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Motivation

e Representation of stimuli in an associative neural networks

— neural firing patterns, rates and their distributions

e Of interest: differences in firing rate distributions, if new
stimulus is correlated with pre-learnt patterns or not.

e For new stimuli correlated with pre-learnt patterns:
— mutual information between firing rates and novel stimulus
— dependence on correlation with pre-learnt patterns

— dependence on other parameters
(number of memories, thresholds, neural gain-function)



e [ heoretical framework for interpretation of recordings
using trained-untrained scenarios?

— untrained animals represent stimuli in existing cognitive
structure

— coginitive structure changes in response to new stimuli

e Results — at least in principle — experimentally accessible



Context

e A Treves et al (Neural Computation, 1999)
Recordings from inferior temporal cortex, visual stimuli
rate-distributions non-exponential, fits to assumed current
distributions

e N Brunel (J. Comp. Neurosci., 2000)
Dynamics of sparsely connected networks of leaky IF neurons
with uniform synaptic strengths: study of collective network
states

e J Hertz et al (Neurocomputing, 2003); g-bio.NC/0402023
Dynamics of sparsely connected networks of leaky IF neurons
with uniform synaptic strengths: computation of Fano factors



T he Model

e Graded response neurons, Kirchhoff equations for coupled leaky
integrators
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e Firing rates v; via voltage-to-rate transduction-function

v; = g(U; — ;)

e Synaptic couplings from Hebbian covariance learning rule
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e Voltage-to-rate transduction-function for present setup:

9(x) = vmax ﬁ o(z)
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Voltage-to-rate transduction-function, * = U — ¥, Ug = 0.75, vmax = 1.



e Present talk: only long time stationary response

e Symmetric couplings: dynamics governed by Lyapunov function

1 N N N
Hy(v) = —5 Y Jivivi+ > Gy) — > I — %)y,
i=1 i=1 i=1

with
G(v) = /V dv'g~ ()

—=> stationary response from minima of Hy

e Characterisation of attractors (minima of Hy):

T — O-limit of free energy corresponding to Hy

(RK, S. B&s J. Phys. A, 1993)



Collective Properties

e Stationary limit from equilibrium statistical mechanics.

— Partition function

Zn = [ T]dviexpl-BHy )]
i
— Free energy
fn(B) = —(BN) 'log Zy
— T — 0 & (B — oco-limit: only minima of Hjp contribute.
— A technical point: randomness due to {n}'} = fn(3)

— Macroscopic characterization of system — order parameters:
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Self-consistency equations, T' = O-limit:
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Input currents (stimuli) Gaussian: I; = pn;+0€&; with & ~ N (0, 1)

Firing rate distribution, parameterised by m, ¢, g; from (*):

p(v, I,n) = %Z Sy 0T = I;) (6(v — 1)) = (6(v — D))

I.m



Order Parameters
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Overlap as function of loading level, without stimulus, and for p = 0.005,
p=0.01, p=0.02, p=0.03, and ¢ = 0.03.



Order Parameters
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Spin-glass order parameter ¢ and susceptibility ¢ as functions of loading level,
without stimulus, and for p = 0.005, p = 0.01, p = 0.02, p = 0.03, and ¢ = 0.03.



Firing Rate Distributions
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Firing rate distribution at a = 0.005, without stimulus, and for p = 0.005,
p=0.01, p=0.02, p=0.03, and ¢ = 0.03.



Firing Rate Distributions
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Firing rate distribution at a = 0.075, without stimulus, and for p = 0.005,
p=0.01, p=0.02, p=0.03, and ¢ = 0.03.



Firing Rate Distributions
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Firing rate distribution at o« = 0.10, without stimulus, and for p = 0.005,
p=0.01, p=0.02, p=0.03, and ¢ = 0.03.



Firing Rate Distributions
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Firing rate distribution at o« = 0.15, without stimulus, and for p = 0.005,
p=0.01, p=0.02, p=0.03, and ¢ = 0.03.



Performance Measures

e Mutual conditional information of firing rate distribution and
input currents

p(v, I|n)
p(v|n)p(I|n)
p(v|I,n)

p(v|n)

I(v,Iln) = Z/dvdl p(v,I,n) logs
Ui

= Y p(n) [ dvdl p(v|In)p(Tn) logs
n

e Normalised correlation between firing rates and currents
1

Cry = @Bu I) — (v)(I)]




Mutual Information and Correlation
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Mutual conditional information and current-rate correlation at ¢ = 0.03 and
p = 0.005 (left) and p = 0.01 (right) as functions of «.



Mutual Information and Correlation
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Mutual conditional information and current-rate correlation at ¢ = 0.03 and
p = 0.02 (left) and p = 0.03 (right) as functions of «.



Mutual Information
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Summary and Outlook

Computed firing rate distributions in analogue neuron systems

Studied dependence on degree of correlation between stimulus
and pre-learnt patterns

Started systematic evaluation of information theoretic perfor-
mance measures

Results — at least in principle — experimentally accessible

Useful as theoretical framework for interpretation of recordings
using trained-untrained scenarios?



e Within reach and/or to be done
— Graded patterns in the learning rule
— Pattern distribution that maximises mutual information?
— Asymmetric couplings
— Non-stationary effects, dynamics = J. Hatchett (KCL)

— More realistic nheuron models



