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1 Introduction

Perverse sheaves were introduced by Beilison, Bernstein and Deligne [BBD82] to provide a sheaf theoretic
foundation for the theory of intersection cohomology as developed by Goresky-Macpherson [GM80]. This
allows (crucially) for the theory to be defined in the étale cohomology of varieties over finite (or charac-
teristic p) fields and this allows one to deploy the general machinery of weights as was developed earlier
by Deligne in [Del80].

Intersection cohomology is a way to take cohomology of a singular variety (or pseudomanifold) that agrees
with ordinary cohomology for smooth projective varieties (manifolds). It is better behaved than ordinary
cohomology because it satisfies a version of Poincaré duality and because it has a naturally defined cup
product.

The theory of perverse sheaves has found many applications, for example in representation theory and
the geometric Langlands programme. For example Beilison and Bernstein proved the Kahzdan-Lustzig
conjecture by studying the intersection cohomology on Schubert varieties.

The most striking application is the decomposition theorem, which generalises (to the nonsmooth case)
the following theorem of Deligne:

Theorem 1. Let f : X → Y be a smooth proper morphism of varieties over an algebraically closed field
k, then (for l coprime to the characteristic of k) we have

Rf∗Ql
∼=
⊕
i

Rif∗Ql[−i],

which for example implies that the Leray spectral sequence for f degenerates.
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2 Six functor formalism

In this section we will introduce, for schemes of finite type over an algebraically closed field k, the bounded
derived category of l-adic sheaves with constructible cohomology. Actually, we will only define things with
finite (e.g. Z/lnZ coefficients), and will not deal with the problems of passing to the limit. We refer to
Section 6 [BS15] for a modern approach, which also deals with things in more generality. We will briefly
recall constructible sheaves and their basic properties, as well as the definition of a triangulated category.
Next, we define the category Db

c(X,Λ) and discuss functoriality for morphisms f : X → Y of finite type
schemes.

2.1 Constructible Sheaves

In this section X is a scheme of finite type over a field k, there is a coefficient ring Λ = Z/lnZ for l coprime
to the characteristic of k.

Definition 1. A sheaf of Λ-modules F on the étale site of X is constructible if there is a stratification
X =

⋃
i Ui into locally closed subschemes Ui such that F

∣∣
Ui

is finite locally constant. This means that

there is an étale cover Vi → Ui such that F
∣∣
Ui

becomes a constant sheaf after pullback to Vi.

We let Abc(Xét,Λ) ⊂ Ab(Xét,Λ) be the full subcategory of the abelian category of sheaves of Λ-modules
on Xét whose objects are constructible sheaves. We will need the following result [Sta18, Tag 03RY]

Proposition 1. The subcategory Abc(Xét,Λ) ⊂ Ab(Xét,Λ) is a strong Serre subcategory, i.e., it is closed
under sub-quotients and extensions.

2.2 Triangulated categories

Definition 2. A triangulated category is a triple (C, T : C → C,∆) where C is an additive category,
T : C → C is an additive functor which is part of equivalence of categories, and ∆ is a collection of
diagrams (called triangles) of the form

A→ B → C → T (A),

such that the following axioms hold (we call triangles in ∆ distinguished triangles:

T1 Every triangle that is isomorphic to a distinguished triangle is also a distinguished triangle.

T2 For every object X the triangle

X X 0 T (X)id

is distinguished.

T3 For every morphism f : X → Y , there is a distinguished triangle (unique up to non-unique isomor-
phism)

X → Y → Z → T (X)
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T4 The triangle

X Y Z T (X)u v w

is distinguished if and only if the following triangle is distinguished

Y Z T (X) T (Y ).v w −Tu

T5 Given a diagram

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′)

f Tf

with rows distinguished, then the dotted arrow exists (but not uniquely).

T6 The octahedral axiom.

A triangulated functor F : (C, T,∆) → (C′, T ′,∆′) is an additive functor that sends triangles in ∆ to ∆’
such that the following diagram commutes (possibly up to natural transformations??)

C C

C′ C′.

T

F F

T ′

Remark 1. There is a more elegant way of defining all this, using the language of stable infinity categories,
see Chapter 1 of [Lur17].

Proposition 2. If A is a sufficiently nice abelian category (for example the category of sheaves of abelian
groups on a site), then the bounded derived category Db(A) is a triangulated category. The objects of this
category are bounded chain complexes and morphisms are roughly chain homotopy classes of maps (up to
quasi-isomorphisms etc).

Definition 3. We define D(X) = Db
c(X,Λ) to be the full subcategory of the bounded derived category of

Λ-modules consisting of complexes K whose cohomology sheaves are constructible. Proposition 1 tells us
that this is a triangulated subcategory.

2.3 The four functors

In this section we let f : X → Y be a finite type morphisms of schemes, then we will consider the various
pullback and pushforward functors that f induces between D(X) and D(Y ). We know that there are
(non-derived) functors f∗ : Ab(Xét,Λ)↔ Ab(Yét,Λ) : f∗. Moreover, the functor f∗ is left exact and the
functor f∗ is exact, and f∗ is right adjoint to f∗. The machinery of derived categories gives us functors

Rf∗ : Db(Xét,Λ)→ Db(Yét,Λ)

f∗ : Db(Yét,Λ)→ Db(Xét,Λ)

Proposition 3. Both functors preserve the subcategories of complexes with constructible cohomology
sheaves
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Proof. This is straightforward for f∗ and a deep result (Theorem 7.1.1 in [Del77]) for Rf∗, which implies
for example finite dimensionality of etale cohomology.

If the morphism f is separated, then we can define a functor f! (called pushforward with compact support)
which is related to cohomology with compact support. This functor is defined by choosing a proper
compactification f of the morphism f (which exists, c.f. [Con07])

X X

Y

f

j

f

and defining f!K = f∗j!K where j! is the extension by zero functor. This does not depend on the chosen
compactification by the proper base change theorem.

Proposition 4. The functor f! preserves constructibility

Proof. This is Théorème 1.1in SGA 4 Exposé XIV ([Gro73]), but it also follows from Deligne’s result
cited above.

2.4 Duality

In this section we describe Verdier duality for separated morphisms f : X → Y , which specialises to
Poincare duality when Y is a point and f is proper.

Theorem 2 (Théorème 3.1.4 SGA4 Exposé XVIII). Let f : X → Y be a finite type separated morphism
between finite type schemes over an algebraically closed field, then the functor f! : D(X)→ D(Y ) admits
a (triangulated) right adjoint functor f ! called shriek pullback. So this means we have for K ∈ D(X), L ∈
D(Y ) a natural isomorphism

f∗RH om(K, f !L) = RH om(f!K,L).

Definition 4. If f : X → Spec k is the structure morphism, we define the dualizing complex DX = f !Ql

where we put Ql in degree 0. We define the (contravariant) dualizing functor by

DK = DX(K) := RH om(K,KX).

Proposition 5. The following properties hold:

• There is a natural isomorphism K → DDK (Théorème 4.3 SGA 4.5 [Del77]).

• We have f !KY = KX .

• We have f ! ◦DY = DX ◦ f∗.

• We have f∗ ◦DX = DY ◦ f! (Poincaré duality).
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3 Perverse sheaves

In this section we will define the abelian category of perverse sheaves Perv(X) for X a finite type scheme
over a field k. We will discuss some of its properties and behaviour under morphisms f : X → Y . This is
also what allows us to give a sheaf-theoretic interpretation of intersection cohomology.

3.1 General t-structures

Definition 5. Let (C, T,∆) be a triangulated category, then a t-structure is a pair of full subcategories
C≤0,C≥0 ⊂ C that are closed under isomorphisms, such that the following axioms hold:

• The subcategory C≤0 is closed under translation by T . In fact we usually write C≤−1 = TC≤0.
Similarly we have that C≥0 is closed under T−1 and we write Cge1 = T−1C≤0.

• For Z ∈ C≤0 and Y ∈ C≥0 we have

hom(Z, Y [1]) = 0

• For all objects X ∈ C there is a distinguished triangle

Z → X → Y → Z[1]

with Z ∈ C≤0 and Y ∈ Cge0.

Example 1. If A is a sufficiently nice abelian category, then the derived category Db(A) has a t-structure
given by complexes with cohomology concentrated in degree ≤ 0 (resp ≥ 0).

Remark 2. Given a t-structure on a triangulated category, we can always shift it to obtain a new t-
structure.

Proposition 6. Define C♥ = C≤0∩C≥0, it is called the heart of the t-structure and is an abelian category.

Proposition 7. The inclusion functor i : C≤n → C has a right adjoint τ≤n which we will refer to as a
truncation functor. Similarly the inclusion i : C≥n has a left adjoint τ≥n also called a truncation functor.

Definition 6. If KinC then we define the cohomology functors (associated to the t-structure) to be

Hn(X) = τ≤0τ≥0X[n],

this coincides with the usual thing when C is the derived category of an abelian category with the usual
t-structure.

3.2 The perverse t-structure

In this section we let X be a scheme of finite type over a field k. We are going to define the perverse
t-structure on D(X), sketch a proof that it is in fact a t-structure and discuss what happens for smooth
X.

Definition 7. We say that K is in pD(X)≤0 if dim Supp
(
H−iK

)
≤ i for all i ∈ Z and that K is in

pD(X)≥0 if DK is in pD(X)≤0.
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Proposition 8. This is a t-structure, and we call the heart Perv(X) :=
(
pD(X)≤0 ∩ pD(X)≥0

)
the

abelian category of perverse sheaves.

Note that the perverse t-structure is self dual by definition, i.e., K is a perverse sheaf if and only if DK
is a perverse sheaf. In order to make sense of this definition (which is not very intuitive), we will study
what the conditions say when X is smooth variety and K a complex of smooth sheaves.

3.3 The smooth case

In this section we will study what happens when X is smooth and equi-dimensional of dimension d. In
this case the dualizing complex KX ’is’ of the form Ql[2d](d), i.e., it is concentrated in degree −2d and
there is some Tate twist. If F is a smooth sheaf on X, then we define F∨ = H om(F ,Ql). We call a
complex K a smooth complex if all its cohomology sheaves are smooth sheaves.

Remark 3. There is always a dense open subscheme U of X such that K
∣∣
U

is a smooth scheme. Indeed,
every cohomology sheaf HiK is constructible and so smooth on a dense open subset Ui and we just define
U =

⋂
i Ui.

Proposition 9 (Proposition III.2.1 in [KW01]). For a smooth complex K we have

Hi(DK) = H−i−2d(K)∨(d).

Proof. This is straightforward when K = F is a smooth sheaf, as the dualizing complex has an explicit
description. The general case follows from induction on the degree in which there are non-vanishing
cohomology sheaves, see loc. cit. for details.

Corollary 1. A smooth complex K is a perverse sheaf if and only if K = F [d] for a smooth sheaf F

Proof. Note that the cohomology sheaves HiK are smooth, and so the dimension of their support is d or
0. The fact that

dim SuppH−i(K) ≤ i

then tells us that K has nonzero cohomology sheaves only in degrees ≤ −i. The dual statement that

dim SuppH−i−2d(K) = dim SuppH−i(K) ≤ i

tells us that K has nonzero cohomology sheaves only in degrees ≥ −i.

This is how one shows in practice that the perverse t-structure is actually a t-structure. Roughly speaking
we can write X = U ∪ Z where U is a dense open smooth subscheme and Z is the closed complement
with dimZ < dimX. Then we know (by induction on the dimension) that we have a t-structure on Z
and we can glue it to the t-structure on U defined by shifting the standard one by d. This doesn’t quite
work as stated, and a detailed proof can be found in Section III.3 of [KW01]. In particular the following
Lemma is a crucial ingredient in the proof.
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Lemma 1 (Lemma III.3.1 of [KW01]). If i : Z → X is a closed immersion with open complement
j : U → X then we have the following results

K ∈ pD≤0(X)⇔ j∗K ∈ pD≤0(U) and i∗K ∈p D≤0(Z)

K ∈ pD≥0(X)⇔ j!K ∈ pD≥0(U) and i!K ∈p D≥0(Z)

Proof. The first condition is follows from exactness of j∗ and i∗. This exactness means that

f∗HiK = Hif∗

where f is j or i. Moreover, the dimension of the support of the sheaf HiK is determined by knowing its
intersections with U and Z. The second statement follows from Verdier duality, or that

f ! ◦D = D ◦ f∗

f∗ ◦D = D ◦ f !

3.4 Functoriality and exactness

Definition 8. A (triangulated) functor F : C → D between triangulated categories with t-structures is
called t-right exact if

F (C≤0) ⊂ D≤0

and t-left exact if

F (C≥0) ⊂ D≥0

If it is both t-left and t-right exact then it is called t-exact. This coincides with the usual definition when
C and D are derived categories of abelian categories.

Lemma 2 (Lemma III.4.1 in [KW01]). If i : Z → X is a closed immersion with open complement
j : U → X then we have the following exactness results

j!, i
∗ are right t-exact

i! = i∗, j
! = j∗ are t-exact

j∗, i
! are left t-exact
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3.5 Intermediate extensions and simple perverse sheaves

Let j : U → X be an open immersion with closed complement i : Z → X (everything of finite type over
k) as usual. Then we will study perverse sheaves K on X that restrict to a fixed perverse sheaf K on U ,
these will be called extensions of K. The morphism

j!K → j∗K

induces a map

pH0(j!K)→p H0(j∗K)

and we will denote its image by j!∗K.

Proposition 10. The following are equivalent for K ∈ Perv(X) extending K.

• We have K = j!∗K.

• The perverse sheaf K has no quotients or subobjects of the form i∗L for L ∈ Perv(Z).

• We have i∗K ∈ pD≤−1(Z) and i!K ∈ pD≥1(Z).

Remark 4. The third equivalent condition is self-dual, and so we find that

j!∗DK = Dj!∗K

Definition 9. Let X be a scheme of finite type over k, let U be the smooth locus of X and let F be a
smooth sheaf on U . Then we define the intersection cohomology complex

IC(X,F) = j!∗F [d]

where d is the dimension of U . If F is an irreducible local system than this is a simple perverse sheaf.

Theorem 3. The category of perverse sheaves Perv(X)is artinian and noetherian, i.e., all objects are
finite successive extensions of simple objects. All simple objects are of the form K = i∗j!∗F [d] for an
irreducible closed subscheme i : Y → X, an open dense essentially smooth subscheme j : U → Y and F
an irreducible smooth sheaf on U .

Theorem 4. Let f : X → Y be a proper morphism of separated finite type schemes over k and let K be
a pure perverse sheaf, for example j!∗F [−d] where j : Xsm → X is the inclusion of the smooth locus of X
and F is a pure and smooth sheaf on U . Then

f∗K =

p⊕
i

Hi(f∗K)[−i]

and moreover it is a semi-simple perverse sheaf.
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4 Nearby cycles and Milnor fibers

In this section we give a quick introduction to nearby cycles. We start by giving some intuition from the
classical theory of milnor fibers.

4.1 Introduction

If f : Cn ⊃ U → C is a holomorphic function (say a polynomial) such that X0 := f−1(0) is a (possibly)
singular variety , then the fibers Xt := f−1(t) will be smooth, say for 0 < |t| < ε� 1.

Let ∆ε be the disk of radius ε and let ∆∗ε be the corresponding punctured disk. Then we get a fibration

f−1 (∆∗ε )→ ∆∗ε

and we have an action on H i(Xt) by the fundamental group of ∆∗ε (which is just Z). Note moreover that
X0 is homotopy equivalent to X since ∆ε is contractible, which gives us a specialisation map

H i(X0) = H i(f−1∆ε)→ H i(Xt)

whose image lies in the invariant of H i(Xt) under the monodromy action. These singularities were first
studied by Milnor in [Mil68].

We can define the sheaf of nearby cycles by using the following diagram

X0 X X∗ X̃∗

{0} ∆ε ∆∗ε ∆̃∗ε ,

i

f f

j

f

p

i

j p

where ∆̃∗ε is the universal cover of ∆∗ε and the rightmost square is cartesian. We can now define

RψC = i∗R(j ◦ p)∗C,

which has an action of Z because is a Z-covering. The cohomology groups

(RiψC)x

compute the i-th cohomology of the Milnor fibre around x. Roughly speaking this is the intersection of
a small ball around x (in Cn) with X0.

4.2 Étale version

A reference for the following section is [Ill]. Let ∆ = SpecS where S is an Henselian DVR (e.g. S = Zp)
with generic point η and closed point s. Choose a strict henselisation S̃ of S (e.g. Zur

p , the ring of integers
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in the maximal unramified extension) with generic point η̃ and closed point s̃. Finally choose a geometric
point η → S̃ lying over the generic point of S̃. Consider the following diagram induced by base change

Xη

Xη̃ XS̃ Xs̃

Xη X Xs,

j

j̃

ĩ

j

i

and define

RΨ : D(Xη)→ D(Xs̃)

K 7→ ĩ∗Rj∗K,

the complex of nearby cycles associated to K.

Theorem 5. If K is a perverse sheaf on Xη, then so is RψK.

Proof. It is a deep result of Gabber that nearby cycles commute with duality, i.e.,

DRΨK = RΨDK.

Therefore it suffices to prove that RΦ is left exact for the perverse t-structure. The following Lemma
shows that j∗ is t-exact and we already know that i∗ is left exact for the t-structure so we are done.

Lemma 3. If j : U → X is an affine open immersion (like the open complement of the inclusion of a
divisor) then j∗ = Rj∗ is exact for the perverse t-structure.

Proof. The t-left exactness of j∗ follows from Lemma 2. For the t-right exactness, the main ingredient is
(relative) Artin vanishing for affine schemes ([Gro73])

Theorem 6 (Théorème 3.1 (d) SGA4 Exposé XIV). For an affine morphism f : X → Y and F a
constructible sheaf supported in dimension ≤ d we have

dim SuppRqf∗ ≤ d− q.

Now the result follows by applying the following hypercohomology spectral sequence

Ep,q2 = Rpj∗Hq(K)⇒ Hp+q(Rj∗K)

and noting that Hq(K) is supported in dimension ≤ −q and so Rpj∗Hq(K) is supported in dimension
≤ −q − p by the theorem, precisely the required statement.

Theorem 7. Assume that f : X → ∆ is proper or that X is a nice integral model of a Shimura variety,
then

Hi(Xη,Ql) = Hi(Xs, RΨQl).

Here we can replace the coefficient sheaf Ql with more general automorphic local systems [LS18]. In the
proper case this result holds with any choice of coefficients by proper base change
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(2015), pp. 99–201. issn: 0303-1179.

[Lur17] Jacob Lurie. Higher Algebra. 2017. url: http://www.math.harvard.edu/~lurie/papers/
HA.pdf.
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