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Abstract— This work proposes a novel support vector machine difference between human and machine performance to the
(SVM) based robust automatic speech recognition (ASR) fron  fundamental limitations of the ASR front-ends. These ssdi
end that operates on an ensemble of the subband components Ofsuggest that the large amount of redundancy in speech signal

high-dimensional acoustic waveforms. The key issues of seting hich i din th f extracti tral fest
the appropriate SVM kernels for classification in frequency which Is removed In the process of extracting cepsira u

subbands and the combination of individual subband classiéirs Such as Mel-Frequency Cepstral Coefficients (MFCC) [1] and
using ensemble methods are addressed. The proposed frontee Perceptual Linear Prediction (PLP) coefficients [2], is &ctf
is compared with state-of-the-art ASR front-ends in terms & needed to cope with environmental distortions. Among these
robustness to additive noise and linear filtering. Experimats per- studies, work on human speech perception [7, 9, 11, 12] has
formed on the TIMIT phoneme classification task demonstrate o . . . T
the benefits of the proposed subband based SVM representatio §h0wn epr|C|tI_y that the information reduction that tal;%(.:e.
it outperforms the standard cepstral front-end in the presece of N the conventional front-ends leads to a severe degraudatio
noise and linear filtering for signal-to-noise ratio (SNR) kelow 12- human speech recognition performance; furthermore, igynoi
dB. A combination of the proposed front-end with a conventimal  environments a high degree of correlation was found between
representation such as MFCC yields further improvements oer human and machine errors when recognizing speech with
the individual front-ends across the full range of noise legls. . . . . .
distortions introduced by typical ASR front-end procegsin
Index Terms—Speech recognition, robustness, subbands, sup-Qver the years, techniques such as cepstral mean-andearia
port vector machines. normalization (CMVN) [13, 14], vector Taylor series (VTS)
compensation [15] and the ETSI advanced front-end (AFE)
. INTRODUCTION [16] have been developed that aim to explicitly reduce the

UTOMATIC speech recognition (ASR) systems suffegffects of noise on the short-term spectra, in order to make

severe performance degradation in the presence of eritie ASR front-ends less sensitive to noise. However, the
ronmental distortions, in particular additive and convots distortion of the cepstral features caused by additive enois
noise. Humans, on the other hand, exhibit a very robuafd linear filtering critically depends on the speech signal
behavior in recognizing speech even in extremely adverdéer characteristics, noise type and noise level, in such a
conditions. The central premise behind the design of sthte-cOmplex fashion that feature compensation or adaptatien ar
the-art ASR systems is that front-ends based on the noatlin&ery challenging and so far not sufficiently effective [14].
compression of speech such as Mel-Frequency Cepstral Coefln our previous work we showed that using acoustic
ficients (MFCC) [1] and Perceptual Linear Prediction (PLPyaveforms directly, without any compression or nonlinear
coefficients [2], when combined with appropriate |anguad@nsformation, can improve the robustness of ASR front-
and context modelling techniques, can bring the recogniti€nds to additive noise [17]. In this paper, we propose an
performance of ASR close to that of humans. HowevefSR front-end derived from the decomposition of speech
the effectiveness of context and language modelling deperidto its frequency subbands, to achieve additional rotasstn
critically on the accuracy with which the underlying seqeeen 0 additive noise as well as linear filtering. This approach
of elementary phonetic units is predicted [3], and this idraws its motivation primarily from the experiments contgalc
where there are still significant performance gaps betweB¥ Fletcher [18], which suggest that the human decoding
humans and ASR systems. Humans recognize isolated spe@icHnguistic messages is based on decisions within narrow
units above the level of chance already-4it8-dB SNR, and frequency subbands that are processed quite independently
significantly above it at-9-dB SNR [4]. At such high noise of each other. This reasoning further implies that accurate
levels, human speech recognition performance exceedsftha€cognition in any subband should result in accurate recog-
state-of-the-art ASR systems by over an order of magnitudét.ion overall, regardless of the errors in other subbands.
Even in quiet conditions, the machine phone error rates féfhile this theory has not been proved, and some studies
nonsense syllables are significantly higher than humarn erf® the subband correlation of speech signals [19, 20] have
rates [3, 5-7]. Although there are a number of factors préuestioned its validity, there are additional technicalsans
venting conventional ASR systems from reaching the hum## considering classification in frequency subbands.tFifs

benchmark, several studies [7—12] have attributed the edari@ll, decomposing speech into its frequency subbands can be
beneficial since it allows a better exploitation of the fact

. - _ that certain subbands may inherently provide better sépara
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approximated as that of narrowband white noise, so that tfesults that demonstrate its robustness to additive noise a

compensation of features becomes approximately indepénear filtering are presented in Section Ill. Finally, Sent

dent of the spectral characteristics of the additive noisg alV draws some conclusions and suggests possible future work

linear filtering. Moreover, appropriate ensemble methaats ftowards application of the proposed front-end in contirsiou

aggregation of the decisions in individual frequency sulalsa speech recognition tasks.

can facilitate selective de-emphasis of unreliable infation,

particularly in the presence of narrowband noise. Il. SUBBAND CLASSIFICATION USING SUPPORT
Previously, the subband approach has been used in [21- VECTOR MACHINES

27] and resulted in marginal improvements in recognition

performance over its full band counterpart. But the front-

ends employed in these studies were subband-based vari tion ;S a tooll-for.speech regognitiongapplicati(;nstdue6
of cepstral features or multi-resolution cepstral feagura their good generalization properties [17, 35, 41, 42, 43-4

contrast, our proposed front-end features are extracted &n Here we use them in conjunction with the proposed subband-

ensemble of subband components of high-dimensional acoBﬁ-SEd representation, with the aim of improving the rolegsin

tic waveforms and thus retain more information about spee the jtandard cepstralf_fro;tl-endhto noise ano_l f”tehr;l?' To
that is potentially relevant to discrimination of phoneticits this end we consiruct a fixed-length representation thaticou

than the corresponding cepstral representations. In iadditpOtem","‘!Iy be used as the front-ent_j for a continuous speech
to investigating the robustness of the proposed front-end 'FCOYNItion systems t_)asgd ®g. hldde_n Markov r_nodells
additive noise, we also assess its robustness to lineairfigte (HMMS) [41-43], as highlighted in Section 1V. Dealing with
due to room reverberation. This form of distortion causé’?r'able_ phoneme length h"fls been addressed by means of
temporal smearing of short-term spectra, which degrades g{eneratlve_ kernels such as F'Sh?r kernels [45, 47] and dy:nar_n
performance of ASR systems. This can be attributed primarﬂme—warpmg kernels [48], but lies beyond the scope of this
to the use of analysis windows for feature extraction iRaPEr-

the conventional front-ends such as MFCC that are much

shorter than typical room impulse responses. Furthermope, Support Vector Machines

the distortion caused by linear filtering is correlated wthle A pinary VM classifier estimates a decision surface that
underlying speech signal. Hence, conventional methods {8fyy maximizes the margin between the two classes and

robust ASR that are tuned for recognition of data corruptediimizes the misclassification error on the training set. &

by additive noise only will not be effective in reverberant: .. training sefx, . .., x,,) with corresponding class labels

environments. Several speech dereverberation technthaes . o), yi € {+1,~1}, an SVM classifies a test point
Yy dp) o (3 9 [

rely on muItl—_channeI recordings of speech _such as [28, by computing a score function,
exist in the literature. However, these considerationgrekt

Support vector machines (SVMs) are receiving increasing

beyond the scope of this paper and instead, standard single P
channel feature compensation methods for additive noide an hix) = ZaiyiK(x xi) +b (1)
linear filtering such as VTS and CMVN compensation are used =t
throughout this paper. whereq; is the Lagrange multiplier corresponding to tH&

Robustness of the proposed front-end to additive nois@ining samplex;, b is the classifier bias — these parameters
and linear filtering is demonstrated by its comparison withre optimized during training — anfl” is a kernel function.
the MFCC front-end on a phoneme classification task; thihe class label ok is then predicted asgn (% (x)). While
task remains important in comparing different methods arle simplest kernek'(x, X) = (x,x) produces linear decision
representations [21, 30-39]. The improvements achievedbaundaries, in most real classification tasks the data is not
the classification task can be expected to extend to contgwudinearly separable. Nonlinear kernel functions implicithap
speech recognition [40, 41], where SVMs have been employdaita points to a high-dimensional feature space where the
in hybrid frameworks [41, 42] with hidden Markov modelsgdata could potentially be linearly separable. Kernel desig
(HMMs) as well as in frame-based architectures using tl& therefore effectively equivalent to feature-space ciele,
token passing algorithm [43]. Our results demonstrate tlaed using an appropriate kernel for a given classification
benefits of the subband classification in terms of robustneask is crucial. Commonly used is the polynomial kernel,
to additive noise and linear filtering. The subband-wawefork,(x,x) = (1 + (x,%))®, where the polynomial orde®
classifiers outperform even MFCC classifiers that are thinen K, is a hyper-parameter that is tuned to a particular classi-
and tested under matched conditions for signal-to-noiesra fication problem. More sophisticated kernels can be obthine
below 6-dB. Furthermore, in classifying noisy reverberafiy various combinations of basic SVM kernels. Here we use
speech, the subband classifier outperforms the MFCC ckassifi polynomial kernel for classification with cepstral featir
compensated using VTS for all signal-to-noise ratios (SNREVFCC) whereas classification with acoustic waveforms in
lying below a crossover point between 12-dB and 6-dBrequency subbands is performed using a custom-designed
Finally, their convex combination yields further perfonnca kernel described in the following subsection.
improvements over both individual classifiers. For multiclass problems, binary SVMs are combined via

The paper is organized as follows: the proposed subbagor-correcting output codes (ECOC) methods [49, 50his t
classification approach is described in Section Il. Experital work, for an M -class problem we trailV = M (M — 1)/2



1 . . .
G1(2) *< :> X work [17], which attempted to capture known invariances or
! express explicitly the waveform properties which are known
X . to correlate with phoneme identity. First, an even kernel is

constructed from a baseline polynomial ker#g) to account
for the sign-invariance of human speech perception as

S
X
*@H K. (x*,x7) = K,(x°,%x7) + K,(x°, —x}) (3)

. . o where K/ is a modified polynomial kernel given by
Fig. 1: Decomposition of phonemes into its subband components p

using anS-channel cosine modulated filter bank. *5 *5 «8 %5 e
/! S S 7 7
Ry ) = % )=+ (G en)
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binary pairwise classifiers, primarily to lower the computa

tional complexity. The training scheme can be captured inTdie kernelk,, which acts on normalized input vectors, will
coding matrixw,,, € {0,1,—1}, i.e. classifiern is trained be used as a baseline kernel for the acoustic waveforms.
only on data from the two classes for which w,,, # 0, Next, the temporal dynamics of speech are explicitly taken
with sgn(w,,,) as the class label. One then predicts for te#ito account by means of features that capture the evolution
input x the class that minimizes the 1085"_, x(w,nn fo(x)) Of energy in individual subbands. To obtain these features,
where f,,(x) is the output of thex™ binary classifier andg ~waveform synthesized from each decimated subband com-
is a loss function. We experimented with a variety of losgonentx® is first divided into7" frames which are denoted

functions, including hinge, Hamming, exponential and dine by x"*,t = 1,...,T. Then a vector of the fr:;tme energies
The hinge loss functioy(z) = max(1 — z,0) performed best is formed asw® = |log HXLSHQ oo log [T | } Finally,
and is therefore used throughout. time differences [52] ofv® are evaluated to form the dynamic

subband feature vect@®® asQ® = [w*® Aw*® A2w*]. This
B. Kernels for Subband Classification dynamic subband feature vectér® is then combined with

The acoustic waveform features used for classification Eﬂe corresponding acoustic waveform subband compagient

frequency subbands are obtained from fixed-lenBtsamples in"evaluating a kemekK given by

long, acoustic waveform segments that will be denoted by Ko(x®,x,Q°,QF) = K.(x°,x]) K, (2°,Q), (5)

x. These features will be studied in comparison with MFCC .. . ]

features obtained from the same speech segment3o Whereﬂhi is the dynamic subband feature vector corresponding
¢ _ - o

obtain the subband features, each waveform segmémfirst [© thes™ subband component’ of the i-th training pointx;.

decomposed into its subband componests,s = 1,...,5 On the other hand, the standard polynomial kerRglis

by means of anS-channel maximally-decimated perfect’ reused for classification with the cepstral representatisinse

construction cosine modulated filter bank (CMFB) [51], athey consist of analogous subband features in the compresse

shown in Figure 1. Several other subband decompositiorts s@omain. while feature standardization by cepstral meaf-an
as discrete wavelet transform, wavelet packet decompasit’/iance normalization (CMVN) [13] ensures that feature
and discrete cosine transform also achieved comparableit al Vectors typically already have unit norm.

somewhat inferior performance. A summary of the classifica-

tion results obtained with different subband decompasitioC. Ensemble Methods

in quiet conditions is presented in Section Ill-B. The CMFB For each binary classification problem, decomposing an
consists of a set of orthonormal analysis filters acoustic waveform into its subband components produces

1 2¢ — 1 an ensemble ofS classifiers. The decision of the subband
gs[k] :ﬁg[k] cos (T (2k — S — 1)7T> , (2 classifierss = 1,..., S in the ensemble, given by

where s = 1,....8, k& = 1,...,25, and g[k] = (x5, 0%) = ZafyiKsz(Xsavaﬂsan) +0°, (6)
V2sin (r (k —0.5)/29), is a low-pass prototype filter. Such i
a filter bank implements an orthogonal transform, hence thee then aggregated using ensemble methods to obtain the
collection of the subband components is a representationbifiary classification decision for a test wavefoxmHere o
the original waveform in a different coordinate system [51hndb® are respectively the Lagrange multiplier corresponding
A maximally-decimated filter bank was chosen primarily beto x5 and the bias of the!" subband binary classifier.
cause the sub-sampling operation avoids introducing iahdit 1) Uniform Aggregation:Here the decisions of the subband
redundancies and thus limits the overall computationad®ur classifiers in the ensemble are assigned uniform weights.
However, we believe that redundant expansions of speddhjority voting is the simplest uniform aggregation scheme
signals obtained using over-sampled filter banks could kemmonly used in machine learning. In our context it is
advantageous to effectively account for the shift invez@n equivalent to forming a meta-level score function as
of speech. g

For classification in frequency subbands, an SVM kernel h(x) = ngr(fS(xs’QS)) 7 @)
is constructed by partly following steps from our previous

s=1



then predicting the class label gs= sgrn(h(x)). In addition wheref(x;) = fl(fc},(];), . .,fS(iJS,Qf)} is the base-

to this conventional majority voting scheme, which maps thevel SVM score vector of the training waveforf;, and
scores in individual subbands to the corresponding cldmdda 3, and g, are the Lagrange multiplier and class label cor-
(+1), we also considered various smooth squashing functiopgsponding tof (%), respectively. While a base-level SVM
e.g.sigmoidal, as alternatives to the sgn function in (7), angksigns a weight to each supporting feature vector, stacked
obtained similar results. To gain some intuition about thgeneralization effectively assigns an additional weigtitto
potential of ensemble methods such as the majority voting éach subband based on the performance of the corresponding
improving classification performance, consider the ideslec base-level subband classifier. ECOC methods are then used
when the errors of the individual subband classifiers in the combine the resulting meta-level binary classifiers for
ensemble are independent with error probabifity< 1/2. multiclass classification.

Under these conditions, a simple combinatorial argumentAn obvious advantage of the subband approach for ASR
shows that the error probability. of the majority voting is that the effect of environmental distortions in suffidign

scheme is given by narrow subbands can be approximated as similar to that of
S narrow-band white noise. This, in turn, facilitates the pem-
De = Z (S) P (1—p)5* . (8) sation of features independently of the spectral charatiter
s=rsy2] \° of the additive and convolutive noise sources. In a preggdin

o ] paper [17], we proposed an ASR front-end based on the full-
where the largest contribution to the overall error is duth® pand acoustic waveform representation of speech, where a
term with s = [.5/2]. For large ensemble cardinality, this  gpeciral shape adaptation of the features was performed in
error probability can be bounded as: order to account for the varying strength of contamination
s g 1 of the frequency components due to the presence of colored
pe < plS/21(1—p)S=I9/21 3" ( ) ~ = (4p(1—p))*/* . noise. In this work, compensation of the features is perémm
s=[5/2] 2 using standard approaches such as cepstral mean-andeearia
(9) normalization (CMVN) and vector Taylor series (VTS), which
Therefore, in ideal conditions, the ensemble error deeagio not require any prior knowledge of the additive and
exponentially inS even with this simple aggregation schemeonvolutive noise sources. Furthermore, we found that the
[53, 54]. However, it has been shown that there existssgacked generalization also depends on the level of noise
correlation between the subband components of speech gofitaminating its training data. The weight vectors of the
the resulting speech recognition errors in individual frelacy  stacked classifiers can then be tuned for classification in a
subbands [19, 20]. As a result, the majority voting schenprticular environment by introducing similar distortiemits
may not yield significant improvements in classification-petraining data. In scenarios where a performance gain over a
formance, particularly at low SNRs. Uniform aggregatiowide range of SNRs is desired, a multi-style training apphoa
schemes further suffer from a major drawback: they do nean be employed that offers a reasonable compromise between
exploit the differences in the relative importance of indisal  various test conditions. For instance, a meta-level diassian
subbands in discriminating among specific pairs of phonemeg trained using the score feature vectors of noisy dataeor th
To remedy this, we use stacked generalization [55] as dissore feature vectors of a mixture of clean and noisy data.
cussed next, to explicitly learn weighting functions sfieci  Note that since the dimensiofi, of the score feature vectors
to each pair of phonemes for non-uniform aggregation of thigat form the input to the stacked subband classifier is very
outputs of base-level SVMs. small compared to the typical MFCC or waveform feature
2) Stacked GeneralizationOur practical implementation vectors, only a very limited amount of data is required toriea
of stacked generalization [55] consists of a hierarchieal-t optimal weights of the meta-level classifiers. As such,kstec
layer SVM architecture, where the outputs of subband baggeneralization offers flexibility and some coarse freqyenc
level SVMs are aggregated by a meta-level linear SVM. Thelectivity for the individual binary classification preihs,
decision function of the meta-level SVM classifier is of thand can be particularly useful in de-emphasizing infororati
form from unreliable subbands. The experiments presented én thi
< s s s paper show that the subband approach attains major gains in
h(x) = (f(x), w) +v = Zw FPE) +o, (10) gassification performance over its full-band counterpar
° as well as over state-of-the-art front-ends such as MFCC.
where f(x) = |f1(x',QY),...,f5x5%, Q%) is the base-
level SVM score vector of the test wavefors v is the 1. EXPERIMENTAL RESULTS
classifier bias, ansv = [w',...,w"] is the weight vector of A  Experimental Setup

the meta-level classifier. Note each of the binary classifiei

have its own weight vector, determined from an independeptEXpe”:nenti are pe;f?r:m?r‘le?_? (;h(ta bSI (dlggrs?r)hartld sx
development/validation s€tk;, §;}. Each weight vector can, cc:mpac_ )tser]: ;g(g:gs ° ¢ N ¢ 128?{?[ ]t' € rginin
therefore, be expressed as set consists 0 sentences from ifferent spedkars.

testing we use the core test set which consists of 192 sesgenc
w = Z Bi0;£(X;5), (11) from 24 different speakers not included in the training $ée
J development set consists of 1152 sentences uttered by @6 mal



and 48 female speakers not included in either the training
or the core test set, with speakers from 8 different dialec
regions. In training the meta-level subband classifiersuse

a small subset, randomly selecting an eighth of the datasoin
in the complete TIMIT development set. The glottal stops /q/
are removed from the class labels and certain allophones a
grouped into their corresponding phoneme classes using tt
standard Kai-Fu Lee clustering [57], resulting in a total of
M = 48 phoneme classes and = M (M — 1)/2 = 1128
classifiers. Among these classes, there are 7 groups fohwhic
the contribution of within-group confusions is not counted
toward the multiclass error, again following standard picac
[35, 57]. Initially, we experimented with different valuesthe
hyperparameters for the binary SVM classifiers but decided t
use fixed values for all classifiers as parameter optimimatio

had a large computational overhead but only a small impdgg.
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2: Frequency response of the ICSI conference room filters with

on the multiclass classification error: the degredsgfis set Spectral coloration -0.5-dB and -0.9-dB. Here, spectralocation is

to © = 6 and the penalty parameter (for slack variables in t
SVM training algorithm) toC' = 1.

Hjéefined as the ratio of the geometric mean to the arithmet@muod
spectral magnitudesR(z) is used to add reverb to the test data
whereas R'(z), a proxy filter recorded at a different location in

To test the classification performance in noise, each TIMkke same room, is used for the training of cepstral and metetl
test sentence is normalized to unit energy per sample and tlsebband classifiers.

a noise sequence is added to the entire sentence to set the

sentence-level SNR. Hence for a given sentence-level SNR,

signal-to-noise ratio at the level of individual phonemet w sufficiently narrow subbands improves classification perfo
vary widely. Both artificial noise (white, pink) and recands mMance as demonstrated in [22], but at the cost of an increase i
of real noise (speech-babble) from the NOISEX-92 databa@¢erall computational complexity. In order to avoid thetdat
are used in our experiments. White noise was selected dhe number of filter bank channels is limited.$o= 16 for all

to its attractive theoretical interpretation as probingan

results presented in this paper. The dynamic subband &atur

isotropic manner the separation of phoneme classes inefiffe vector, ©2°, is computed by extracting’ = 10 equal-length
representation domains. Pink noise was chosen bedaifse (25ms with an overlap of 10ms) frames around the centre
like noise patterns are found in music melodies, fan ad each phoneme, yielding a vector of dimensiih These
cockpit noises, in nature etc. [58-60]. In order to furtrestt feature vectors are further standardized within each seatef

the classification performance in the presence of lineardilt TIMIT for the evaluation of kerneKq,. Note that the training

ing, noisy TIMIT sentences are convolved with an impulsef base-level SVM subband classifiers is always performed
response with reverberation tinig, = 0.2sec. This impulse With clean data. The development subset is then used for
response is one that was measured using an Earthworks Qt@ining of the meta-level subband classifiers as learrineg t
microphone in the ICSI conference room [61] populated witptimal weights requires only a very limited amount of data.

people; its magnitude respongg(e’“) is shown in Figure Several scenarios are considered for training of the nestal-|
2, where we also show the spectrum of an impulse respogéassifiers:

corresponding to a different speaker position in the samd.
room, R/ (e/*). While the substantial difference between these
filters is evident from their spectra and spectral coloratio
(defined as a ratio of the geometric mean to the arithmeti@.
mean of spectral magnitudelR’(e’*) can be viewed as an
approximation of the effect aR(e’) on the speech spectrum
and is used in some of our experiments for training of the
cepstral and meta-level subband classifiers in order toceedu 3.
the mismatch between training and test data.

Acoustic waveforms segments are extracted from the
TIMIT sentences by applying a 100ms rectangular window

Anechoic clean training - training the meta-level SVM
classifier with the base-level SVM score vectors obtained
from anechoic clean data.

Anechoic multi-style training - training the meta-level
SVM classifier with the base-level SVM score vectors of
anechoic data containing a mixture of clean waveforms
and waveforms corrupted by white noise at 0-dB SNR,
Reverberant multi-style training - training the meta-
level SVM classifier with the base-level SVM score
vectors of reverberant data containing a mixture of clean
waveforms and waveforms corrupted by white noise at

at the centre of each phoneme and are then decomposed 0-dB SNR. Two particular cases of this scenario are

into subband componen{s®}$_, using a cosine-modulated
filter bank (see (2)). We conducted experiments to examine
the effect of the number of filter bank channelson clas-
sification accuracy. Generally, decomposition of speec¢t in
wider subbands does not effectively capture the frequency-
specific dynamics of speech and thus results in relativety po
performance. On the other hand, decomposition of speech int

considered(a) The development data for training as well
as the test data are convolved with the same filter«).
This case provides a lower bound on the classification
error by assuming that exact knowledge of the convo-
lutive distortion is available(b) The development data
for training is convolved withR’(¢“) whereas the test
data is convolved witz(e’*’). This probes the effects of



a mismatch of the linear filter used for convolution with Next, we present the results of TIMIT phoneme classifica-
the training and test data. Since the exact properties of tfi@n with the setup detailed above.
linear filter corrupting the test data are usually difficult

to determine, this scenario is more practical and it8 Results: Robustness to Additive Noise

performance is expected to lie within the bracket formed _. . "
. ) i . First we compare various frequency decompositions and
by the two scenarios mentioned aboves. anechoic e
ensemble methods for subband classification. A summary

training, and reverberant training and testing using th . . D . .
same ?ilter 9 9 9 0% their respective classification errors in quiet conditis

4. Matched training - training and testing with the meta—IoresenteOI in Table 1. Stapked gengrallzat!on yields sr_gamﬂy
. . . . . etter results than majority voting; it consistently aslegover
level classifier in conditions of identical noise level an . o .
: . . 0% improvement over majority voting for all subband de-
type. Results for this scenario are shown only in the - : .
resence of additive noise compositions considered here. Among these decompositions
P ' classification with the 16-channel cosine-modulated fink
To obtain the cepstral (MFCC) representation, each seatemchieves the largest improvementi$% over the composite
is converted into a sequence of 13 dimensional feature rect@coustic waveforms [17] and is therefore selected for &rrth
These feature vectors are further combined with their firekperiments.
and second order time derivatives to form a sequence of 39
dimensional feature vectors. The = 10 frames (with frame TABLE I: Errors obtained with different subband decompositions
duration of25ms and a frame rate df00 frames/sec) closest [51] (listed in the left column) and aggregation schemessiobband
to the center of a phoneme are concatenated to give a repiassification in quiet condition.

sentation inR3°°. Noise compensation of the MFCC features S - VERRORS[;%]k -
. . . . uppban nalysis aj. voting ack. Gen.
is performed via the vector Taylor series (VTS) method, Wwhic Tevel 4 wavelet decomposifion 37 318
has been extensively used in the recent literature and can[ti&vel-4 wavelet packet decomposiiofh  45.1 33.1
considered as state-of-the-art. VTS estimates the digioifo | DCT (16 uniform-width bands) 44 32.6

; ; iatrilg it 4L6-channel CMFB 42.4 31.2
of noisy speech given the distribution of clean speech, = omposite Waveform 7] 3677

a

segment of noisy speech, and the Taylor series expansion t
relates the noisy speech features to the clean ones, and thq_net us now consider classification of phonemes in the
uses it to predict the unobserved clean cepstral featutensec i - P
In our experiments, a Gaussian mixture model (GMM) wit resence of additive noise; robustness of the proposedoeheth

rexp ' istribution St both additive noise and linear filtering will be discussed
64 mixture components was used to learn the distribution 0 . . o

- " in Section IlI-C. In Figure 3, we compare the classifica-

the Mel-log spectra of clean training data. In addition toS/T .. n in frequency subbands using ensemble methods with
cepstral mean-and-variance normalization (CMVN) [13, 1%2

is performed to standardize the cepstral features, fixieg th mposite acoustic waveform classification (as reported in

range of variation for both training and test data. CMVI&N]) in the presence of white and pink noise. The dashed

. curves correspond to subband classification using ensemble
computes the mean and variance of the feature vectors acrr%se?hods in particular, uniform combination (majority vigf)
a sentence and standardizes the features so that each _h 1N P ’ jonty

) ) ; o ap%sstacked generalization with different training scersar
zero mean and a fixed variance. The following tralnlng—teisor meta-level classifiers (see Section Ill-A): quiet (sod

scenanosl are considered for classification with the cepsti), multi-style (scenario 2), and matched (scenario 4). The
front-end: o . S
results show that stacked generalization achieves signtfic
1. Anechoic training with VTS - training of the SVM better performance than uniform aggregation. The majority
classifiers is performed with anechoic clean speech awoting scheme even performs poorly in comparison with the
the test data is compensated via VTS. composite acoustic waveforms across all SNRs. On the other
2. Reverberant training with VTS - training of the SVM hand, even the stacked subband classifier trained only &t qui
classifiers is performed with reverberant clean speecbnditions (scenario 1) improves over the composite wawnefo
with feature compensation of the test data via VTSlassifier in low noise conditions. However, its performanc
Again, two particular cases in this scenario are consithen degrades relatively quickly in high noise because its
ered.(a) The clean training data and the noisy test dataeta-level binary classifiers are trained to assign weitits
are convolved with the same linear filtdt(e’«). (b) The different subbands that are tuned for classification in tquie
data used for training of the SVM classifiers as well abo improve the robustness to additive noise, the meta-level
learning of the distribution of log-spectra in VTS featurelassifiers can be trained in a multi-style manner (scenario
compensation is convolved witR’(e/“) while the test 2). Figure 4 shows the resulting weights (meanstandard
data is convolved with(e/*). deviation acrossV = 1128 binary classifiers) for the = 16
3. Matched training - In this scenario, the training and testsubbands. Relatively high weights are assigned to the low
ing conditions are identical. Again, this is an impracticdtequency subband components. This is reasonable as these
target; nevertheless, we present the results (only in thebbands hold a substantial portion of speech energy and can
presence of additive noise) as a reference, since this sepupvide reliable discriminatory information in the preserof
is considered to give the optimal achievable performanegdeband noise. The large amount of variation in the assigne
with cepstral features [14, 62, 63]. weights as indicated by the error bars is consistent with the
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80f
§ 70t are presented in Figure 5. The results show that the stacked
) subband classifier exhibits better classification perforcea
@ 60 than the VTS-compensated MFCC classifier for SNR below
5ol 12-dB whereas the performance crossover between MFCC and
composite acoustic waveform classifiers occurs later, &etw
40t 6-dB and 0-dB SNR. The stacked subband classifier achieves
8 average improvements of.7% and 4.5% over the MFCC
08 12 6 o 6 12 18 0 classifier in the presence of white and pink noise, respagtiv

SNR [dB] Moreover, and quite remarkably, the stacked subband fixssi

. _ L also significantly improves over the MFCC classifier trained
Fig. 3: Ensemble methods for aggregation of subband classifiers a ﬂs . L
thgir comparison with composite acoustic waveform classif(as 4 d tested in matched conditions for SNRs beIO\.N a crossover
reported in [17]) in the presence of white noise (top) andkpimise  POINt between 6-dB and 0-dB SNR, even though its meta-level
(bottom). The curves correspond to uniform combinationj¢nity ~ classifiers are trained only using clean data and data dedup
voting) and stacked generalization with different tramiscenar- by white noise at 0-dB SNR and the number of data points
ios for the meta-level classifiers. The multi-style stackeband |;5ed to learn the optimal weights amounts only to a small

classifier is trained only with the small development sul{seie : . o
eighth randomly selected score vectors from the developist fraction of the data set used for training of the MFCC classifi

consisting of clean and white-noise (0-dB SNR) corrupteechaic IN Mmatched conditions. In particular, an average improveme
data. The classifiers are then tested on data corrupted whitew Of 6.5% in the phoneme classification error is achieved by
noise (matched noise type) and pink noise (mismatched). the multi-style subband classifier over the matched MFCC
classifier for SNRs below 6-dB in the presence of white noise.
In [64] we showed that the MFCC classifiers suffer per-
variation of speech data encountered by te-= 1128 binary formance degradation in case of a mismatch of the noise
phoneme classifiers. In terms of the resulting performangge between training and test data. On the other hand, the
(Figure 3), the multi-style subband classifiers consi$tentstacked subband classifier degrades gracefully in a mis@etc
improves over the composite waveform classifier as well @s tenvironment as shown in Figure 5. This can be attributed
stacked subband classifier trained in quiet condition. @ler to the decomposition of acoustic waveforms into frequency
across the range of SNRs considered, it achieves averggbebands where the effect of wideband colored noise on
improvements 06.8% and5.9% over the composite waveformeach binary subband classifier can be approximated as that of
classifier in the presence of white (matched noise type) andrrow-band white noise. In comparison to the result regbrt
pink (mismatched noise type) noise, respectively. As etgakc in [33], where a77.8% error was obtained ab-dB SNR
the stacked subband classifier trained in matched condijtioin pink noise using a second-order regularized least sguare
finally, outperforms the other classifiers in all noise céiods. algorithm (RLS2) trained using MFCC feature vectors with
Next, we compare the performance of the multi-style subariable length encoding, our proposed method achieves a
band classifier with the VTS-compensated MFCC classifid0% improvement in similar conditions, using only a fixed
and the composite acoustic waveform classifier [17] in tHength representation. Figure 5 also shows a comparison
presence of additive white and pink noise. These resultggaloof the stacked subband classifier with the MFCC classifier
with classification with the stacked subband classifier ameghen both are trained and tested in matched conditions. The
MFCC classifier, both in matched training-test conditionsnatched-condition subband classifier significantly odtgers



corrupted anechoic data, one involves training with theesco

100 : ‘ ‘ : _
-+ MFCC - VTS vectors of the same development data convolved Wiife’)
90 +. - - MFCC - Matched (mismatched reverberant conditions) while the last ineslv
s Composite Waveform .. . e . .
gol n k. - B- Stacked Subband - Multi-style | training in matched reverberant condition®. training with

ERROR [%]

~

- = = Stacked Subband - Matched

SNR [dB]

the same development subset convolved wiife’). These
classifiers, which we refer to aanechoicand reverberant
multi-style subband classifiers (see Section IlI-A), arenth
tested on data corrupted by white, pink or speech-babbgenoi
and convolved withR(e/*). Similar to our findings in the
previous section, the results in Figure 6 show that the aziech
multi-style subband classifier consistently improves aber
stacked subband classifier trained only in quiet condition.
Moreover, the reverberant multi-style subband classifieosh
matched and mismatched) further reduce the mismatch with
the test data and hence improve the performance further. For

100 o MECC VTS | instance, in the presence of pink noise and linear filtering,
ol 4 - .- MFCC - Matched the subband classifiers trained in mismatched and matched
N Composite Waveform reverberant conditions attain average improvemenéoand

80} '1\’\ R - B- Stacked Subband — Multi-style|

8.5% across all SNRs over the anechoic multi-style subband

~ W T T Stacked Subband — Matched o X
' classifier, respectively. Note that an accurate measuremen

of the linear filter corrupting the test data may be difficult
to obtain in practical scenarios. Nonetheless, classificat
results in matched reverberant condition are presented as a
lower bound on the error. On the other hand, the mismatched
reverberant case can be considered as a more practicabsolut
to the problem and its performance lies as expected between
anechoic training and matched reverberant training.

Figure 7 compares the classification performances of the
subband and VTS-compensated MFCC classifiers trained un-
der three different scenarios (see Section IlI-A) in thespree

Fig. 5: SVM classification in the subbands of acoustic waveform i filteri d pink and h-babbl . t
and its comparison with MFCC and composite acoustic wavefor©! lIn€ar filtering, and pink and speech-babble noise. Tts, fir

classifiers in the presence of white noise (top) and pink enoi€nechoic training, represents an agnostic case that ddes no
(bottom). The multi-style stacked subband classifier imé@ only rely on any information at all regarding the source of the
Witlh ? Zma” SUbsett of fthe dtive?pmlent dat? (Otr)le eiggth :mfldo convolutive noiseR(e’*). The reverberant mismatch case uses
selected score vectors from the development set) co inlean ; . (G
and white-noise (0-dB SNR) corrupted zata. In the mgcrmnirrg a .proxy reverberat.lo.n filted?'(e’*) in order to reduge the
case, noise levels as well as noise types of training ancHtst are mismatch of t_he training and the reverberant test envirarisne
identical for both MFCC and stacked subband classifiers. up to a certain degree, whereas the reverberant matched case
employs accurate knowledge of the reverberation fité’*)
in the training of the MFCC classifiers and the meta-level

the matched MFCC classifier for SNRs below 6-dB. Aroungubband classifiers. These training scenarios are regpigcti
13% average improvement is achieved by the subband clagéipresented by squares, stars and circles in Figure 7. The
fier over the MFCC classifier for SNRs below 6-dB, in théesults show that the comparisons of the stacked subband
presence of both white and pink noise. This suggests tigdassifiers and MFCC classifiers under the different trgnin
the high-dimensional subband representation obtaineah fré€gimes exhibit similar trends. Generally speaking, theQZF

acoustic waveforms provides a better separation of phoneghessifier outperforms the corresponding subband classgifie
classes than cepstral representations. quiet and low noise conditions, while the latter yields #ign

cant improvements in high noise conditions, with a crossove
at moderate noise levels. For example, the anechoic subband
classifiers yields better classification performance tham t
We now consider classification in the presence of additiamechoic MFCC classifier for SNRs below a crossover point
noise as well as linear filtering. First, Figure 6 presenssiits betweenl12-dB and6-dB. Quantitatively similar conclusions
of the ensemble subband classification using stacked deneapply to the comparative performances of the MFCC and
ization with multiple training-test scenarios (see SettibA) subband classifiers in the reverberant training scenddioder
in the presence of white and pink noise. To reiterate, thréee three different training regimes and two different rois
different scenarios are considered for training of the rajle  types, the subband classifiers attain an average improtemen
stacked subband classifier: one involves training the feet- of 8.2% over the MFCC classifiers across all SNRs beli@w
classifiers with the base-level SVM score vectors of the deveB. Note that in the reverberant training scenarios, the RIFC
opment subset consisting of clean and white-noise (0-dB)SN&assifier is trained with the complete TIMIT reverberaatrir

ERROR [%]

SNR [dB]

C. Results: Robustness to Linear Filtering



the second case, we set the combination parameter a

100 ‘ ‘ ‘
- % - Quiet Training function Aemp(c?) Which approximates the optimal combina-
| - Bl- Multi-style (Anechoic) ] i i
90 gi‘\ - %- Multi—style (Reverberant Mismatch) tion parameter values for an mdepeqdent dev_e!opmgnt set.
2o < ™S -©- Multi-style (Reverberant Matched) This approximated function was determined empiricallyim o
8or ‘11‘1\ Tx | experiments with composite waveforms [17] and is given by
g Lol Aemp(0?) =0+ ¢/[1+ (08/0?)], with 1 = 0.2, ¢ = 0.5 and
s N oy o8 = 0.03. Note thatemp(c?) requires an estimate of the
g 60 51: m, Tx noise variancés?) which we obtained for our data using the
u *Igf . EaT Ny decision-directed estimation algorithm [65, 66].
S0 \I: N "ﬂ---é___\ﬁ’ Figure 8 compares the classification performance of the
a0l BREY Sl ST - subband and MFCC classifiers with their convex combination
TO---9 in the presence of speech-babble noise and filtering with
K PR Ta—- s T R(e?%), under the anechoic and reverberant mismatched train-
SNR [dB] Q ing regimes. The combined classification witlam, consis-
tently outperforms either of the individual classifiers aas
100 ~ X~ Quiet Training all SNRs. For instance, under the anechoic training of the
ool * - - EI- Multi-style (Anechoic) | classifiers, the combined classification wiMan, attains a
@ X«_~%*- Multi-style (Reverberant Mismatch) 5.3% and 7.2% average improvement over the subband and
80} ;\u =€ Multi-style (Reverberant Matched) | MFCC classifiers respectively, across all SNRs considered.
= IR RN Even the combined classification via a simple averaging®f th
= 700 \&:‘ ‘m . subband and MFCC classifiers by setting= 1/2 provides
Q sol ‘1:*\\\ Tax a reasonable compromise between classification perfornanc
i Q. B \‘x\ achieved within the two representation domains. While the
501 \%& =N Tx o performance of the combined classifier wikh= 1/2 degrades
N Zg:\E‘“E‘---\m only slightly (approximately2%) for SNRs above a cross
40f S & - - over point between8-dB and12-dB, it achieves relatively far
‘ ? greater improvements in high noise. e.g. under the anechoic

30— . . . . .

-18 -12 -6 0 6 12 18 Q

training regime, the combined classifier with= 1/2 attains
SNR [dB]

a 13% and 4.2% improvement over the MFCC and subband
océassifiers at0-dB SNR, respectively. Quantitatively similar
conclusions apply in the reverberant mismatched training
scenario as shown in Figure 8.

Fig. 6: Classification in frequency subbands using ensemble mgth
in the presence of the linear filtek(e’“) with white noise (top) and
pink noise (bottom). The curves correspond to stacked gération
with different training scenarios for the meta-level subbalassifier.

IV. CONCLUSIONS

ing set. On the other hand, the meta-level subband classifietn this paper we studied an SVM front-end for robust speech
is trained using the reverberant development subset withrexognition that operates in frequency subbands of high-
number of data points less that¥% of that in the TIMIT dimensional acoustic waveforms. We addressed the issues of
training set. Moreover, the dimension of the feature vectokernel design for subband components of acoustic waveforms
that form the input to the meta-level classifiers is almosind the aggregation of the individual subband classifiergus
24 times smaller than that of the MFCC feature vectors. Asisemble methods. The experiments demonstrated that the
such, the subband approach offers more flexibility in terfns subband classifiers outperform the cepstral classifierfién t
training and adaptation of the classifiers to a new envirartmepresence of noise and linear filtering for SNRs beldvdB.
Since an obvious performance crossover between the sMhile the subband classifiers do not perform as well as the
band and MFCC classifiers exists at moderate SNRs, we aMBCC classifiers in low noise conditions, major gains across
consider a convex combination of the scores of the SVHKII noise levels can be attained by a convex combination of
classifiers with a combination parametgras discussed in both classifier types [17].
[17]. Here A = 0 corresponds to the MFCC classification This work primarily focused on comparison of different
whereas\ = 1 corresponds to the subband classification. Thepresentations in terms of the robustness they provide. To
combination approach was also motivated by the differenciss end, experiments were conducted on the TIMIT phoneme
in the confusion matrices of the two classifiers (not showslassification task. However, the results reported in tlaigegp
here). This suggests that the errors of the subband and MF&I€o have implications for the construction of ASR systems.
classifiers may be independent up to a certain degree dndfuture work, we plan to investigate extensions to the
therefore a combination of the two may yield better perfoproposed technique to recognition of continuous speeck. On
mance than either of classifiers individually. Two differenstraightforward approach would be to pre-process the $peec
values of the combination parameterare considered. First, signals using the combination of subband and cepstral SVM
the value of) is set tol /2 which corresponds to the arithmeticclassifiers. Using error-correcting output codes, featertors
mean of the MFCC and subband SVM classifier scores. tfi class probabilities/scores can be derived for progvessi
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Fig. 7: Classification with the subband and VTS-compensated MF@&g. 8: Comparison of the classification performance of the subband

classifiers trained under three different scenarios: améchraining
(squares), reverberant mismatched training (stars) aneereerant
matched training (circles). Classification results for ttefata con-
taminated with pink noise (top) and speech-babble noisétdim),

and linear filter R(e’*) are shown.

frames of speech. An HMM can then be trained with the
feature vectors for recognition of continuous speech. rAlte

and MFCC classifiers with their convex combination in thesprece

of speech-babble noise and filtering wiff(e’*), under anechoic
training (top) and reverberant mismatched training regmgbottom).

Results are shown for two different settings of the comlanat
parameter\.

extensions will be the subject of a future study.
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