if a node of
degree k � 2, which does not reside on any cycle, is removed,
the network breaks down to k separate components. Thus,
nodes of degree k � 2 which do not reside on any cycle are
articulation points [57].

In this paper we have studied configuration model networks
in which the DSCL is completely determined by the degree
distribution P (k). Recently, other network ensembles were
introduced, which include many short cycles, where the cycle
lengths are controlled by various constraints [58,59]. It would
be interesting to generalize the calculation of the DSCL to
such networks.

Knowing the properties of cycles is important for the
study of many dynamical processes on networks. For ex-
ample, shortest cycles provide the fastest feedback paths in
the network and introduce correlations between the signals
arriving at a given node via different links. It was found that
in neural circuits the lengths of the shortest cycles determine
the frequencies of broadband spontaneous macroscopic neural
oscillations [42–44]. In a broader context, feedback processes
are affected by the entire spectrum of cycle lengths, up to
the longest possible length of the Hamiltonian cycles. The
number of cycles of a given length was studied extensively in
Refs. [38,60–64].

In the context of network control theory, it was shown that
dynamical processes on complex networks can be identified
and controlled by a small set of “determining nodes,” which
can be identified from the network structure alone, regardless
of the specific properties of the dynamical process. Moreover,
this set must include at least one node from each one of
the feedback loops in the network [65,66]. This approach
was recently applied [41] to the analysis of real biological,
technological, and social networks, providing predictions for
the set of nodes whose control can push the network dynamics
towards any desired asymptotic state (fixed point, cycle, or
limit cycle).

Analytical techniques for treating spin models on networks
are mostly exact on tree structures. Utilizing the local tree
structure of random networks, they provide accurate results
for short range properties. However, in order to obtain insight
about collective and long range correlations, one needs to take
into account the large scale structure, which notably involves
the statistics of loops as done recently in Refs. [67,68].

IX. SUMMARY

We presented an analytical approach for the calculation
of the distribution of shortest cycle lengths in configuration
model networks. This approach is based on a fundamental
relation between the distribution of shortest cycle lengths and
the distribution of shortest path lengths in such networks.
It employs an analytical approach for the calculation of the
distribution of shortest path lengths, presented in Ref. [28].
We use this approach for the calculation of the DSCL in
Erdős-Rényi networks, random regular graphs, and scale-
free configuration model networks, and obtain very good
agreement with the results of computer simulations. The mean
and standard deviation of the DSCL in these networks are also
calculated. We also obtain a closed form expression for the
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fraction of nodes which do not reside on any cycle. While in
this paper we have focused on the case of undirected networks,
cycles are known to be important also in directed networks, in
contexts such as gene regulation networks, neural networks,
and food webs [69]. It would thus be interesting to study the
DSCL on directed networks. Another interesting direction is
the study of properties of long cycles [70]. In this context, an
open question is the distribution of longest cycle lengths on
random networks.

APPENDIX A: THE CONDITIONAL DSPL FOR SHORT
DISTANCES

The conditional DSPLs presented in Eqs. (23)–(25) apply
for the case in which � > 2. Here we provide the expressions
for the conditional DSPLs for the special cases of � = 1
and 2. Starting from � = 1, the probability that two random
nodes of degrees k and k′ are not connected to each other is
given by

PPL(L > 1|k,k′) = 1 − kk′

(N − 1)〈K〉 . (A1)

Similarly, when the node of degree k is selected as a random
neighbor of a random node, while the node of degree k′ is a
random node, one obtains

P̃PL(L > 1|k,k′) = 1 − (k − 1)k′

(N − 2)〈K〉 . (A2)

Finally, for the case in which both nodes are selected as random
neighbors of random nodes, one obtains

P̂PL(L > 1|k,k′) = 1 − (k − 1)(k′ − 1)

(N − 3)〈K〉 . (A3)

Proceeding to � = 2, one first evaluates the conditional
probability PPL(L > 2|L > 1; k,k′), which is given by

PPL(L > 2|L > 1; k,k′)

=
[

1 −
∞∑

k′′=0

P (k′′)
kk′k′′(k′′ − 1)

N (N − 1)〈K〉2

]N−2

. (A4)

Carrying out the summation and multiplying by PPL(L >

1|k,k′), we obtain

PPL(L > 2|k,k′) = 1 − 〈K2〉kk′

N〈K〉2
+ O

(
1

N2

)
, (A5)

which is valid under the assumption that 〈K2〉 is finite. Using
similar considerations, one can show that

P̃PL(L > 2|k,k′) = 1 − 〈K2〉(k − 1)k′

N〈K〉2
+ O

(
1

N2

)
(A6)

and

P̂PL(L > 2|k,k′) = 1 − 〈K2〉(k − 1)(k′ − 1)

N〈K〉2
+ O

(
1

N2

)
.

(A7)

APPENDIX B: THE GIANT CLUSTER IN ERDŐS-RÉNYI
NETWORKS

In the asymptotic limit the ER network exhibits a perco-
lation transition at c = 1, such that for c < 1 the network
consists only of finite components while for c > 1 there is a
giant cluster. At a higher value of the connectivity, namely
at c = ln N , there is a second transition, above which the
giant cluster encompasses the entire network and there are
no nongiant components. We denote the probability that a
randomly selected node belongs to the giant cluster by g =
g(c). Clearly, g(c) = 0 for c � 1 and g(c) = 1 for c > ln N .
For intermediate values of c, in the range of 1 < c < ln N , the
probability that a random node belongs to the giant cluster is
given by 1 − g = exp(−cg) [50]. Solving for g, one obtains

g(c) = 1 + W (−ce−c)

c
, (B1)

where W (x) is the Lambert W function [52]. ER networks
exhibit a special property, resulting from the Poisson degree
distribution, Eq. (43), which satisfies P̃ (k) = P (k − 1), where
P̃ (k) is given by Eq. (1). This implies that for the Poisson
distribution, the two generating functions defined in the main
text are identical, namely G0(x) = G1(x) = e−c(1−x). As a
consequence of Eqs. (4) and (5), in ER networks g̃ = g. This
means that in ER networks there is no distinction between the
statistical properties of a random node and a random neighbor
of a random node.

APPENDIX C: THE PROBABILITY P(i ∈ cycle|k)
IN ERDŐS-RÉNYI NETWORKS FOR k = 4 AND 5

Here we present analytical results for P (i ∈ cycle)|k) for
k = 4 and 5 in an ER network, obtained from Eq. (46). It is
found that

P (i ∈ cycle|K = 4) = 6g2 − 3g4 − 12g2
〈
g2

k

〉 + 12g2
〈
g2

k

〉2 + 4g3
〈
g3

k

〉 + 4
〈
g2

k

〉3 − 12g
〈
g2

k

〉2〈
g3

k

〉 − 3
〈
g2

k

〉4 + 6
〈
g2

k

〉2〈
g3

k

〉2 − 〈
g3

k

〉4
(C1)

and

P (i ∈ cycle|K = 5) = 30g4
〈
g2

k

〉 − 5g4
〈
g4

k

〉 − 15g4 − 60g3
〈
g3

k

〉〈
g2

k

〉 + 20g3
〈
g3

k

〉 − 70g2
〈
g2

k

〉3 + 60g2
〈
g2

k

〉2 + 30g2
〈
g4

k

〉〈
g2

k

〉2
− 30g2

〈
g2

k

〉 + 60g2
〈
g3

k

〉2〈
g2

k

〉 + 10g2 + 12
〈
g2

k

〉5 − 15
〈
g4

k

〉〈
g2

k

〉4 − 15
〈
g2

k

〉4 − 70
〈
g3

k

〉2〈
g2

k

〉3
+ 10

〈
g4

k

〉2〈
g2

k

〉3 + 120g
〈
g3

k

〉〈
g2

k

〉3 + 10
〈
g2

k

〉3 + 30
〈
g3

k

〉2〈
g2

k

〉2 − 60g
〈
g3

k

〉〈
g2

k

〉2 + 60
〈
g3

k

〉2〈
g4

k

〉〈
g2

k

〉2
− 60g

〈
g3

k

〉〈
g4

k

〉〈
g2

k

〉2 + 30
〈
g3

k

〉4〈
g2

k

〉 − 60g
〈
g3

k

〉3〈
g2

k

〉 − 30
〈
g3

k

〉2〈
g4

k

〉2〈
g2

k

〉 − 〈
g4

k

〉5 − 5
〈
g3

k

〉4
+ 10

〈
g3

k

〉2〈
g4

k

〉3 − 15
〈
g3

k

〉4〈
g4

k

〉 + 20g
〈
g3

k

〉3〈
g4

k

〉
. (C2)
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These conditional probabilities can be evaluated explicitly,
as a function of c, by inserting the moments〈

g3
k

〉 = 1 − 3e−cg + 3e−cg(2−g) − e−cg(3−3g+g2) (C3)

and 〈
g4

k

〉 = 1 − 4e−cg + 6e−cg(2−g) − 4e−cg(3−3g+g2)

+ e−c[1−(1−g)4]. (C4)

Higher order moments can be obtained from Eq. (47).

APPENDIX D: THE GIANT CLUSTER IN RANDOM
REGULAR GRAPHS

In this appendix we show that in random regular networks
the giant cluster encompasses the entire network, namely
g = 1. In the random regular graph, the degree distribution
is P (k) = δk,c, where δk,c is the Kronecker symbol and c is an
integer. We will focus on the case of c � 3. In this case

G1(x) = xc−1 (D1)

and

G0(x) = xc. (D2)

For c = 1 the random regular graph consists of dimers,
while for c = 2 it consists of loops of various lengths. A fully
developed network is obtained only for c � 3, and this will be
the case of interest in the present work. To obtain the size of the
giant cluster we look for solutions of Eq. (4). Inserting G1(x)
from Eq. (D1) into Eq. (4) we obtain 1 − g̃ = (1 − g̃)c−1. It is
easy to see that g̃ = 0 and g̃ = 1 are solutions of this equation.
Moreover, for c � 3 the expression on the right hand side
is smaller than the expression on the left hand side for any
0 < g̃ < 1. Thus, for c � 3 there are no other solutions for
Eq. (4). This proves that g̃ may be either 0 or 1. Inserting these
solutions into Eq. (5) we find that in both cases g is equal to g̃,
namely g = 0 or 1. The solution g = 0 stands for the case in
which there is no giant cluster, while the solution g = 1 implies
that the giant cluster encompasses the entire network. In order
to determine which of these possible solutions is the relevant
one, we use the criterion of Molloy and Reed for the existence
of a giant cluster [32,33]. It states that if 〈K2〉 > 2〈K〉 then
there is a giant cluster, namely g > 0. In the case of a random
regular graph 〈K〉 = c and 〈K2〉 = c2. Thus, for c � 3 the

Molloy and Reed criterion is satisfied and g > 0. Hence, the
only possible solution is g = 1, namely the giant cluster of
a random regular graph with c � 3 encompasses the entire
network.

APPENDIX E: THE GIANT CLUSTER IN SCALE-FREE
NETWORKS

In this appendix we consider a configuration model with a
power-law degree distribution of the form P (k) ∼ k−γ , where
the degrees are bounded in the range kmin � k � kmax. The
normalized degree distribution is given by Eq. (58). The mean
degree is

〈K〉 = ζ (γ − 1,kmin) − ζ (γ − 1,kmax + 1)

ζ (γ,kmin) − ζ (γ,kmax + 1)
, (E1)

while the second moment of the degree distribution is

〈K2〉 = ζ (γ − 2,kmin) − ζ (γ − 2,kmax + 1)

ζ (γ,kmin) − ζ (γ,kmax + 1)
. (E2)

For γ � 2 the mean degree diverges when kmax → ∞. For
2 < γ � 3 the mean degree is bounded while the second mo-
ment, 〈K2〉, diverges. For γ > 3 both moments are bounded.
It can be shown that for γ > 2 and kmin � 2 (where nodes of
degrees 0 and 1 do not exist), 〈K2〉 > 2〈K〉, namely the Molloy
and Reed criterion is satisfied and the network exhibits a giant
cluster [32,33]. Below we show that under these conditions
the giant cluster encompasses the entire network. Inserting a
power-law degree distribution with kmax → ∞ into Eq. (4) we
obtain

G1(x) = 	(x,γ − 1,kmin)

ζ (γ − 1,kmin)
xkmin−1, (E3)

where 	(x,γ,k) is the Lerch transcendent [71]. It can be shown
that for any 0 < x < 1 the relation 	(x,s,k) < 	(1,s,k) =
ζ (s,k) is satisfied, provided that k > 0. Therefore, G1(x) <

xkmin−1 for any value of x in the range 0 < x < 1. In the case
in which kmin � 2 the inequality xkmin−1 < x is also satisfied for
0 < x < 1. Thus, x = 0 and x = 1 are the only fixed points
of the generating function G1(x). Inserting 1 − g̃ instead of
x and using the criterion of Molloy and Reed [32,33], we
find that the only possible value of g̃ is g̃ = 1. Inserting this
value in Eq. (5) one finds that g = 1, namely that in scale-free
configuration model networks with γ > 2 and kmin � 2, the
giant cluster encompasses the entire network.
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