Representation and processing of novel stimuli by an associative neural network

Reimer Kühn
Department of Mathematics, King's College London

in collaboration with
Valeria del Prete

http://www.mth.kcl.ac.uk/staff/r_kuehn.html
Overview

- Motivation

- The Model

- Collective Properties
 - Firing Rate Distributions
 - Stimuli, Mutual Information, Correlation

- Perspective:
 - Optimise Representations
 - Dynamics
Motivation

- Representation of stimuli in an associative neural networks
 - neural firing patterns, rates and their distributions

- Of interest: differences in firing rate distributions, if new stimulus is correlated with pre-learnt patterns or not.

- For new stimuli correlated with pre-learnt patterns:
 - mutual information between firing rates and novel stimulus
 - dependence on correlation with pre-learnt patterns
 - dependence on other parameters (number of memories, thresholds, neural gain-function)
Theoretical framework for interpretation of recordings using trained-untrained scenarios?

- untrained animals represent stimuli in existing cognitive structure
- cognitive structure changes in response to new stimuli

Results – at least in principle – experimentally accessible
Context

• A Treves et al (Neural Computation, 1999)
 Recordings from inferior temporal cortex, visual stimuli rate-distributions non-exponential, fits to assumed current distributions

• N Brunel (J. Comp. Neurosci., 2000)
 Dynamics of sparsely connected networks of leaky IF neurons with uniform synaptic strengths: study of collective network states

• J Hertz et al (Neurocomputing, 2003); q-bio.NC/0402023
 Dynamics of sparsely connected networks of leaky IF neurons with uniform synaptic strengths: computation of Fano factors
The Model

- Graded response neurons, Kirchhoff equations for coupled leaky integrators

\[C_i \frac{dU_i}{dt} = -\frac{U_i}{R_i} + \sum_{j=1}^{N} J_{ij} \nu_j + I_i \]

- Firing rates \(\nu_i \) via voltage-to-rate transduction-function

\[\nu_i = g(U_i - \vartheta_i) \]

- Synaptic couplings from Hebbian covariance learning rule

\[J_{ij} = \frac{1}{Na(1-a)} \sum_{\mu=1}^{P} (\eta_i^{\mu} - a)(\eta_j^{\mu} - a) \]

\[\eta_i^{\mu} = \begin{cases} 1; \text{ with prob. } a, \\ 0; \text{ with prob. } 1-a, \end{cases} \]

hence: \(\langle \eta_i^{\mu} \rangle = a \)
Voltage-to-rate transduction-function for present setup:

\[g(x) = \nu_{\text{max}} \frac{x}{U_0 + x} \Theta(x) \]

Voltage-to-rate transduction-function, \(x = U - \vartheta \), \(U_0 = 0.75 \), \(\nu_{\text{max}} = 1 \).
Present talk: only long time stationary response

Symmetric couplings: dynamics governed by Lyapunov function

\[H_N(\nu) = -\frac{1}{2} \sum_{i,j=1}^{N} J_{ij} \nu_{i} \nu_{j} + \sum_{i=1}^{N} G(\nu_{i}) - \sum_{i=1}^{N} (I_{i} - \theta_{i}) \nu_{i} \]

with

\[G(\nu) = \int^{\nu} d\nu' g^{-1}(\nu') \]

\[\implies \text{stationary response from minima of } H_N \]

Characterisation of attractors (minima of \(H_N \)):

\[T \to 0 \text{-limit of free energy corresponding to } H_N \]

Collective Properties

- Stationary limit from equilibrium statistical mechanics.
 - Partition function
 \[Z_N = \int \prod_i d\nu_i \exp[-\beta H_N(\nu)] \]
 - Free energy
 \[f_N(\beta) = -(\beta N)^{-1} \log Z_N \]
 - \(T \to 0 \Leftrightarrow \beta \to 0 \)-limit: only minima of \(H_N \) contribute.
 - A technical point: randomness due to \(\{\eta_i^\mu\} \) \(\Rightarrow \overline{f_N(\beta)} \)
 - Macroscopic characterization of system — order parameters:
 \[m^\mu = \frac{1}{N} \sum_i \frac{\eta_i^\mu - a}{a(1-a)} \overline{\nu_i}, \quad q = \frac{1}{N} \sum_i \overline{\nu_i}^2, \quad c = \frac{\beta}{N} \sum_i [\overline{\nu_i^2} - \overline{\nu_i}^2] \]
• Self-consistency equations, \(T = 0 \)-limit:

\[
m = \quad \left\langle \left\langle \frac{\eta-a}{a(1-a)} \tilde{\nu} \right\rangle \right\rangle_{\eta,z,I}
\]

\[
c = \quad \frac{1}{\sqrt{\alpha r}} \left\langle \left\langle z \tilde{\nu} \right\rangle \right\rangle_{\eta,z,I}
\]

\[
r = \quad \frac{q}{(1-c)^2}
\]

\[
q = \quad \left\langle \left\langle \tilde{\nu}^2 \right\rangle \right\rangle_{\eta,z,I}
\]

with

\[
\tilde{\nu} = \tilde{\nu}(\eta, z, I) = g\left(m(\eta - a) + \sqrt{\alpha r} \quad z + \frac{\alpha c}{1 - c} \tilde{\nu} + I - \vartheta\right)
\]

\((*) \)

• Input currents (stimuli) Gaussian: \(I_i = \rho \eta_i + \sigma \xi_i \) with \(\xi_i \sim \mathcal{N}(0, 1) \)

• Firing rate distribution, parameterised by \(m, c, q \); from \((*) \):

\[
p(\nu, I, \eta) = \frac{1}{N} \sum_i \delta_{\eta_i} \delta(I - I_i) \left\langle \delta(\nu - \nu_i) \right\rangle = \left\langle \delta(\nu - \tilde{\nu}) \right\rangle_{I,\eta}
\]
Overlap as function of loading level, without stimulus, and for $\rho = 0.005$, $\rho = 0.01$, $\rho = 0.02$, $\rho = 0.03$, and $\sigma = 0.03$.
Spin-glass order parameter q and susceptibility c as functions of loading level, without stimulus, and for $\rho = 0.005$, $\rho = 0.01$, $\rho = 0.02$, $\rho = 0.03$, and $\sigma = 0.03$.
Firing rate distribution at $\alpha = 0.005$, without stimulus, and for $\rho = 0.005$, $\rho = 0.01$, $\rho = 0.02$, $\rho = 0.03$, and $\sigma = 0.03$.
Firing Rate Distributions

Firing rate distribution at $\alpha = 0.075$, without stimulus, and for $\rho = 0.005$, $\rho = 0.01$, $\rho = 0.02$, $\rho = 0.03$, and $\sigma = 0.03$.
Firing rate distribution at $\alpha = 0.10$, without stimulus, and for $\rho = 0.005$, $\rho = 0.01$, $\rho = 0.02$, $\rho = 0.03$, and $\sigma = 0.03$.
Firing rate distribution at $\alpha = 0.15$, without stimulus, and for $\rho = 0.005$, $\rho = 0.01$, $\rho = 0.02$, $\rho = 0.03$, and $\sigma = 0.03$.
Performance Measures

- Mutual conditional information of firing rate distribution and input currents

\[\bar{I}(\nu, I|\eta) = \sum_{\eta} \int d\nu dI \ p(\nu, I, \eta) \ \log_2 \frac{p(\nu, I|\eta)}{p(\nu|\eta)p(I|\eta)} \]

\[= \sum_{\eta} p(\eta) \int d\nu dI \ p(\nu|I\eta)p(I|\eta) \ \log_2 \frac{p(\nu|I, \eta)}{p(\nu|\eta)} \]

- Normalised correlation between firing rates and currents

\[C_{I,\nu} = \frac{1}{\sqrt{\sigma_{\nu}^2 \sigma_I^2}} \left[\langle \nu \ I \rangle - \langle \nu \rangle \langle I \rangle \right] \]
Mutual Information and Correlation

Mutual conditional information and current-rate correlation at $\sigma = 0.03$ and $\rho = 0.005$ (left) and $\rho = 0.01$ (right) as functions of α.
Mutual conditional information and current-rate correlation at $\sigma = 0.03$ and $\rho = 0.02$ (left) and $\rho = 0.03$ (right) as functions of α.

Mutual Information and Correlation
Mutual Information

Mutual conditional information as a function of α for various degrees of correlation.
Summary and Outlook

- Computed firing rate distributions in analogue neuron systems
- Studied dependence on degree of correlation between stimulus and pre-learnt patterns
- Started systematic evaluation of information theoretic performance measures
- Results – at least in principle – experimentally accessible
- Useful as theoretical framework for interpretation of recordings using trained-untrained scenarios?
• Within reach and/or to be done
 – Graded patterns in the learning rule
 – Pattern distribution that maximises mutual information?
 – Asymmetric couplings
 – Non-stationary effects, dynamics ⇒ J. Hatchett (KCL)
 – More realistic neuron models