
6CCS3AIP—Artificial Intelligence

Coursework, 2016

Amanda Coles & Daniele Magazzeni

(sample rock rover0 rover0store waypoint3)
(calibrate rover0 camera0 objective1 waypoint3)

(take image rover0 waypoint3 objective1 camera0 high res)
(drop rover0 rover0store)

(communicate image data rover0 general objective1 high res)
(communicate rock data rover0 general waypoint1)

Contents

Introduction 1

1 Beginning with JavaFF 3
1.1 Getting Started . 3

1.1.1 Exercise 1: Gathering Data . 4
1.2 Looking Under the Bonnet . 5

1.2.1 The Main Class . 5
1.2.2 Filters . 6
1.2.3 A Moment’s Breath.... 7

1.3 Making Some Changes . 8
1.3.1 Exercise 2: EHC with the NullFilter 8
1.3.2 Exercise 3: Searching in Three Phases 8

1.4 Wrapping Up . 9

2 Good Old-Fashioned Hill Climbing 10
2.1 Starting Point: EHC . 10

2.1.1 EnforcedHillClimbingSearch.java 10
2.2 Exercise 1: Turning EHC into HC . 12
2.3 Exercise 2: Depth-Bounded Hill Climbing 14
2.4 Exercise 3: Depth-Bounded Search with Restarts 14
2.5 Wrapping Up . 14

3 Successor Selection and Neighbourhoods 15
3.1 Downloading the Second Code Bundle . 15
3.2 Successor Selection . 15
3.3 Exercise 1: Using Successor Selectors . 16

3.3.1 Coding . 16
3.3.2 Evaluation . 16

3.4 Exercise 2: A ’Random Three Helpful’ Filter 16
3.4.1 Coding . 17
3.4.2 Evaluation . 17

3.5 Exercise 3: Roulette Selection . 17

i

3.5.1 Coding . 18
3.5.2 Evaluation . 18

3.6 Wrapping Up . 18
3.7 Further Reading: LocalSearch.java 18

3.7.1 Member Variables . 19
3.7.2 The search() method . 19

4 The King’s Planning Competition 22
4.1 Track 1: Satisfycing Planning . 22

4.1.1 Outline . 22
4.1.2 Deliverable . 23

4.2 Track 2: Optimising Planning . 23
4.2.1 Outline . 23
4.2.2 Deliverable . 24

4.3 Rules . 24
4.4 Go Forth and Plan... 24

ii

Introduction

This booklet details the practicals for the coursework component of this module. Over the
course of the labs, you’ll use Java to write parts of a planner yourself, based on material
covered in the lectures. The practicals are as follows:

1. Beginning with JavaFF (15 marks). Here, you’ll get to grips with the planner JavaFF,
familiarising yourself with the key parts of the source code. To help you get going,
you’ll make a few modifications, and then look at how these affect the performance of
the planner.

2. Good Old-Fashioned Hill Climbing (25 marks). Building on the previous practical,
you will implement a generic hill-climbing local search algorithm within JavaFF.

3. Successor Selection and Neighbourhoods (20 marks). As will be discussed in the
lectures, in local search in general, the successor selection and neighbourhood func-
tions are an important part of the system. In this practical, you will look at writing a
few of these, and using them within your hill-climbing local search algorithm. Then,
as in the first practical, you will measure their effect on performance.

4. The King’s Planning Competition (40 marks). As the culmination of this work, you
will split into teams and work together on producing a planner to be entered into a
competition. You will look at two things: planning quickly; and how local search can
be used for optimisation in planning, seeing how good a plan you can find after 10
minutes. There will be a prize for the best planner in each of these two categories.

For each practical, you need to submit it to KEATS by the relevant deadline; and then
attend the subsequent lab session to have your work marked. The deadlines are as follows:

• Practical 1: submit by 23:55 on October the 15th. This work will be marked on
October the 18th.

• Practical 2: submit by 23:55 on November the 5th. This work will be marked on
November the 8th.

• Practical 3: submit by 23:55 on November the 19th. This work will be marked on
November the 22nd.

• Practical 4: submit by 23:55 on December the 10th. Feedback will be delivered by
December the 13th.

1

Usual rules for late submission of work apply. Similarly, as the lab is your assessment
opportunity for the work, if you don’t turn up to the lab, you get zero. In case of robot
apocalypse, sickness, or other good cause, submit a Mitigating Circumstances Form to de-
partmental office as soon as you are able to. If in doubt, talk to your personal tutor.

We hope you enjoy these practicals, and welcome any feedback about the work.

2

Practical 1

Beginning with JavaFF

JavaFF is an implementation of the planner FF [3] written in Java. Based on the source
code for CRIKEY, written by Keith Halsey, it has been produced for this course to provide
an extensible implementation of FF that cleanly separates the features we are interested in:
search algorithm; heuristics; neighbourhoods; and so on.

In this practical, you’ll be running the planner; then making some small modifications
to it to gain familiarity with the code. You’ll be able to complete Exercise 1 after the first
lecture. For Exercise 2, you might want to wait until after the second lecture (on FF) before
attempting it, but feel free to read on if you are curious.

1.1 Getting Started

First, the Java source code for JavaFF along with some example planning problems and
domains is available from:

http://www.inf.kcl.ac.uk/staff/andrew/JavaFF.tar.gz

Then, expand this into somewhere in your home directory. Assuming you are using a
Linux machine these two steps can be performed as follows:

cd
wget ’http://www.inf.kcl.ac.uk/staff/andrew/JavaFF.tar.gz’
tar -zxf JavaFF.tar.gz

This will create a Java package directory javaff and a directory examples containing
the example planning domains and problem files. To compile JavaFF (optional at this stage—
it comes pre-compiled) type:

javac javaff/JavaFF.java

Finally, to run JavaFF on one of the example files, type:

java javaff.JavaFF examples/driverlog/domain.pddl \
examples/driverlog/pfile01

3

http://www.inf.kcl.ac.uk/staff/andrew/JavaFF.tar.gz

After a second, this should display a solution plan to the problem. If you want to run it
on some more domains and problem files, the examples included are as follows:

• driverlog—a logistics domain, where the goal is to move some packages, trucks and
drivers to from their initial locations to their specified goal locations.

• rovers—a domain modelling the activities of planetary rovers, where the goal is to
have performed some science gathering activities (photographs, soil sampling) and
have communicated the data to Earth.

• depots—a warehouse management domain, where the goal is to move around pallets
and store them stacked in a specified configuration.

To run JavaFF on any of these, follow a similar process as above: specify the relevant
domain.pddl as the first argument to the planner, and the problem file to use as the second.
If you want to see what the example files look like themselves, open them with a text editor—
PDDL, the language used to define problem domains and files, is a plain-text format.

NB: Depending on how much memory the Java VM uses by default, it may or may not
run out of memory when running JavaFF. To allow it to use more, add the option -Xmx512m
as the first parameter to java, where 512 is the maximum number of megabytes of memory
it is allowed to use. So, for instance:

java -Xmx512m javaff.JavaFF examples/driverlog/domain.pddl \
examples/driverlog/pfile12

1.1.1 Exercise 1: Gathering Data 5 marks

An important part of science, and computer science is no exception, is experimentation
to investigate hypotheses. In planning, the hypothesis is usually that modifying a planner in a
certain way means it can find a plan in less time, and experiments take the form of comparing
how long it takes to find a plan before and after a change is made. By comparing these data,
the aim is to determine whether the modification is a good idea. In this exercise, you’re
going to gather some data on how long it takes JavaFF in its original form to find plans on
some problems from the example domains. We’ll use these data as a benchmark, later in this
practical.

The two domains you’re going to look at are rovers and driverlog. Run JavaFF on the
first ten problem files (pfile01 to pfile10) and note down the planning time, reported
by JavaFF after printing the plan to screen. Store the data in a spreadsheet, with one sheet
for rovers and another for driverlog.

Hint: to cut down on the amount printed to screen, pipe the output for the planner through
the grep command as follows:

java javaff.JavaFF examples/driverlog/domain.pddl \
examples/driverlog/pfile01 | grep "Planning Time"

This will only print out the Planning Time line, as nothing else matches the regular
expression passed to grep in the quotes.

4

1.2 Looking Under the Bonnet

Now you’ve got JavaFF up and running, and gathered some data, let’s take a look at the
source code.

1.2.1 The Main Class

The first file to look at is javaff/JavaFF.java—the source code for the main class.
Most of this file is ‘boilerplate’ that calls the code to load and parse the planning problem
and domain; the interesting bit is at the bottom: the performFFSearch method. Open
it up in your favourite text editor, and read through that method in its entirety to familiarise
yourself with it at a high level. Then, come back here and read through a breakdown of what
it does.

Call EHC Search

The first thing performFFSearch does is try and search using Enforced Hill Climbing,
and only using the ‘helpful actions’ (see lecture for details). In code, this looks like:

EnforcedHillClimbingSearch EHCS
= new EnforcedHillClimbingSearch(initialState);

EHCS.setFilter(HelpfulFilter.getInstance());

State goalState = EHCS.search();

The first line creates an instance of an EHC search algorithm object; the next sets it to
use just the helpful actions; and the finally, search() is called to try and find a goal state.

Use Best-First Search

If EHC with helpful actions fails (if goalState == null), FF resorts to best-first search.
Here, it doesn’t use just the helpful actions: it uses all of the actions applicable in each state.
In code, this looks like the following:

BestFirstSearch BFS = new BestFirstSearch(initialState);

BFS.setFilter(NullFilter.getInstance());

goalState = BFS.search();

As you can see, this is fairly similar to invoking EHC. The differences are that a Best-
FirstSearch object is created; and we use NullFilter, as opposed to HelpfulFilter,
to keep all actions in each state rather than just the helpful ones.

5

1.2.2 Filters

Referring to the lecture materials, when searching forwards for a solution plan (in FF [3],
HSP [1], Identidem [2], ...) a state S is expanded by applying actions to it. The question,
of course, is which actions to apply: in JavaFF, this is the role of Filters. Filters are used to
filter the list of actions to consider applying in S when expanding it. By putting the filter
code it in a separate class, and passing an instance of this to a search algorithm, we can use
different filters without changing the algorithm class.

We’ve glossed over two Filters so far: NullFilter and HelpfulFilter. Let’s
have a look at them in some more depth, beginning with the javaff.planning.Filter
interface, which these both implement:

public interface Filter
{

public Set getActions(State S);
}

As you can see, it’s quite a small interface providing just one method, getActions.
This method takes a state S as as its argument, and returns a Set containing the actions to
consider applying in that state. Now let’s look at the two filters themselves.

NullFilter

The simplest filter, the NullFilter returns all the actions applicable in a state; no more,
no less. This is what FF uses if it resorts to best-first search: it makes sure it looks at every
possible action to consider that might be a good idea; hence preserving completeness. Open
up javaff/Planning/NullFilter.java in a text editor and read through the code.
The most interesting method is getActions method, which works as follows:

public Set getActions(State S) {
Set actionsFromS = S.getActions();

This calls the getActions method on S. This method returns a Set of all the actions
whose logical preconditions are satisfied in S; i.e. those which, logically, can be applied.
There are a few nice short-cuts that can be taken to find the applicable action set quickly,
and one of the nice aspects of reusing the JavaFF implementation is that those are all already
done. If you want to know more, then delve into the code!

Set ns = new HashSet();
Iterator ait = actionsFromS.iterator();
while (ait.hasNext())
{

Action a = (Action) ait.next();
if (a.isApplicable(S)) ns.add(a);

}
return ns;

}

6

Having determined which actions’ logical preconditions are satisfied in S, what remains
is to check that the numeric preconditions are really satisfied too1. This is performed by
calling isApplicable on each action - if it passes this additional test, it is added to the
set ns to return.

HelpfulFilter

The HelpfulFilter returns all the helpful actions in a state; this is what FF uses when
searching with EHC. If you recall the lecture on FF, the helpful actions are determined from
the relaxed plan used to give the heuristic value for each state. If a state S has a relaxed
plan which has the actions A,B,C in its first action layer, then any action that adds anything
added by A,B or C is helpful. Open javaff/Planning/HelpfulFilter.java in a
text editor and read through the code. As you can see, it’s very similar to NullFilter, the
main difference is in these three lines:

STRIPSState SS = (STRIPSState) S;
SS.calculateRP();
Iterator ait = SS.helpfulActions.iterator();

Skipping the first for a moment, SS.calculateRP() calculates the relaxed plan on
the state. This is a member method of the STRIPSState class, and stores the results of the
relaxed plan computation in the member variables of SS. The line after this then iterates over
the helpful actions, which is the key difference between this and NullFilter: iterating
over just the helpful actions rather than all the actions. Beyond this point, it proceeds as
before, checking the actions really are applicable.

The first line, as you can see, is a cast: the method takes a State, and the method
to calculate a relaxed plan is defined in STRIPSState. However, the Filter interface
method expects a State so that’s what this method has to take. For our purposes, this is
entirely harmless: in practice, all the States we deal with will be STRIPSState, or a
sub-class thereof.

1.2.3 A Moment’s Breath....

By now, you should have some understanding of the following key aspects of JavaFF:

• The structure of the performFFSearch method (1.2.1); specifically, that EHC is
called then, if necessary, Best-First Search.

• The role of a Filter in defining what actions to consider when expanding a state:

– what the NullFilter (1.2.2) does; and

– what the HelpfulFilter (1.2.2) does.

If you’re unsure of any of these, read through the text again, ask the TA questions, or
come to see us in our office hours. You don’t need to be able to recite the code from memory,
just be familiar with the key concepts employed. Once you’re happy with this, read on....

1...and any temporal constraints—these will be covered later in the lecture series when discussing temporal
planning

7

1.3 Making Some Changes

Over the course of these practicals, you’ll be making a series of changes to JavaFF. To get
you into the swing of things, you’re going to start by making two changes. Then, you’ll run
the modified planner on a few of the example files and see what effect the modifications have
had on its performance.

1.3.1 Exercise 2: EHC with the NullFilter 5 marks

As discussed in Section 1.2.1, JavaFF searches in two phases:

1. Enforced Hill Climbing, with the HelpfulFilter; and if this fails,

2. Best-First Search, with the NullFilter.

The filter to use with an instance of a search algorithm object is set using the setFilter
method, for instance:

Searcher.setFilter(HelpfulFilter.getInstance());

In this exercise, change the performFFSearch algorithm in javaff/JavaFF.java
to use a NullFilter rather than a HelpfulFilter with the Enforced Hill Climbing
Search. Compile it and run a few files on it to check it works (as per the instructions in
Section 1.1) and when you’re happy, move on.

Gathering Data

The change you have just made is to alter EHC to use all the actions, rather than just the
helpful actions. The question is, is this a good idea? If you recall earlier, in Exercise 1, you
gathered some data on the performance of the unmodified version of JavaFF. We can compare
the performance of your modified planner to this to investigate the following hypothesis:

Using Helpful Actions with EHC offers improved performance.

The original data you have are with helpful actions enabled (using the HelpfulFilter).
Now, use your modified planner to gather data on the performance with all the actions, in
both rovers and driverlog. Record these data in the spreadsheet and plot both columns on a
graph. What are your observations?

1.3.2 Exercise 3: Searching in Three Phases 5 marks

In this exercise, change the performFFSearch algorithm in javaff/JavaFF.java
to search in three phases, rather than two:

1. Enforced Hill Climbing, with the HelpfulFilter; and if this fails,

2. Enforced Hill Climbing, with the NullFilter; and if this fails,

3. Best-First Search, with the NullFilter.

Hint: search() returns null if it fails to find a plan.

8

Gathering Data

The change you have just made is to move over to a three-phase search process; and, like
with the previous modification, we can gather data on whether or not this is a good idea.
Use your modified planner to add a third column to your spreadsheets for the rovers and
driverlog domains, and plot another graph. What are your observations?

1.4 Wrapping Up

By now, you should have some idea about the coarse structure of JavaFF, and the role of
Filters. Also, you should be familiar with how to gather data on the performance of a
planner, and plotting these data on graphs to illustrate comparative performance. In the next
practical, you’ll delve deeper into main search algorithm used (EHC), and write a new search
class that uses Hill Climbing.

9

Practical 2

Good Old-Fashioned Hill Climbing

In this practical you’ll make some more changes to JavaFF, this time on a grander scale:
writing a new search algorithm, based on the idea of hill climbing. No evaluation this time:
the focus is on writing the search algorithm, and we’ll evaluate it (along with other ideas) in
the next practical.

2.1 Starting Point: EHC

As discussed in lectures, the default search algorithm used in FF is Enforced Hill Climbing
(EHC). EHC searches forwards from the initial state I , trying to find a state with a heuristic
value better than the best seen so far. If it can find such a state, it commits to choosing it
and searches from there. Otherwise, it uses breadth-first search to expand more states until it
finds one.

The implementation of EHC uses an open list of states to visit, initially containing I , and
keeps track of the best heuristic seen so far, initially best = h(I). The main loop takes the
state from the front of the list, S, and applies actions to the state finds the successor states,
using a Filter (Section 1.2.2) to decide which actions to apply. One of three things then
happens:

• if a successor S ′ is a goal state, it is returned as a solution;

• if a successor S ′ is found with h(S ′) < best , then the open list is cleared, and only S ′

is added to it; otherwise,

• all the successors S ′ are added to the open list, awaiting expansion.

To stop search going around in circles, a closed list is kept of the memoised states visited
so far, and EHC never considers the same state twice: if a successor S ′ is in closed, it is
discarded. If the open list becomes empty, then EHC has failed to find a plan.

2.1.1 EnforcedHillClimbingSearch.java

We’ll now have a look at this, written in Java. First, open the file
javaff/search/EnforcedHillClimbingSearch.java

10

...in a text editor and read through it, particularly the search() method. Then, come back
here for a breakdown of what it does.

The Member Variables

The class has four important member variables:

protected BigDecimal bestHValue;
protected Hashtable closed;
protected LinkedList open;
protected Filter filter;

The first three of these correspond to the best heuristic value seen so far, the closed list,
and the open list, respectively. filter is the filter to use when expanding states. A further
important member variable is inherited from Search—the initial state, start.

The search method

The search method forms the main body of the EHC search algorithm. Let’s go through it,
stage by stage. To reduce clutter in this document, we’ll leave out any println statements
and the comments.

if (start.goalReached()) {
return start;

}

needToVisit(start);
open.add(start);
bestHValue = start.getHValue();

First, we check whether the initial state, start, is a goal state. In any interesting prob-
lem, it won’t be, but it is sensible to check. The next three lines then initialise the member
variables ready to start search: start is added to the closed list, by calling needToVisit;
then it is put on the open list; and finally its heuristic value is taken as the best seen so far.

while (!open.isEmpty())
{

... expand the state s at the front of the open list...

}
return null;

Next is the main loop, which removes the next state off the open list and expands it.
The code inside the while is responsible for expanding states, and we’ll come onto that in a
second. However, the key observation is that if the open list becomes empty, then the while
completes and null is returned, indicating failure.

Now to inside the while:

11

State s = removeNext();

Set successors = s.getNextStates(filter.getActions(s));

This removes the next state from the open list (see the removeNext() method higher
up the file), keeping it as the variable s. Then, the successor states to this are found:

• filter.getActions(s) uses filter to get the set of actions to consider ap-
plying in s;

• s.getNextStates(...) takes a set of actions and produces a set of the successor
states reached by applying each of the actions individually to s.

Iterator succItr = successors.iterator();

while (succItr.hasNext()) {
State succ = (State) succItr.next();

if (needToVisit(succ)) {

Next, once we have the set of successors, we iterate over them, with succ denoting the
current successor under consideration. For each successor, the first check is if we need to
visit it: the call to needToVisit returns false if it is already in the closed list; otherwise,
it adds it and returns true. Assuming it’s not on the closed list, then....

if (succ.goalReached())
return succ;

} else if (succ.getHValue().compareTo(bestHValue) < 0) {
bestHValue = succ.getHValue();
open = new LinkedList();
open.add(succ);
break;

} else {
open.add(succ);

}

These three correspond to the branches detailed earlier in Section 2.1. The key to the
middle branch is that the open list is cleared by replacing it with a new one containing only
succ, and then break skips the evaluation of the remaining successors: search jumps back
to the start of the outer loop (while (!open.isEmpty()) etc).

2.2 Exercise 1: Turning EHC into HC 15 marks

The first exercise in this practical is to turn the enforced hill climbing algorithm into
a standard hill climbing algorithm. The pseudocode for normal hill-climbing, keeping the
closed list, is shown in Algorithm 1: use this as a basis for your implementation.

First, copy javaff/search/EnforcedHillClimbingSearch.java to a new
file javaff/search/HillClimbingSearch.java. Then, open the file in a text

12

Algorithm 1: Hill Climbing Algorithm
Data: I - initial state
Result: S - a goal state
S ← I;1

while S is not null do2

successors ← successor states to S;3

bestsuccessors ← ∅;4

bestheuristic ←∞;5

foreach S ′ ∈ successors do6

if need to visit S ′ then7

if S ′ is a goal then return S;8

if h(S ′) < bestheuristic then9

bestheuristic ← h(S ′);10

bestsuccessors ← {S ′};11

else if h(S ′) = bestheuristic then12

add S ′ to bestsuccessors;13

if bestsuccessors = ∅ then S ← null;14

else S ← random choice from bestsuccessors;15

return failed16

editor, changing the class and constructor names, as appropriate. Now, make the necessary
modifications to the search() method. Algorithm 1 will serve as a useful guide for this.
There are three key differences between this and the EHC implementation to bear in mind
when making your modifications:

1. the bestHValue variable is local to the while loop, not a member variable, so it
keeps the best heuristic values of the successors to S, rather than the best heuristic
value ever seen.

2. all the successors iterated over (no break), keeping the joint-best;

3. the open list only contains a single state: there should only be one open.add(...)
line, adding one of the joint-best successors.

Once you have completed this step, modify javaff/JavaFF.java to create an in-
stance of your HillClimbingSearch object, rather than an
EnforcedHillClimbingSearch object. Compile it and run a few of the smaller prob-
lem files to check it works (as per the instructions in Section 1.1) and when you’re happy,
move on. You should notice that each time the planner is run, it can produce slightly different
plans: this is because of the random choice between successors.

Hint: random numbers can be obtained by using the random number generator initialised
in the main class; for instance, to get a random integer in the range 0 (inclusive) to 10
(exclusive):

int r = javaff.JavaFF.generator.nextInt(10);

13

2.3 Exercise 2: Depth-Bounded Hill Climbing 5 marks

In this exercise you’re going to make a small, but significant, modification to your Hill-
ClimbingSearch class. The aim of this modification is to add a depth bound to the search
algorithm, so that after it’s searched a number of steps, it will terminate early. The suggested
way to do this is as follows:

1. add a class member variable, maxDepth along with a setter method;

2. add a variable depth to search(), incrementing it by 1 each time the main while
loop goes around;

3. return null if depth == maxDepth.

You may however use any solution you wish, so long as it works. Add a line to set a
depth bound of 20 javaff/JavaFF.java before calling search() on your HC object
and see what happens.

The random choice between successors will mean it produce different solutions to the
same problem, but now given we have a fixed depth bound of 20 this randomness will mean
that sometimes it hits the bound and sometimes it doesn’t – it’s down to chance whether it
actually manages to solve the problem. Let’s do something about that....

2.4 Exercise 3: Depth-Bounded Search with Restarts

5 marks

The final exercise in this practical works on addressing the problem with randomness
and the depth bound encountered in your previous depth-bounded hill-climbing algorithm.
Modify javaff/JavaFF.java to place a for loop around the creation and use of the
HillClimbingSearch algorithm that sets an increasing depth bound before calling it each time.
Something like:

for (int depthBound = 5; depthBound < 100; ++depthBound) {
...create HillClimbingSearch Object and search to bound here
...return solution if not null

}

This will make a number of calls to your hill-climbing searcher, increasing the depth
bound each time. In doing so, we get several chances of the random tie-breaking making the
right choice, and don’t have a fixed limit of 20 steps in a plan, preventing us from solving
larger problems.

2.5 Wrapping Up

By now, you should have a feel for how the classical local search hill-climbing algorithm
can be used as the basis of a planner. Even if you haven’t got everything working, hand your
work in on time, and take it to the lab to be marked.

14

Practical 3

Successor Selection and
Neighbourhoods

In this practical, you’re going to look at the role of successor selection functions and neigh-
bourhood functions in forward-chaining local search. You will need your solution to practi-
cal 2 for this; if you have had trouble completing it, we will post a model answer to KEATS
shortly after the deadline for practical 2.

3.1 Downloading the Second Code Bundle

For this practical, you’ll need to download some additional Java code. The code is available
from:

http://www.inf.kcl.ac.uk/staff/andrew/JavaFFPackageTwo.tar.
gz

Expand this into your home directory as last time, and it will unpack some new files into
your javaff package tree.

Assuming you are using a Linux machine this can all be done using:

cd
wget ’http://www.inf.kcl.ac.uk/staff/andrew/JavaFFPackageTwo.tar.gz’
tar -zxf JavaFFPackageTwo.tar.gz

3.2 Successor Selection

The important new interface introduced in this code bundle is SuccessorSelector. It
is defined as follows:

public interface SuccessorSelector {

State choose(Set toChooseFrom);

}

15

http://www.inf.kcl.ac.uk/staff/andrew/JavaFFPackageTwo.tar.gz
http://www.inf.kcl.ac.uk/staff/andrew/JavaFFPackageTwo.tar.gz

It defines a single method, which takes a set of successor states, and returns a sin-
gle one of these. This can be used to abstract out the process of choosing the successors
of a node, once it has been expanded. For instance, in hill climbing search, in the pre-
vious practical, the a successor with the (joint) best heuristic value was chosen. A class
BestSuccessorSelector implements this. Open the file
javaff/search/BestSuccessorSelector.java in a text editor and read through
the code. It should be reasonably self explanatory: it loops over the states, keeping the best
seen so far in a HashSet, jointBest. Then, it chooses one of these at random, and re-
turns it. We’ll come back to successor selectors later, but next we’ll look at an example of an
algorithm that uses them.

3.3 Exercise 1: Using Successor Selectors 6 marks

In this exercise, you are to modify the hill climbing search algorithm you wrote in prac-
tical 2 to take an object of type SuccessorSelector and to use this to choose between
the states, rather than it being fixed to choose one of the joint-best.

3.3.1 Coding

The key differences in terms of implementation are as follows:

• You’ll need a member variable and setter function to pass the selector, much like the
existing one for Filter.

• You’ll need to keep all the new successors in a set, rather than just the best ones; and
then,

• You’ll use the successor selector to choose between these (if there are any).

Once you have made these modifications, modify javaff/JavaFF.java to pass an
instance of a BestSuccessorSelector object to the search algorithm to use as its se-
lector; for instance:

HillClimbingSearch hcs = new HillClimbingSearch(initialState);
hcs.setSelector(BestSuccessorSelector.getInstance());

3.3.2 Evaluation

As in practical 1 (Section 1.1.1), run JavaFF with your new hill climbing algorithm that uses
BestSuccessorSelector on 10 problems from driverlog and 10 from rovers. Store
the data in a spreadsheet, with one spreadsheet for each of the two domains.

3.4 Exercise 2: A ’Random Three Helpful’ Filter 6 marks

In this exercise, you are going to write a new Filter that chooses three random helpful
actions, and returns these as the successors to consider visiting.

16

3.4.1 Coding

Copy the NullFilter source to a new file, RandomThreeFilter. Use the following
code as a skeleton for the main body of the class (you can keep the existing package statement
and imports).

public class RandomThreeFilter implements Filter
{

private static RandomThreeFilter rf = null

protected HelpfulFilter hf;

private RandomThreeFilter()
{

hf = HelpfulFilter.getInstance();
}

public static RandomThreeFilter getInstance(int k)
{

if (rf == null) rf = new RandomThreeFilter();
return rf;

}

public Set getActions(State S)
{

Set helpfulFiltered = hf.getActions(S);
Set subset = new HashSet();

// add code here to pick 3 from ’subset’ at random
return subset;

}
}

Complete the implementation of getActions. Then, in javaff/JavaFF.java,
change the filter used with hill climbing search to this, rather than HelpfulFilter.

3.4.2 Evaluation

You now have a choice of two interesting filters to use with the local search algorithm:
HelpfulFilter and your new filter, RandomThreeFilter. The question now is
which one gives the best performance? Run the new version of the planner, using
RandomThreeFilter, and record the data next to those obtained with the unmodified
version. What are your observations?

3.5 Exercise 3: Roulette Selection 8 marks

In this exercise, you are going to write a new SuccessorSelector that implements
roulette selection. Roulette selection is explained in the following Wikipedia article:

17

http://en.wikipedia.org/wiki/Fitness_proportionate_selection

When implementing it for use to choose between planning states, use 1/h(S) as the
fitness function for each state S: the lower the heuristic, the fitter the state.

3.5.1 Coding

You may use the implementation of BestSuccessorSelector, the key difference here
is that rather than picking out the joint-best states and returning one of these, you will need to
calculate the fitness values of the states and then pick a random segment of the roulette wheel.
Then, in javaff/JavaFF.java, change the filter back to HelpfulFilter and change
the successor selector used to your roulette selector, rather than BestSuccessorSelector.

Hint: Sum the sizes of the segment, then use:

double r = javaff.JavaFF.generator.nextDouble() * sum;

... to choose how far around to spin the wheel, r.

3.5.2 Evaluation

You now have a choice of two interesting successor selection functions to use with the local
search algorithm: BestSuccessorSelector and your new filter, RouletteSelector.
The question now is which one gives the best performance? Run the new version of the
planner, using RouletteSelector, and record the data next to those obtained with the
unmodified version (from Exercise 1). What are your observations?

3.6 Wrapping Up

By now, you should have a good understanding of the role of how the Filter interface can
be used to define neighbourhoods for use in local search, and how SuccessorSelectors
can be used to define successor selection function. You should also have some more expe-
rience in gathering data, and comparing performance. In the next and final practical, you’ll
bring together all the ideas seen so far in this series of practicals to work on a further inter-
esting slant for local search — optimisation.

3.7 Further Reading: LocalSearch.java

After the deadline for this practical, an implementation of another local search algorithm will
be posted to KEATS: LocalSearch.java.

This works in a similar manner to Identidem [2], and is included as a further example
of how local-search can be used in planning. Reading this may give you a competitive
advantage in the next practical, indeed you may use it if you wish as a basis for your own
work, so it’s worth spending a few minutes looking over this.

The key difference between this algorithm and and hill-climbing is that it keeps track of
the best state seen so far, and uses it in two ways:

18

http://en.wikipedia.org/wiki/Fitness_proportionate_selection

• when the number of steps since the best state exceeds the depth bound, then rather than
aborting it restarts from the best state; and instead,

• when the total number of these restarts exceeds a restart bound, it aborts.

Open the source code for it in a text editor, then come back to read through a discussion
of it below.

3.7.1 Member Variables

The member variables are similar to those of the EHC class, with the addition of:

protected SuccessorSelector selector = null;

protected int depthBound = 10000;
protected int restartBound = 10000;

selector stores the SuccessorSelector to use, set using the corresponding set-
ter method lower down in the file. As you’ll see, this is used in the search() method.
depthBound and restartBound are the depth and restart bounds; again, these are set
using setter methods, but are initialise to large values so that the algorithm will still function
even if the user forgets to do this.

3.7.2 The search() method

This will be similar to that of your HC algorithm from the last practical. The key differences
are the tracking of the best state, the use of a SuccessorSelector, and the handling of
restarts back to the best state. These will be covered now.

int currentDepth = 0;
int currentRestarts = 0;

State bestState = start;
BigDecimal bestHValue = start.getHValue();
Hashtable bestClosed = (Hashtable) closed.clone();

This initialises the number of depths and restarts performed to zero, the best state seen
to the initial state, the best heuristic value to its heuristic value, and the closed list to the
number of states visited by that point. The importance of bestClosed will be discussed
in a moment.

Then, inside the while loop:

19

Set successors = s.getNextStates(filter.getActions(s));

Set toChooseFrom = new HashSet();

... put all the successors which haven’t been
seen before into this set ...

if (!toChooseFrom.isEmpty()) {
State chosenSuccessor = selector.choose(toChooseFrom);

This illustrates the practical use of a SuccessorSelector, stored in the member
variable selector. All the successors (that haven’t been seen earlier) are placed into a set,
and selector chooses one of these. Once this has been chosen, the next chunk of code
decides what to do next:

if (chosenSuccessor.getHValue().compareTo(bestHValue) < 0) {
currentDepth = 0;
open.add(chosenSuccessor);
bestState = chosenSuccessor;
bestHValue = chosenSuccessor.getHValue();
bestClosed = (Hashtable) closed.clone();

If the new successor is the best seen so far, update the details of the best state to match
this: bestState, bestHValue and bestClosed. Then, put the successor on the open
list so it is visited next.

Otherwise, if the successor isn’t better than the best seen so far:

} else {

++currentDepth;
if (currentDepth < depthBound) {

open.add(chosenSuccessor);

This increments the counter of the number of steps taken since a new best state was
seen—if this remains less than the bound, the chosen successor is added to the open list for
expansion. Otherwise, recalling the outline discussion of the algorithm, we want to trigger a
restart back to the initial state; or, if appropriate, terminate. First we check if the number of
restarts has reached the restart bound, and if it has, return null to terminate:

} else {
++currentRestarts;
if (currentRestarts == restartBound) {

return null;
}

Otherwise, trigger a restart back to the best state:

20

currentDepth = 0;
closed = (Hashtable) bestClosed.clone();
open.add(bestState);

}
}

This adds bestState to the open list, to search forwards from it again. It also resets
the depth count (the distance of bestState from itself is necessarily 0) and replaces the
closed list. As was mentioned before, this closed list replacement is important. When the
current best state is first expanded, its successors are added to closed. If we restart to this a
second time, without replacing the closed list, all the successors will have already been seen,
and search would terminate. Thus, when restarting to the best state, we also take the closed
list to be just those states seen up to that point; not including those seen since.

21

Practical 4

The King’s Planning Competition

In this practical, we will recreate one of the most exciting events in the planning calendar:
the International Planning Competition (IPC). The IPC is a (roughly) biennial event, and
provides a platform for planning researchers across the globe to run their planners head to
head and see how good the state-of-the-art is. The Planning group at King’s have organ-
ised and participated in past competitions, and their planners have received a number of
awards. The domains you have looked at so far were used in the 2002 competition, or-
ganised by Maria Fox and Derek Long; the competition website is at http://ipc02.
icaps-conference.org/ or you can read the paper on the results [4]. For details of
the other competitions, visit: http://ipc.icaps-conference.org/.

For this practical, unlike the others in this series, you will be working in groups. This
will give you a good opportunity to pool your ideas, and work together on coming up with
really good ideas for planning. Once we have all the entries, we will run them on a range
of problems taken from the domains: those you have in the examples folder, plus another
new domain. After running the planners, we’ll analyse the data, and present prizes to the
best groups in the last lecture of term.

4.1 Track 1: Satisfycing Planning 25 marks

4.1.1 Outline

In this track of the competition, the goal is to write a planner which can find a plan as quickly
as possible. Here, we don’t care about the quality of the solution produced (i.e. how long it
is), so long as it is a valid plan; we are only concerned with the planning time needed to find
it.

To produce this planner, start with your hill climbing search algorithm and investigate
how best to use this: filters, successor selectors, depth bounds, and so on. You may make
whatever changes you want to your algorithm, invent new filters and so on, whatever it takes
to make it faster. Some ideas you might want to consider are:

• how about choosing 2 or 4 at random instead of 3 in RandomThreeFilter?

• in roulette selection, how about using 1/(h2) as the fitness function?

22

http://ipc02.icaps-conference.org/
http://ipc02.icaps-conference.org/
http://ipc.icaps-conference.org/

• have a look at the source for LocalSearch.java discussed at the end of the pre-
vious practical (Section 3.7) for some new ideas about restarts

These are only suggestions, though: extra marks will be awarded for novel solutions.

4.1.2 Deliverable

There are two things you need to give in. First, the source code for your solution. Submit
this as a ZIP archive to KEATS, with the filename FastPlanner.zip. Second, you need
to write around half a page to a page about your planner and how it works: what decisions
you made about filters, successor selectors, any novel ideas, and so on. We’ll give out these
descriptions to the other groups after the results have been announced so you can see how
other people approached the problem.

4.2 Track 2: Optimising Planning 15 marks

4.2.1 Outline

In this track of the competition, you will work on a planner that aims to produce short plans,
in terms of the number of actions they contain.

The simplest way to do this is to call your fast planning algorithm repeatedly, and every
time it produces a solution, seeing if the solution plan is shorter than the best seen so far. For
instance:

State bestGoalState;
int bestPlanLength = 100000;

for (int i = 0; i < 100; ++i)
{

State goalState;

... use your fast planner here ...

TotalOrderPlan thePlan = (TotalOrderPlan) goalState.getSolution();
int planLength = thePlan.getPlanLength();

if (planLength < bestPlanLength) {
bestGoalState = goalState;
bestPlanLength = planLength;
infoOutput.println("Best length: " + bestPlanLength);
thePlan.print(infoOutput);

}
}

return bestGoalState;

23

It is possible to do better than this, though. For instance, you could set a depth bound
with your local search algorithm to the best plan length seen so far, so that it stops if it
reaches this: there’s no point carrying on if it’s definitely going to do worse. There are lots
of good ways of doing this, and as in the previous track, there are marks going for anything
that works, and extra marks for neat solutions

4.2.2 Deliverable

As in the previous track, submit an archive of your work, with the filename
QualityPlanner.zip, along with half a page to a page about how you went about
solving the problem.

4.3 Rules

The key emphasis is on coming up a domain-independent planner. Domain-specific code is
not allowed. For instance, don’t do something like:

if (domainFile.contains("driverlog")) {
search this way

} else if (domainFile.contains("rovers")) {
search another way

} ...

This will result in disqualification. Further, as mentioned in the introduction, along with
the three domains you have, we will be testing them on one new unseen domain, details of
which we will present after the competition.

When running the planners, we will subjecting them to a 10-minute time limit on each
problem, and 2Gb of memory. With the optimising track, we will take the best solution after
10 minutes so you must remember to print the best plan every time a new one is found:

TotalOrderPlan thePlan = (TotalOrderPlan) goalState.getSolution();
int planLength = thePlan.getPlanLength();

infoOutput.println("Best length: " + planLength);
thePlan.print(infoOutput);

4.4 Go Forth and Plan...

That brings us to the end of the practical series. We hope you have found them to be a
useful learning experience, helping you to really get to grips with important concepts in
planning. But, above all, we hope you have enjoyed working on planning as much as we
do, and have gained a good understanding of what planning research is all about: finding
new and exciting ways of searching for solutions, always seeking to push the boundaries of
what existing planners are capable of. If you have enjoyed the course, and want to further
your knowledge in this area, the planning group is always interested in new, enthusiastic

24

postgraduate students; so contact one of the members of academic staff in the group to
discuss opportunities for working with the group.

25

Bibliography

[1] Blai Bonet and Hector Geffner. HSP: Heuristic Search Planner. Entry at the AIPS-98
Planning Competition, Pittsburgh, June 1998.

[2] A. I. Coles, M. Fox, and A. J. Smith. A New Local-Search Algorithm for Forward-
Chaining Planning. In Proceedings of the Seventeenth International Conference on Au-
tomated Planning and Scheduling (ICAPS 07), September 2007.

[3] J. Hoffmann and B. Nebel. The FF Planning System: Fast Plan Generation Through
Heuristic Search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

[4] D. Long and M. Fox. The 3rd International Planning Competition: Results and Analysis.
Journal of Artificial Intelligence Research, 20:1–59, 2003.

26

http://www.ldc.usb.ve/~bonet/reports/aips98-competition.ps
http://www.cis.strath.ac.uk/cis/research/publications/papers/strath_cis_publication_2151.pdf
http://www.cis.strath.ac.uk/cis/research/publications/papers/strath_cis_publication_2151.pdf
http://www.cis.strath.ac.uk/cis/research/publications/papers/strath_cis_publication_2151.pdf
http://www.jair.org/papers/paper855.html
http://www.jair.org/papers/paper855.html
http://www.jair.org/papers/paper1240.html

	Introduction
	Beginning with JavaFF
	Getting Started
	Exercise 1: Gathering Data

	Looking Under the Bonnet
	The Main Class
	Filters
	A Moment's Breath....

	Making Some Changes
	Exercise 2: EHC with the NullFilter
	Exercise 3: Searching in Three Phases

	Wrapping Up

	Good Old-Fashioned Hill Climbing
	Starting Point: EHC
	EnforcedHillClimbingSearch.java

	Exercise 1: Turning EHC into HC
	Exercise 2: Depth-Bounded Hill Climbing
	Exercise 3: Depth-Bounded Search with Restarts
	Wrapping Up

	Successor Selection and Neighbourhoods
	Downloading the Second Code Bundle
	Successor Selection
	Exercise 1: Using Successor Selectors
	Coding
	Evaluation

	Exercise 2: A 'Random Three Helpful' Filter
	Coding
	Evaluation

	Exercise 3: Roulette Selection
	Coding
	Evaluation

	Wrapping Up
	Further Reading: LocalSearch.java
	Member Variables
	The search() method

	The King's Planning Competition
	Track 1: Satisfycing Planning
	Outline
	Deliverable

	Track 2: Optimising Planning
	Outline
	Deliverable

	Rules
	Go Forth and Plan...

