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Abstract— This work explores the potential for robust classification
of phonemes in the presence of additive noise and linear filieg using
high-dimensional features in the subbands of acoustic waf@ms. The
proposed technique is compared with state-of-the-art autmatic speech
recognition (ASR) front-ends on the TIMIT phoneme classifi@tion task
using support vector machines (SVMs). The key issues of setig the
appropriate SVM kernels for classification in frequency sutbands and
the combination of individual subband classifiers using ermmble methods
are addressed. Experiments demonstrate the benefits of théassification
in the subbands of acoustic waveforms: it outperforms the sndard
cepstral front-end in the presence of noise and linear filtang for all
signal-to-noise ratios (SNRs) below a crossover point beegn 12dB and
6dB. Combining the subband-waveform and cepstral classifier achieves
further performance improvements over both individual classifiers.

Index Terms—Speech recognition, subbands, support vector machines,
classification, robustness.

I. INTRODUCTION

Automatic speech recognition (ASR) systems suffer severfop
mance degradation in the presence of environmental distsrtin
particular additive noise and linear filtering. Humans, be bther
hand, exhibit a very robust behavior in recognizing spea@mn en
extremely adverse conditions. In particular, humans reizegiso-
lated speech units above the level of chance alreadylatB SNR,
and significantly above it at9dB SNR [1]. Even in quiet conditions,
the machine error rates for recognizing isolated nonseplgbkes
and phonemes are significantly higher than those of huma#ts].[2
Although there are a number of factors preventing convaeatidSR
systems from reaching the human benchmark, several stddies9]
have attributed the marked difference between human andhineac
performance to the fundamental limitations of the ASR frentls.
These studies suggest that the large amount of redundarspeeth
signals, which is removed in the process of the extractiocepftral
features such as Mel-Frequency Cepstral Coefficients (MHCT,
is in fact needed to cope with environmental distortions. ofim

improve the robustness of ASR front-ends to additive nols4. [
In this paper, we propose features for an ASR front-end whieh
derived from the decomposition of high-dimensional adeusgve-
forms into frequency subbands, to achieve additional roless to
additive noise as well as robustness to linear filterings&gproach
draws its motivation primarily from the experiments conak by
Fletcher [15], which suggest that the human decoding ofulstec
messages is based on decisions within narrow frequencyasdbb
that are processed quite independently of each other. €asoning
further implies that accurate recognition in any subbandukh
result in accurate recognition overall, regardless of th@re in
other subbands. While this theory has not been proved aneé som
studies on the subband correlation of speech signals [Ijehdve
even put its validity into question, there are some techimeasons
for considering classification in frequency subbands. tFafs all,
decomposing speech into its frequency subbands can be diahefi
since it allows a better exploitation of the fact that certaibbands
may inherently provide better separation of some phonerasseb
than others. Secondly, the effect of wideband noise in seiffity
narrow subbands can be approximated as that of narrowbaitd wh
noise and thus make the compensation of features be apmi@tym
independent of the spectral characteristics of the additivise
and linear filtering. Moreover, appropriate ensemble nashéor
aggregation of the decisions in individual frequency sulolsacan
facilitate selective de-emphasis of unreliable informmatiparticularly
in the presence of narrowband noise.

The subband approach has also previously been used in [[L8-24
where it provided marginal improvements in recognitionfpenance
over its full band counterparts. Note that the front-endtuess
employed in the previous works were the subband-basednsirid
cepstral features or multi-resolution cepstral featuBgscontrast, our

these studies, work on human speech perception [4, 6, 8, 9] mioposed features are extracted from an ensemble of sulcoamab-

shown explicitly that the information reduction that takpkce

nents of high-dimensional acoustic waveforms, and thusmrehore

in the conventional ASR front-ends leads to a severe detjoada information about speech that is potentially relevant szdmination

in human speech recognition performance and furthermbe, in
noisy environments there is a high correlation between muerad
machine errors in recognition of speech with distortiortsoiduced
by typical ASR front-end processing. Over the years, teqies such
as cepstral mean-and-variance normalization (CMVN) [12], dnd
vector Taylor series (VTS) compensation [13] have been|dpee
that aim to explicitly reduce the effects of noise on the shenm
spectra. However, the distortion of the cepstral featumssed by
additive noise and linear filtering depends on the speectakifjiter
characteristics, noise type and noise level in a very coxnfalshion
that makes feature compensation or adaptation very itériaad not
sufficiently effective [11].

of phonetic units than the corresponding cepstral reptasens.
Robustness of the proposed front-end features to additise rand
filtering is demonstrated by its comparison with the MFChfrend
on a phoneme classification task as it remains importantrimpeoing
different methods and representations [20, 25-32]. Stanfiature
compensation methods such as CMVN and VTS compensation are
used throughout the experiments in order to reduce the niiéma
between the training and test data. The results demonstinate
benefits of the subband classification in terms of its rolasstnto
additive noise and linear filtering; for instance, in clgsg noisy
reverberant speech, it outperforms the MFCC classifier emsgted
using VTS for all SNRs below a crossover point betwéedB and

In our previous work we showed that using acoustic waveforntslB. Finally, their convex combination yields further perfance

directly, without any compression or nonlinear transfaiora can

improvements over both individual classifiers.



Il. SUBBAND CLASSIFICATION USING SUPPORT packet decomposition and discrete cosine transform alb@esed

VECTOR MACHINES comparable, but somewhat inferior performance. The CMFRiists
A. Support Vector Machines of a set of orthonormal analysis filters,
Support vector machines _(_SVMS) are r_eceiving increa_simption gs[¥] :Lg[k:] cos <2s -1 (2k—S—1) W) 7 @)
as a tool for speech recognition applications due to theidggener- NE 4S5

alization properties [14, 26, 33—35]. Here we use them topammthe
proposed subband-based representation with standarttatepsnt-
end features in terms of their robustness to noise and fijesn a
TIMIT phoneme classification task. Their performance ors tiaisk
can be expected to extend to continuous speech recogn&® 3]
using hybrid SVM - HMM frameworks [33], as well as, more ditlgc
by means of frame-based architectures based on the tokesingas

algortl)t.hm [35]. lassifi . decisi ; hatthoi burden. However, we believe that redundant expansionseafcspsig-
A. inary SVM ¢ assiter estimates a decision surface t ,Emm' nals obtained using over-sampled filter banks could be adgenus
maximizes the margin between the two classes and minimizes fo effectively account for the shift invariance of speech.

misclassification error on the training set. For a givenniraj set For classification in frequency subbands, an SVM kernel is co

where g[k] = v/2sin (7 (k — 0.5)/2S), k = 1,...,25, is a low-
pass prototype filter. Such a filter bank implements an odhab
transform, hence the collection of the subband componenta i
representation of the original waveform in a different choate
system [38]. A maximally-decimated filter bank was chosemarily
because the sub-sampling operation avoids introducingtiauwial
unnecessary redundancies and thus limits the overall ctatipoal

(x1,...,%,) with corresponding class labelgi,....vp), ¥i €  gyrycted by partly following steps from our previous workd]1
];{‘;(1:1;;} an SVM classifies a test point by computing a score \ich attempted to capture known invariances or exprestcétkp
unction,

» the waveform qualities which are known to correlate with qémoe
h(x) = Zaz‘yiK(& xi)+b (1) identity. First, an even kernel is constructed from a basetiolyno-
i=1 mial kernel K, to account for the sign-invariance of human speech

whereq; is the Lagrange multiplier corresponding to tetraining perception as

sample,x;, b is the classifier bias — these are optimized during K.(x°,x}) = K;(xixf) +K,’,(xs,—xf) ©)
training — andK is a kernel function. The class label gfis then
predicted asgn (h (x)). While the simplest kernek (x, x) = (x, %) o
produces linear decision boundaries, in most real clagsiic tasks, ./ (x*,x5) = <X_S X; ) _ ( +< x* X >)
the data is not linearly separable. Nonlinear kernel famstiimplic- prm o AN I 7 1] ’

itly map data points to a high-dimensional feature spacerevitee

data could potentially be linearly separable. Kernel de@gherefore js 5 modified polynomial kernel which acts on normalized tpu
effectively equivalent to feature-space selection, andguan appro- yectors and is used as a baseline kernel for classificatin@iform
priate kernel for a given classification task is crucial. @only  g,ppands. On the other hand, the standard polynomial kéfpes
used is the polynomial kerneli, (x,%) = (1 + (x,%))°, where  seq for classification with the cepstral representatinhere feature

the polynomial order® in K, is a hyper-parameter that is tunedstandardization by CMVN [12] already ensures that featgetors
to a particular classification problem. More sophisticatethels can typically have unit norm.

be obtained by various combinations of basic SVM kernelsteHe * Next, the temporal dynamics of speech are explicitly takeo i
we use a polynomial k.e.rnell for F:Iassificat.ion with ceps.tﬂtﬂres account by means of features that capture the evolution efggn
(MFCC) whereas classification with acoustic waveforms égérency in individual subbands. To obtain these features, each aubb

where

subbands is performed using a custom-designed kernelildeddn componentx® is first divided intoT frames,x"*,¢t = 1,...,T,
the following. _ ) _ and then a vector of their energies is formed as,
For multiclass problems, binary SVMs are combined via error

correcting output codes (ECOC) methods [37]. In this wordx; f W' = 10ng1=S 2} .
an M-class problem we trainN = M(M — 1)/2 binary pair-

wise classifiers, primarily to lower the computational cdemjty Finally, time differences [39] ofw® are evaluated to form the
by training on only the relevant two classes of data. Theningi dynamic subband feature vect®?® as Q° = [w® Aw® A%“"].
scheme can be captured in a coding matuix, € {0,1,—1}, i.e. This dynamic subband feature vec@? is then combined with the
classifiern is trained only on data from the two classesfor which  corresponding acoustic waveform subband compongnforming
Wmn # 0, With sgn(wmy,) as the class label. ?Vne then predicts fokernel K given by

test inputx the class that minimizes the 103S;,_, x(wmn fn(x S 5 5 (5 s s s s

where f,,(x) is the output of then" binary%aséifiér andy (is); Ka(x,xi, 7, ) = Ko7, x) K (7, ), ©®)
loss function. We experimented with a variety of loss fumas, whereQ; is the dynamic subband feature vector corresponding to
including hinge, Hamming, exponential and linear. The hirlgss the s subband component; of the i-th training pointx;.
functionx(z) = max(1 — z,0) performed best and is therefore use¢t gt ked Generalization

throughout.

H2 ,...,log HXT’S

For each binary classification problem, decomposing an sdimou
B. Kernels for Subband Classification waveform into its subband components produces an enserhtfe o
For classification in frequency subbands, each wavefarnis classifiers. The decision functions of the subband classifie the
processed through as-channel maximally-decimated perfect re-ensemble, given by
construction cosine modulated filter bank (CMFB) [38] and de ,s,_s sy _ s 5 05 O O s
composed into its subband component$,s = 1,...,S. Several PO ) = zi:aileQ(x XL )+ s =15
other decompositions such as discrete wavelet transforavelet (6)



are then combined using stacked generalization [40] toirolite
binary classification decision for a test wavefosm Our practical
implementation of stacked generalization consists of aahifical

core test set), a small randomly selected subset comprsirgjghth
of its data points is used for the training of the meta-levédband
classifiers. Glottal stops /g/ are removed from the classlsabnd

two-layer SVM architecture, where the outputs of subbansgeba certain allophones are grouped into their correspondingneime

level SVMs are aggregated by a meta-level linear SVM. Thésaet
function of the meta-level SVM classifier is of the form

@)

classes using the standard Kai-Fu Lee clustering [42],Ititeguin
a total of M = 48 phoneme classes afd = M (M —1)/2 = 1128
classifiers. Furthermore, among these classes, there awu@sgfor

which the contribution of within-group confusions towardilticlass
error is not counted, again following standard practice, [28].
wheref (x) = [f*(x',Q"),..., f¥(x®,Q%)] is the base-level SVM Hyperparameter values of the binary SVM classifiers are fixed
score vector of the test waveform, v is the classifier bias, and parameter optimization has a large computational overheaenly
w = [w',...,w"] is the weight vector of the meta-level classifiera small impact on the multiclass classification error: thgree of
Note that each of the binary classifiers has its specific weigbtor, [, is set to© = 6 and the penalty parameter (for slack variables in
optimized on an independent development/validation {Set 7;}, the SVM training algorithm) ta”' = 1.
with a result of the formw = 3, 3,7,f(x;). Here f(x;) = Each TIMIT test sentence is normalized to unit energy pembam
[fl(gjl.7 Q;)7 . A7fs(§(]57 fzf) is the base-level SVM score vectorand a noise sequence (pink or speech-babble noise from NOISE
of the training waveformx;, and 3; and jj, are the Lagrange 92) is added to the entire sentence to set the sentenceS&Rl
multiplier and class label correspondingfik; ), respectively. While Hence for a given sentence-level SNR, signal-to-noise ratithe
a base-level SVM assigns a weight to each supporting featater, level of individual phonemes will vary widely. Moreover,etmoisy
stacked generalization effectively assigns an additioreghtw® to  TIMIT sentences are convolved with a room impulse responitie w
each subband based on the performance of the corresponatieg preverberation timelso = 0.2sec and a—0.5dB spectral coloration
level subband classifier. Finally, ECOC methods are usedntbine (defined as the ratio of the geometric mean to the arithmeéarm
the meta-level binary classifiers for multiclass classifiza of spectral magnitude), measured using an Earthworks QTiCom
An obvious advantage of the subband approach for ASR is tH¥tone in the ICSI conference room populated with people.[43]
with adequate normalization the effect of environmentatattions ~ MFCC feature vectors are obtained by converting each seaten
in sufficiently narrow subbands can be approximated as aind into a sequence of 13 dimensional feature vectors and camgpbin
that of a narrowband white noise. This facilitates the camspéion them with their time differences and second order diffeesrto give a
of features to make them independent of the spectral cleaistats Seduence of 39 dimensional feature vectors. Ther[the10 frames
of the additive noise and linear filtering. In a precedingesdfi4], we (With frame duration of25ms and a frame rate of00 frames/sec)
proposed an ASR front-end based on the full-band acoustiefwan closest to the center of a phoneme are concatenated to give a
representation of speech where a spectral shape adapdtire representation ifk**°. Noise compensation of the MFCC features
features was performed in order to account for the varyingngth is performed via the vector Taylor series (VTS) method whiets
of contamination of the frequency components due to theepies been extensively used in recent literature and is considasestate-
of colored noise. On the other hand, compensation of thaifest Of-the-art.In our experiments, Gaussian mixture modeNG with
in this work is performed solely using appropriate staniatibn. 64 mixture components were used to model the distributidrihie
Furthermore, we found in our experiment that the weightascof MFCC features of clean training data. Additionally, CMVNL[112]
the stacked classifiers can be tuned to classification in ticpar IS performed to standardize the MFCC features, fixing themge of
environment by introducing similar distortions in its traig data. Variation for both training and test data.
To this end, a multi-style approach for training of the mietzel In order to derive the subband features, acoustic wavefmens
SVM classifiers is employed. Here, the meta-level classifizre Mentsx are extracted from the TIMIT sentences by applying a
trained with the score feature vectors of a mixture of clezhmoisy 100ms rectangular window at the centre of each phoneme, heamd t
data to attain a reasonable compromise of classificaticiopeance decomposed into subband componefits'}2_, using the cosine-
over a wide range of test conditions. Note that the dimensibn Mmodulated filter bank. For the results presented in this pape
the score feature vectors that form the input to the stackbband number of filter bank channels is limited 16 in order to reduce the
classifier 6) is very low compared to the typical MECC or waveformcomputational complexity. The dynamic subband featureove€2®
feature vectors. Therefore only a limited amount of dateeguired IS computed by extracting’ = 10 equal-length (25ms with an overlap
to learn optimal weights of the meta-level classifiers. Aghsu Of 10ms) frames around the centre of each phoneme, thusngedd
stacked generalization offers flexibility and some coarsgfency Vector of dimensior30. These feature vectors are further standardized
selectivity for the individual binary classification prebhs, and can Within each sentence of TIMIT for the evaluation of kerdgh. The
be useful in de-emphasizing information from unreliablélmands. training of base-level SVM subband classifiers is alwaysopered
The experiments presented in this paper show that the sdbba}§ing clean data. On the other hand, the weight vectors dfttuiked

approach attains major gains in classification performamee state- Subband classifiers can be adapted for classification in tcypiar
of-the-art front-ends such as MFCC. environment by introducing similar distortion to the redat training

data. We consider two particular scenarios for meta-lea@hing: (a)
I1l. EXPERIMENTAL RESULTS

h(x) = (F(x),w) +v =Y w’f(x*,Q°) +v,

training with the base-level SVM score vectors of clean datd (b)
Experiments are performed using the ‘si’ (diverse) and (&@m- training with the base-level SVM score vectors of a mixtufelean

and white noise(dB SNR) contaminated data.

Results of the TIMIT phoneme classification experimentsha t
presence of additive noise and linear filtering and conducieder
the setup detailed above are presented next. Figure 1 cemlae
classification performances of the subband and VTS-conapets

pact) sentences of the TIMIT database [41]. The trainingeasists
of 3696 sentences from 168 different speakers. Testingrienpeed
using the core set which consists of 192 sentences from feretif
speakers not included in the training set. From the devedopraet
(1152 sentences by speakers not included in either therigaior
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in the error patterns of the two classifiers as observed froair t
confusion matrices (not shown here). This suggested tleaetiors
of the subband and MFCC classifiers may be largely indepérheh
a combination of the two may yield better performance thaheei
of classifiers individually. Two different values of the cbimation
parameten\ are considered, where=0 and 1 represent classification
with, respectively, the VTS-compensated MFCC features rantii-
style trained subband features. The first choice\ is- 1/2, which
corresponds to the arithmetic mean of the MFCC and subbarM SV
classifier scores. In the second case, we set the combirpstiameter
X to a function Aemy(c?) which approximates the combination
parameter values that are optimal on an independent deweltp
set. This approximated function was determined empisiciall[14]
for composite waveforms, rather than their subband compsne
considered here, and it is given by

)\emp(o'Q) =n+ C/[l + (08/02)] ’

with n = 0.2, ¢ = 0.5 and 0§ = 0.03. Note thatAemp(c?) also
requires an estimate of the noise variafieé) which was explicitly
measured using the decision-directed estimation algor{d, 45].
Figure 1 compares the classification performances of thiessuband
MFCC classifiers with their convex combination. One obserneat

the combined classification witkemp consistently outperforms both

of the individual classifiers across all SNRs; it attains.4% and
7.1% average improvement over the subband and MFCC classifiers
respectively, across all SNRs in both pink and speech-kabbise.
Moreover, even the simple averaging of the subband and MR&E ¢
sifiers achieved by setting=1,/2 provides a reasonable compromise
between classification performance achieved in the twasgmtation
domains. While the performance of the combined classifigh wi
A=1/2 degrades only slightly (approximateBf%) as compared to
the MFCC classifier for SNRs above a cross over point between
18dB and 12dB, it achieves relatively far greater improvements in
high noise. For example, in pink noise the combined classifith
A=1/2 attains al0.9% and3.6% improvement over the MFCC and
subband classifiers &dB SNR, respectively. Quantitatively similar

Fig. 1: Classification with the subband and VTS-compensated MFc&@Nclusions apply in the presence of speech-babble noise.

classifiers, and their convex combination. Results are shfow the test
data contaminated with pink noise (top) and speech-babdbiger(bottom)
as well as the ICSI conference room response. The convexirtatinh
curves correspond to the different settings of the paramate

MFCC classifiers in the presence of linear filtering, and pamd
speech-babble noise. In comparing the subband classifi@rsed
in quiet and multi-style training scenarios, one can olsdhat
the performance of the stacked subband classifier trainegliet
conditions degrades relatively quickly even at low SNRsabee its
corresponding meta-level binary classifiers assign weightlifferent
subbands that are tuned for classification only in quiet itmms.
On the other hand, the multi-style trained subband classifibieves
consistent improvements over the one trained in quiet ¢iomdi and

outperforms the MFCC classifiers for all SNRs below a crossov

IV. CONCLUSIONS

This work investigated the potential of high-dimensionablsand
features for robust classification of phonemes, in compangith the
conventional MFCC front-end. The experiments demonstrabet
classification with the subband features outperforms thiéth ¥he
cepstral features for SNRs below a crossover point betweelB
and 6dB. While the subband classifiers do not perform as well as
the MFCC classifiers in low noise conditions, major gainssrall
noise levels can be attained by a convex combination [14juture
work, we plan to investigate extensions of our approach ¢dit@e
the recognition of continuous speech, by integrating ithwather
methods such as the hybrid phone-based HMM-SVM architectur
[33] and the token-passing algorithm [35].
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