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Abstract— This work explores the potential for robust classification
of phonemes in the presence of additive noise and linear filtering using
high-dimensional features in the subbands of acoustic waveforms. The
proposed technique is compared with state-of-the-art automatic speech
recognition (ASR) front-ends on the TIMIT phoneme classification task
using support vector machines (SVMs). The key issues of selecting the
appropriate SVM kernels for classification in frequency subbands and
the combination of individual subband classifiers using ensemble methods
are addressed. Experiments demonstrate the benefits of the classification
in the subbands of acoustic waveforms: it outperforms the standard
cepstral front-end in the presence of noise and linear filtering for all
signal-to-noise ratios (SNRs) below a crossover point between12dB and
6dB. Combining the subband-waveform and cepstral classifiers achieves
further performance improvements over both individual classifiers.

Index Terms—Speech recognition, subbands, support vector machines,
classification, robustness.

I. INTRODUCTION

Automatic speech recognition (ASR) systems suffer severe perfor-
mance degradation in the presence of environmental distortions, in
particular additive noise and linear filtering. Humans, on the other
hand, exhibit a very robust behavior in recognizing speech even in
extremely adverse conditions. In particular, humans recognize iso-
lated speech units above the level of chance already at−18dB SNR,
and significantly above it at−9dB SNR [1]. Even in quiet conditions,
the machine error rates for recognizing isolated nonsense syllables
and phonemes are significantly higher than those of humans [2–5].
Although there are a number of factors preventing conventional ASR
systems from reaching the human benchmark, several studies[4, 6–9]
have attributed the marked difference between human and machine
performance to the fundamental limitations of the ASR front-ends.
These studies suggest that the large amount of redundancy inspeech
signals, which is removed in the process of the extraction ofcepstral
features such as Mel-Frequency Cepstral Coefficients (MFCC) [10],
is in fact needed to cope with environmental distortions. Among
these studies, work on human speech perception [4, 6, 8, 9] has
shown explicitly that the information reduction that takesplace
in the conventional ASR front-ends leads to a severe degradation
in human speech recognition performance and furthermore, that in
noisy environments there is a high correlation between human and
machine errors in recognition of speech with distortions introduced
by typical ASR front-end processing. Over the years, techniques such
as cepstral mean-and-variance normalization (CMVN) [11, 12] and
vector Taylor series (VTS) compensation [13] have been developed
that aim to explicitly reduce the effects of noise on the short-term
spectra. However, the distortion of the cepstral features caused by
additive noise and linear filtering depends on the speech signal, filter
characteristics, noise type and noise level in a very complex fashion
that makes feature compensation or adaptation very intricate and not
sufficiently effective [11].

In our previous work we showed that using acoustic waveforms
directly, without any compression or nonlinear transformation can

improve the robustness of ASR front-ends to additive noise [14].
In this paper, we propose features for an ASR front-end whichare
derived from the decomposition of high-dimensional acoustic wave-
forms into frequency subbands, to achieve additional robustness to
additive noise as well as robustness to linear filtering. This approach
draws its motivation primarily from the experiments conducted by
Fletcher [15], which suggest that the human decoding of linguistic
messages is based on decisions within narrow frequency subbands
that are processed quite independently of each other. This reasoning
further implies that accurate recognition in any subband should
result in accurate recognition overall, regardless of the errors in
other subbands. While this theory has not been proved and some
studies on the subband correlation of speech signals [16, 17] have
even put its validity into question, there are some technical reasons
for considering classification in frequency subbands. First of all,
decomposing speech into its frequency subbands can be beneficial
since it allows a better exploitation of the fact that certain subbands
may inherently provide better separation of some phoneme classes
than others. Secondly, the effect of wideband noise in sufficiently
narrow subbands can be approximated as that of narrowband white
noise and thus make the compensation of features be approximately
independent of the spectral characteristics of the additive noise
and linear filtering. Moreover, appropriate ensemble methods for
aggregation of the decisions in individual frequency subbands can
facilitate selective de-emphasis of unreliable information, particularly
in the presence of narrowband noise.

The subband approach has also previously been used in [18–24]
where it provided marginal improvements in recognition performance
over its full band counterparts. Note that the front-end features
employed in the previous works were the subband-based variants of
cepstral features or multi-resolution cepstral features.By contrast, our
proposed features are extracted from an ensemble of subbandcompo-
nents of high-dimensional acoustic waveforms, and thus retain more
information about speech that is potentially relevant to discrimination
of phonetic units than the corresponding cepstral representations.
Robustness of the proposed front-end features to additive noise and
filtering is demonstrated by its comparison with the MFCC front-end
on a phoneme classification task as it remains important in comparing
different methods and representations [20, 25–32]. Standard feature
compensation methods such as CMVN and VTS compensation are
used throughout the experiments in order to reduce the mismatch
between the training and test data. The results demonstratethe
benefits of the subband classification in terms of its robustness to
additive noise and linear filtering; for instance, in classifying noisy
reverberant speech, it outperforms the MFCC classifier compensated
using VTS for all SNRs below a crossover point between12dB and
6dB. Finally, their convex combination yields further performance
improvements over both individual classifiers.



II. SUBBAND CLASSIFICATION USING SUPPORT
VECTOR MACHINES

A. Support Vector Machines

Support vector machines (SVMs) are receiving increasing attention
as a tool for speech recognition applications due to their good gener-
alization properties [14, 26, 33–35]. Here we use them to compare the
proposed subband-based representation with standard cepstral front-
end features in terms of their robustness to noise and filtering on a
TIMIT phoneme classification task. Their performance on this task
can be expected to extend to continuous speech recognition [33, 36]
using hybrid SVM - HMM frameworks [33], as well as, more directly,
by means of frame-based architectures based on the token passing
algorithm [35].

A binary SVM classifier estimates a decision surface that jointly
maximizes the margin between the two classes and minimizes the
misclassification error on the training set. For a given training set
(x1, . . . ,xp) with corresponding class labels(y1, . . . , yp) , yi ∈
{+1,−1}, an SVM classifies a test pointx by computing a score
function,

h(x) =

p
X

i=1

αiyiK(x,xi) + b (1)

whereαi is the Lagrange multiplier corresponding to theith training
sample,xi, b is the classifier bias – these are optimized during
training – andK is a kernel function. The class label ofx is then
predicted assgn (h (x)). While the simplest kernelK(x, x̃) = 〈x, x̃〉
produces linear decision boundaries, in most real classification tasks,
the data is not linearly separable. Nonlinear kernel functions implic-
itly map data points to a high-dimensional feature space where the
data could potentially be linearly separable. Kernel design is therefore
effectively equivalent to feature-space selection, and using an appro-
priate kernel for a given classification task is crucial. Commonly
used is the polynomial kernel,Kp(x, x̃) = (1 + 〈x, x̃〉)Θ, where
the polynomial orderΘ in Kp is a hyper-parameter that is tuned
to a particular classification problem. More sophisticatedkernels can
be obtained by various combinations of basic SVM kernels. Here
we use a polynomial kernel for classification with cepstral features
(MFCC) whereas classification with acoustic waveforms in frequency
subbands is performed using a custom-designed kernel described in
the following.

For multiclass problems, binary SVMs are combined via error-
correcting output codes (ECOC) methods [37]. In this work, for
an M -class problem we trainN = M(M − 1)/2 binary pair-
wise classifiers, primarily to lower the computational complexity
by training on only the relevant two classes of data. The training
scheme can be captured in a coding matrixwmn ∈ {0, 1,−1}, i.e.
classifiern is trained only on data from the two classesm for which
wmn 6= 0, with sgn(wmn) as the class label. One then predicts for
test inputx the class that minimizes the loss

PN

n=1
χ(wmnfn(x))

where fn(x) is the output of thenth binary classifier andχ is a
loss function. We experimented with a variety of loss functions,
including hinge, Hamming, exponential and linear. The hinge loss
functionχ(z) = max(1− z, 0) performed best and is therefore used
throughout.

B. Kernels for Subband Classification

For classification in frequency subbands, each waveformx is
processed through anS-channel maximally-decimated perfect re-
construction cosine modulated filter bank (CMFB) [38] and de-
composed into its subband components,x

s, s = 1, . . . , S. Several
other decompositions such as discrete wavelet transform, wavelet

packet decomposition and discrete cosine transform also achieved
comparable, but somewhat inferior performance. The CMFB consists
of a set of orthonormal analysis filters,

gs[k] =
1√
S

g[k] cos

„

2s − 1

4S
(2k − S − 1) π

«

, (2)

whereg[k] =
√

2 sin (π (k − 0.5)/2S) , k = 1, . . . , 2S, is a low-
pass prototype filter. Such a filter bank implements an orthogonal
transform, hence the collection of the subband components is a
representation of the original waveform in a different coordinate
system [38]. A maximally-decimated filter bank was chosen primarily
because the sub-sampling operation avoids introducing additional
unnecessary redundancies and thus limits the overall computational
burden. However, we believe that redundant expansions of speech sig-
nals obtained using over-sampled filter banks could be advantageous
to effectively account for the shift invariance of speech.

For classification in frequency subbands, an SVM kernel is con-
structed by partly following steps from our previous work [14],
which attempted to capture known invariances or express explicitly
the waveform qualities which are known to correlate with phoneme
identity. First, an even kernel is constructed from a baseline polyno-
mial kernelKp to account for the sign-invariance of human speech
perception as
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is a modified polynomial kernel which acts on normalized input
vectors and is used as a baseline kernel for classification inwaveform
subbands. On the other hand, the standard polynomial kernelKp is
used for classification with the cepstral representations,where feature
standardization by CMVN [12] already ensures that feature vectors
typically have unit norm.

Next, the temporal dynamics of speech are explicitly taken into
account by means of features that capture the evolution of energy
in individual subbands. To obtain these features, each subband
componentxs is first divided into T frames,xt,s, t = 1, . . . , T ,
and then a vector of their energiesω

s is formed as,
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Finally, time differences [39] ofωs are evaluated to form the
dynamic subband feature vectorΩ

s as Ω
s =

ˆ

ω
s ∆ω

s ∆2
ω

s
˜

.
This dynamic subband feature vectorΩ

s is then combined with the
corresponding acoustic waveform subband componentx

s forming
kernelKΩ given by

KΩ(xs,xs
i ,Ω

s,Ωs
i ) = Ke(x

s,xs
i )Kp(Ω

s,Ωs
i ), (5)

whereΩ
s
i is the dynamic subband feature vector corresponding to

the sth subband componentxs
i of the i-th training pointxi.

C. Stacked Generalization

For each binary classification problem, decomposing an acoustic
waveform into its subband components produces an ensemble of S
classifiers. The decision functions of the subband classifiers in the
ensemble, given by

fs(xs,Ωs) =
X

i

αs
i yiKΩ(xs,xs

i ,Ω
s, Ωs

i ) + bs, s = 1, . . . , S,

(6)



are then combined using stacked generalization [40] to obtain the
binary classification decision for a test waveformx. Our practical
implementation of stacked generalization consists of a hierarchical
two-layer SVM architecture, where the outputs of subband base-
level SVMs are aggregated by a meta-level linear SVM. The decision
function of the meta-level SVM classifier is of the form

h(x) = 〈f(x),w〉 + v =
X

s

wsfs(xs,Ωs) + v, (7)

wheref(x) =
ˆ

f1(x1,Ω1), . . . , fS(xS,ΩS)
˜

is the base-level SVM
score vector of the test waveformx, v is the classifier bias, and
w =

ˆ

w1, . . . , wS
˜

is the weight vector of the meta-level classifier.
Note that each of the binary classifiers has its specific weight vector,
optimized on an independent development/validation set{x̃j , ỹj},
with a result of the formw =

P

j
βj ỹjf(x̃j). Here f(x̃j) =

h

f1(x̃1

j , Ω̃
1

j ), . . . , f
S(x̃S

j , Ω̃
S

j )
i

is the base-level SVM score vector
of the training waveformx̃j , and βj and ỹj are the Lagrange
multiplier and class label corresponding tof(x̃j), respectively. While
a base-level SVM assigns a weight to each supporting featurevector,
stacked generalization effectively assigns an additionalweight ws to
each subband based on the performance of the corresponding base-
level subband classifier. Finally, ECOC methods are used to combine
the meta-level binary classifiers for multiclass classification.

An obvious advantage of the subband approach for ASR is that
with adequate normalization the effect of environmental distortions
in sufficiently narrow subbands can be approximated as similar to
that of a narrowband white noise. This facilitates the compensation
of features to make them independent of the spectral characteristics
of the additive noise and linear filtering. In a preceding paper [14], we
proposed an ASR front-end based on the full-band acoustic waveform
representation of speech where a spectral shape adaptationof the
features was performed in order to account for the varying strength
of contamination of the frequency components due to the presence
of colored noise. On the other hand, compensation of the features
in this work is performed solely using appropriate standardization.
Furthermore, we found in our experiment that the weight vectors of
the stacked classifiers can be tuned to classification in a particular
environment by introducing similar distortions in its training data.
To this end, a multi-style approach for training of the meta-level
SVM classifiers is employed. Here, the meta-level classifiers are
trained with the score feature vectors of a mixture of clean and noisy
data to attain a reasonable compromise of classification performance
over a wide range of test conditions. Note that the dimensionof
the score feature vectors that form the input to the stacked subband
classifier (S) is very low compared to the typical MFCC or waveform
feature vectors. Therefore only a limited amount of data is required
to learn optimal weights of the meta-level classifiers. As such,
stacked generalization offers flexibility and some coarse frequency
selectivity for the individual binary classification problems, and can
be useful in de-emphasizing information from unreliable subbands.
The experiments presented in this paper show that the subband
approach attains major gains in classification performanceover state-
of-the-art front-ends such as MFCC.

III. EXPERIMENTAL RESULTS

Experiments are performed using the ‘si’ (diverse) and ‘sx’(com-
pact) sentences of the TIMIT database [41]. The training setconsists
of 3696 sentences from 168 different speakers. Testing is performed
using the core set which consists of 192 sentences from 24 different
speakers not included in the training set. From the development set
(1152 sentences by speakers not included in either the training or

core test set), a small randomly selected subset comprisingan eighth
of its data points is used for the training of the meta-level subband
classifiers. Glottal stops /q/ are removed from the class labels and
certain allophones are grouped into their corresponding phoneme
classes using the standard Kai-Fu Lee clustering [42], resulting in
a total ofM = 48 phoneme classes andN = M(M − 1)/2 = 1128
classifiers. Furthermore, among these classes, there are 7 groups for
which the contribution of within-group confusions toward multiclass
error is not counted, again following standard practice [26, 42].
Hyperparameter values of the binary SVM classifiers are fixedas
parameter optimization has a large computational overheadbut only
a small impact on the multiclass classification error: the degree of
Kp is set toΘ = 6 and the penalty parameter (for slack variables in
the SVM training algorithm) toC = 1.

Each TIMIT test sentence is normalized to unit energy per sample
and a noise sequence (pink or speech-babble noise from NOISEX-
92) is added to the entire sentence to set the sentence-levelSNR.
Hence for a given sentence-level SNR, signal-to-noise ratio at the
level of individual phonemes will vary widely. Moreover, the noisy
TIMIT sentences are convolved with a room impulse response with
reverberation timeT60 = 0.2sec and a−0.5dB spectral coloration
(defined as the ratio of the geometric mean to the arithmetic mean
of spectral magnitude), measured using an Earthworks QTC1 micro-
phone in the ICSI conference room populated with people [43].

MFCC feature vectors are obtained by converting each sentence
into a sequence of 13 dimensional feature vectors and combining
them with their time differences and second order differences to give a
sequence of 39 dimensional feature vectors. Then, theT = 10 frames
(with frame duration of25ms and a frame rate of100 frames/sec)
closest to the center of a phoneme are concatenated to give a
representation inR390. Noise compensation of the MFCC features
is performed via the vector Taylor series (VTS) method whichhas
been extensively used in recent literature and is considered as state-
of-the-art. In our experiments, Gaussian mixture models (GMM) with
64 mixture components were used to model the distributions of the
MFCC features of clean training data. Additionally, CMVN [11, 12]
is performed to standardize the MFCC features, fixing their range of
variation for both training and test data.

In order to derive the subband features, acoustic waveformsseg-
ments x are extracted from the TIMIT sentences by applying a
100ms rectangular window at the centre of each phoneme, and then
decomposed into subband components{xs}S

s=1 using the cosine-
modulated filter bank. For the results presented in this paper, the
number of filter bank channels is limited to16 in order to reduce the
computational complexity. The dynamic subband feature vector, Ωs

is computed by extractingT = 10 equal-length (25ms with an overlap
of 10ms) frames around the centre of each phoneme, thus yielding a
vector of dimension30. These feature vectors are further standardized
within each sentence of TIMIT for the evaluation of kernelKΩ. The
training of base-level SVM subband classifiers is always performed
using clean data. On the other hand, the weight vectors of thestacked
subband classifiers can be adapted for classification in a particular
environment by introducing similar distortion to the relevant training
data. We consider two particular scenarios for meta-level training: (a)
training with the base-level SVM score vectors of clean dataand (b)
training with the base-level SVM score vectors of a mixture of clean
and white noise (0dB SNR) contaminated data.

Results of the TIMIT phoneme classification experiments in the
presence of additive noise and linear filtering and conducted under
the setup detailed above are presented next. Figure 1 compares the
classification performances of the subband and VTS-compensated
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Fig. 1: Classification with the subband and VTS-compensated MFCC
classifiers, and their convex combination. Results are shown for the test
data contaminated with pink noise (top) and speech-babble noise (bottom)
as well as the ICSI conference room response. The convex combination
curves correspond to the different settings of the paramater, λ.

MFCC classifiers in the presence of linear filtering, and pinkand
speech-babble noise. In comparing the subband classifiers trained
in quiet and multi-style training scenarios, one can observe that
the performance of the stacked subband classifier trained inquiet
conditions degrades relatively quickly even at low SNRs because its
corresponding meta-level binary classifiers assign weights to different
subbands that are tuned for classification only in quiet conditions.
On the other hand, the multi-style trained subband classifier achieves
consistent improvements over the one trained in quiet conditions and
outperforms the MFCC classifiers for all SNRs below a crossover
point between12dB and 6dB, despite the mismatch of the noise
level and type between training and testing conditions.

Since an obvious performance crossover between the MFCC and
multi-style trained subband classifiers exists at moderateSNRs, we
consider a convex combination of the scores of these classifiers
using a combination parameterλ as discussed in [14]. Another factor
motivating the convex combination approach was the stark difference

in the error patterns of the two classifiers as observed from their
confusion matrices (not shown here). This suggested that the errors
of the subband and MFCC classifiers may be largely independent and
a combination of the two may yield better performance than either
of classifiers individually. Two different values of the combination
parameterλ are considered, whereλ=0 and 1 represent classification
with, respectively, the VTS-compensated MFCC features andmulti-
style trained subband features. The first choice isλ = 1/2, which
corresponds to the arithmetic mean of the MFCC and subband SVM
classifier scores. In the second case, we set the combinationparameter
λ to a function λemp(σ

2) which approximates the combination
parameter values that are optimal on an independent development
set. This approximated function was determined empirically in [14]
for composite waveforms, rather than their subband components
considered here, and it is given by

λemp(σ
2) = η + ζ/[1 +

`

σ2

0/σ2
´

] ,

with η = 0.2, ζ = 0.5 and σ2
0 = 0.03. Note thatλemp(σ

2) also
requires an estimate of the noise variance(σ2) which was explicitly
measured using the decision-directed estimation algorithm [44, 45].
Figure 1 compares the classification performances of the subband and
MFCC classifiers with their convex combination. One observes that
the combined classification withλemp consistently outperforms both
of the individual classifiers across all SNRs; it attains a5.4% and
7.1% average improvement over the subband and MFCC classifiers
respectively, across all SNRs in both pink and speech-babble noise.
Moreover, even the simple averaging of the subband and MFCC clas-
sifiers achieved by settingλ=1/2 provides a reasonable compromise
between classification performance achieved in the two representation
domains. While the performance of the combined classifier with
λ=1/2 degrades only slightly (approximately2%) as compared to
the MFCC classifier for SNRs above a cross over point between
18dB and 12dB, it achieves relatively far greater improvements in
high noise. For example, in pink noise the combined classifier with
λ=1/2 attains a10.9% and3.6% improvement over the MFCC and
subband classifiers at0dB SNR, respectively. Quantitatively similar
conclusions apply in the presence of speech-babble noise.

IV. CONCLUSIONS

This work investigated the potential of high-dimensional subband
features for robust classification of phonemes, in comparison with the
conventional MFCC front-end. The experiments demonstrated that
classification with the subband features outperforms that with the
cepstral features for SNRs below a crossover point between12dB
and 6dB. While the subband classifiers do not perform as well as
the MFCC classifiers in low noise conditions, major gains across all
noise levels can be attained by a convex combination [14]. Infuture
work, we plan to investigate extensions of our approach to facilitate
the recognition of continuous speech, by integrating it with other
methods such as the hybrid phone-based HMM-SVM architecture
[33] and the token-passing algorithm [35].
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[14] J. Yousafzai, Z. Cvetković, P. Sollich, and B. Yu, “Combined
Features and Kernel Design for Noise Robust Phoneme Clas-
sification Using Support Vector Machines,”To appear in the
IEEE Trans. ASLP, 2011.

[15] H. Fletcher, Speech and Hearing in Communication, Van
Nostrand, New York, 1953.

[16] J. McAuley, J. Ming, D. Stewart, and P. Hanna, “Subband
Correlation and Robust Speech Recognition,”IEEE Trans. SAP,
vol. 13, no. 5, pp. 956 – 964, 2005.

[17] J. Ming, P. Jancovic, and F.J. Smith, “Robust Speech Recogni-
tion Using Probabilistic Union Models,”IEEE Trans. SAP, vol.
10, no. 6, pp. 403 – 414, Sept. 2002.

[18] H. Bourlard and S. Dupont, “Subband-based Speech Recogni-
tion,” Proc. ICASSP, pp. 1251–1254, 1997.

[19] C. Cerisara, J.-P. Haton, J.-F. Mari, and D. Fohr, “A Recom-
bination Model for Multi-band Speech Recognition,”ICASSP,
pp. 717 –720 vol.2, 1998.

[20] P. McCourt, N. Harte, and S. Vaseghi, “Discriminative Multi-
resolution Sub-band and Segmental Phonetic Model Combina-
tion,” IET Elec. Letters, vol. 36, no. 3, pp. 270 –271, 2000.

[21] P. McCourt, S. Vaseghi, and N. Harte, “Multi-Resolution
Cepstral Features for Phoneme Recognition across Speech Sub-
Bands,” Proc. ICASSP, pp. 557–560, 1998.

[22] S. Okawa, E. Bocchieri, and A. Potamianos, “Multi-band
Speech Recognition in Noisy Environments,”Proc. ICASSP,
pp. 641–644, 1998.

[23] S. Thomas, S. Ganapathy, and H. Hermansky, “Recognition Of
Reverberant Speech Using Frequency Domain Linear Predic-
tion,” IEEE Sig. Proc. Letters, vol. 15, pp. 681–684, 2008.

[24] S. Tibrewala and H. Hermansky, “Subband Based Recognition
Of Noisy Speech,”Proc. ICASSP, pp. 1255–1258, 1997.

[25] H. Chang and J. Glass, “Hierarchical Large-Margin Gaussian
Mixture Models for Phonetic Classification,”Proc. ASRU, pp.

272–275, 2007.
[26] P. Clarkson and P. J. Moreno, “On the Use of Support Vector

Machines for Phonetic Classification,”Proc. ICASSP, pp. 585–
588, 1999.

[27] S. Dusan, “On the Relevance of Some Spectral and Temporal
Patterns for Vowel Classification,”Speech Comm., vol. 49, pp.
71–82, 2007.

[28] A. Gunawardana, M. Mahajan, A. Acero, and J. C. Platt,
“Hidden Conditional Random Fields for Phone Classification,”
Proc. INTERSPEECH, pp. 1117–1120, 2005.

[29] A. Halberstadt and J. Glass, “Heterogeneous Acoustic Mea-
surements for Phonetic Classification,”Proc. EuroSpeech, pp.
401–404, 1997.

[30] K. M. Indrebo, R. J. Povinelli, and M. T. Johnson, “Sub-banded
Reconstructed Phase Spaces for Speech Recognition,”Speech
Comm., vol. 48, no. 7, pp. 760–774, 2006.

[31] V. Pitsikalis and P. Maragos, “Analysis and Classification of
Speech Signals by Generalized Fractal Dimension Features,”
Speech Comm., vol. 51, pp. 1206–1223, 2009.

[32] R. Rifkin, K. Schutte, M. Saad, J. Bouvrie, and J. Glass,“Noise
Robust Phonetic Classification with Linear Regularized Least
Squares and Second-Order Features,”Proc. ICASSP, pp. 881–
884, 2007.

[33] A. Ganapathiraju, J. E. Hamaker, and J. Picone, “Applications of
Support Vector Machines to Speech Recognition,”IEEE Trans.
Sig. Proc., vol. 52, no. 8, pp. 2348–2355, 2004.

[34] V. N. Vapnik, The Nature of Statistical Learning Theory,
Springer-Verlag, New York, 1995.

[35] J. Padrell-Sendra, D. Martı́n-Iglesias, and F. Dı́az-de Marı́a,
“Support Vector Machines for Continuous Speech Recognition,”
Proc. EUSIPCO, 2006.

[36] A. Halberstadt and J. Glass, “Heterogeneous Measurements and
Multiple Classifiers for Speech Recognition,”Proc. ICSLP, pp.
995–998, 1998.

[37] T. Dietterich and G. Bakiri, “Solving Multiclass Learning
Problems via Error-Correcting Output Codes,”J. Artif. Intell.
Res., vol. 2, pp. 263–286, 1995.

[38] M. Vetterli and J. Kovacevic,Wavelets and Subband Coding,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

[39] S. Furui, “Speaker-Independent Isolated Word Recognition
using Dynamic Features of Speech Spectrum,”IEEE Trans.
ASSP, vol. 34, no. 1, pp. 52–59, 1986.

[40] D. Wolpert, “Stacked Generalization,”Neural Networks, vol. 5,
no. 2, pp. 241–259, 1992.

[41] J. Garofolo, L. Lamel, W. Fisher, J. Fiscus, D. Pallet, and
N. Dahlgren, “TIMIT Acoustic-Phonetic Continuous Speech
Corpus,” Linguistic Data Consortium, 1993.

[42] K. F. Lee and H. W. Hon, “Speaker-Independent Phone
Recognition Using Hidden Markov Models,”IEEE Trans. ASSP,
vol. 37, no. 11, pp. 1641–1648, 1989.

[43] “The ICSI Meeting Recorder Project - Room Responses,” On-
line Web Resource.

[44] Y. Ephraim and D. Malah, “Speech Enhancement Using a
Minimum Mean-Square Error Short-time Spectral Amplitude
Estimator,” IEEE Trans. ASSP, vol. ASSP-32, pp. 1109–1121,
1984.

[45] Y. Ephraim and D. Malah, “Speech Enhancement Using a
Minimum Mean-Square Log-Spectral Amplitude Estimator,”
IEEE Trans. ASSP, vol. ASSP-33, pp. 443–445, 1985.


