

University of London

Representation and processing of novel stimuli by an associative neural network

Reimer Kühn

Department of Mathematics, King's College London

in collaboration with Valeria del Prete

http://www.mth.kcl.ac.uk/staff/r_kuehn.html

Overview

- Motivation
- The Model
- Collective Properties
 - Firing Rate Distributions
 - Stimuli, Mutual Information, Correlation
- Perspective:
 - Optimise Representations
 - Dynamics

Motivation

• Representation of stimuli in an associative neural networks

— neural firing patterns, rates and their distributions

- Of interest: differences in firing rate distributions, if new stimulus is correlated with pre-learnt patterns or not.
- For new stimuli correlated with pre-learnt patterns:
 - mutual information between firing rates and novel stimulus
 - dependence on correlation with pre-learnt patterns
 - dependence on other parameters
 (number of memories, thresholds, neural gain-function)

- Theoretical framework for interpretation of recordings using trained-untrained scenarios?
 - untrained animals represent stimuli in existing cognitive structure
 - coginitive structure changes in response to new stimuli
- Results at least in principle experimentally accessible

Context

- A Treves et al (Neural Computation, 1999) Recordings from inferior temporal cortex, visual stimuli rate-distributions non-exponential, fits to assumed current distributions
- N Brunel (J. Comp. Neurosci., 2000)
 Dynamics of sparsely connected networks of leaky IF neurons with uniform synaptic strengths: study of collective network states
- J Hertz et al (Neurocomputing, 2003); q-bio.NC/0402023 Dynamics of sparsely connected networks of leaky IF neurons with uniform synaptic strengths: computation of Fano factors

The Model

Graded response neurons, Kirchhoff equations for coupled leaky integrators

$$C_i \frac{dU_i}{dt} = -\frac{U_i}{R_i} + \sum_{j=1}^N J_{ij} \nu_j + I_i$$

• Firing rates ν_i via voltage-to-rate transduction-function

$$\nu_i = g(U_i - \vartheta_i)$$

• Synaptic couplings from Hebbian covariance learning rule

$$J_{ij} = \frac{1}{Na(1-a)} \sum_{\mu=1}^{p} (\eta_i^{\mu} - a)(\eta_j^{\mu} - a)$$

$$\eta_i^{\mu} = \begin{cases} 1; \text{ with prob. } a, \\ & & \text{hence : } \langle \eta_i^{\mu} \rangle = a \\ 0; \text{ with prob. } 1-a, \end{cases}$$

• Voltage-to-rate transduction-function for present setup:

$$g(x) = \nu_{\max} \frac{x}{U_0 + x} \Theta(x)$$

Voltage-to-rate transduction-function, $x = U - \vartheta$, $U_0 = 0.75$, $\nu_{max} = 1$.

- Present talk: only long time stationary response
- Symmetric couplings: dynamics governed by Lyapunov function

$$H_N(\nu) = -\frac{1}{2} \sum_{i,j=1}^N J_{ij} \nu_i \nu_j + \sum_{i=1}^N G(\nu_i) - \sum_{i=1}^N (I_i - \vartheta_i) \nu_i$$

with

$$G(\nu) = \int^{\nu} d\nu' g^{-1}(\nu')$$

 \implies stationary response from minima of H_N

• Characterisation of attractors (minima of H_N):

 $T \rightarrow 0$ -limit of free energy corresponding to H_N

(RK, S. Bös J. Phys. A, 1993)

Collective Properties

• Stationary limit from equilibrium statistical mechanics.

- Partition function

$$Z_N = \int \prod_i d\nu_i \exp[-\beta H_N(\nu)]$$

- Free energy

$$f_N(\beta) = -(\beta N)^{-1} \log Z_N$$

- $T \rightarrow 0 \Leftrightarrow \beta \rightarrow \infty$ -limit: only minima of H_N contribute.
- A technical point: randomness due to $\{\eta_i^{\mu}\} \Rightarrow \overline{f_N(\beta)}$
- Macroscopic characterization of system order parameters:

$$m^{\mu} = \frac{1}{N} \sum_{i} \frac{\eta_{i}^{\mu} - a}{a(1-a)} \overline{\langle \nu_{i} \rangle}, \quad q = \frac{1}{N} \sum_{i} \overline{\langle \nu_{i} \rangle^{2}}, \quad c = \frac{\beta}{N} \sum_{i} [\overline{\langle \nu_{i}^{2} \rangle} - \overline{\langle \nu_{i} \rangle^{2}}]$$

• Self-consistency equations, T = 0-limit:

$$\begin{split} m &= \left\langle \left\langle \frac{\eta - a}{a(1 - a)} \ \hat{\nu} \right\rangle \right\rangle_{\eta, z, I} \\ c &= \frac{1}{\sqrt{\alpha r}} \left\langle \left\langle z \hat{\nu} \right\rangle \right\rangle_{\eta, z, I} \\ q &= \left\langle \left\langle \hat{\nu}^2 \right\rangle \right\rangle_{\eta, z, I} \end{split} \qquad r = \frac{q}{(1 - c)^2} \end{split}$$

with

$$\hat{\nu} = \hat{\nu}(\eta, z, I) = g\left(m(\eta - a) + \sqrt{\alpha r} \ z + \frac{\alpha c}{1 - c}\hat{\nu} + I - \vartheta\right) \qquad (*)$$

- Input currents (stimuli) Gaussian: $I_i = \rho \eta_i + \sigma \xi_i$ with $\xi_i \sim \mathcal{N}(0, 1)$
- Firing rate distribution, parameterised by m, c, q; from (*):

$$p(\nu, I, \eta) = \frac{1}{N} \sum_{i} \delta_{\eta, \eta_{i}} \left. \delta(I - I_{i}) \left\langle \delta(\nu - \nu_{i}) \right\rangle = \left\langle \delta(\nu - \hat{\nu}) \right\rangle \Big|_{I, \eta}$$

Order Parameters

Overlap as function of loading level, without stimulus, and for $\rho = 0.005$, $\rho = 0.01$, $\rho = 0.02$, $\rho = 0.03$, and $\sigma = 0.03$.

Order Parameters

Spin-glass order parameter q and susceptibility c as functions of loading level, without stimulus, and for $\rho = 0.005$, $\rho = 0.01$, $\rho = 0.02$, $\rho = 0.03$, and $\sigma = 0.03$.

Firing rate distribution at $\alpha = 0.005$, without stimulus, and for $\rho = 0.005$, $\rho = 0.01$, $\rho = 0.02$, $\rho = 0.03$, and $\sigma = 0.03$.

Firing rate distribution at $\alpha = 0.075$, without stimulus, and for $\rho = 0.005$, $\rho = 0.01$, $\rho = 0.02$, $\rho = 0.03$, and $\sigma = 0.03$.

Firing rate distribution at $\alpha = 0.10$, without stimulus, and for $\rho = 0.005$, $\rho = 0.01$, $\rho = 0.02$, $\rho = 0.03$, and $\sigma = 0.03$.

Firing rate distribution at $\alpha = 0.15$, without stimulus, and for $\rho = 0.005$, $\rho = 0.01$, $\rho = 0.02$, $\rho = 0.03$, and $\sigma = 0.03$.

Performance Measures

 Mutual conditional information of firing rate distribution and input currents

$$\begin{split} \tilde{I}(\nu, I|\eta) &= \sum_{\eta} \int d\nu dI \ p(\nu, I, \eta) \ \log_2 \frac{p(\nu, I|\eta)}{p(\nu|\eta) p(I|\eta)} \\ &= \sum_{\eta} p(\eta) \int d\nu dI \ p(\nu|I\eta) p(I|\eta) \ \log_2 \frac{p(\nu|I, \eta)}{p(\nu|\eta)} \end{split}$$

Normalised correlation between firing rates and currents

$$C_{I,\nu} = \frac{1}{\sqrt{\sigma_{\nu}^2 \sigma_I^2}} \Big[\langle \nu | I \rangle - \langle \nu \rangle \langle I \rangle \Big]$$

Mutual Information and Correlation

Mutual conditional information and current-rate correlation at $\sigma = 0.03$ and $\rho = 0.005$ (left) and $\rho = 0.01$ (right) as functions of α .

Mutual Information and Correlation

Mutual conditional information and current-rate correlation at $\sigma = 0.03$ and $\rho = 0.02$ (left) and $\rho = 0.03$ (right) as functions of α .

Mutual Information

Mutual conditional information as a function of α for various degrees of correlation.

Summary and Outlook

- Computed firing rate distributions in analogue neuron systems
- Studied dependence on degree of correlation between stimulus and pre-learnt patterns
- Started systematic evaluation of information theoretic performance measures
- Results at least in principle experimentally accessible
- Useful as theoretical framework for interpretation of recordings using trained-untrained scenarios?

- Within reach and/or to be done
 - Graded patterns in the learning rule
 - Pattern distribution that maximises mutual information?
 - Asymmetric couplings
 - Non-stationary effects, dynamics \Rightarrow J. Hatchett (KCL)
 - More realistic neuron models