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Abstract

This work focuses on the robustness of phoneme classification

to additive noise in the acoustic waveform domain using sup-

port vector machines (SVMs). We address the issue of design-

ing kernels for acoustic waveforms which imitate the state-of-

the-art representations such as PLP and MFCC and are tuned

to the physical properties of speech. For comparison, classifi-

cation results in the PLP representation domain with cepstral

mean-and-variance normalization (CMVN) using standard ker-

nels are also reported. It is shown that our custom-designed

kernels achieve better classification performance at high noise.

Finally, we combine the PLP and acoustic waveform represen-

tations to attain better classification than either of the individual

representations over the entire range of noise levels tested, from

quiet condition up to −18dB SNR.

Index Terms: Kernels, Phoneme classification, Robustness,

Support vector machines

1. Introduction

Automatic speech recognition (ASR) systems lack the level of

robustness inherent to human speech recognition (HSR). This

has a detrimental effect when these systems are operated in ad-

verse acoustical environments, while humans can still recognize

isolated speech units above the level of chance at −18dB SNR,

and significantly above it at −9dB SNR [1]. No ASR system

achieves performance close to that of human auditory system

under such severe noise. While language and context modelling

are essential for reducing many errors in speech recognition,

accurate recognition of phonemes and the related problem of

classification of isolated phonetic units is a major step towards

achieving robust recognition of continuous speech.

State-of-the-art ASR front-ends are mostly some variant

of Mel-frequency cepstral coefficients (MFCC) or Perceptual

Linear Prediction (PLP) [2]. These representations are derived

from the short term magnitude spectra followed by non-linear

transformations to model the processing of the human auditory

system. They remove variations from speech signals that are

considered unnecessary for recognition while preserving the in-

formation content. This allows for more accurate modelling

when the data is limited. However it is not known whether, by

reducing the dimension significantly, one also discards some of

the information that makes speech such a robust message rep-

resentation. To make these state-of-the-art representations of

speech less sensitive noise, several methods have been proposed

to reduce explicitly the effect of noise on spectral representa-

tions [3] in order to approach the optimal performance which is

achieved when training and testing conditions are matched [4].

The alternative approach investigated in this paper is the

use of high-dimensional acoustic waveform representations for

robust classification in the presence of additive white Gaussian

noise. PLP/MFCC are designed in a way that removes non-

lexical invariances (sign, time alignment); however, for classifi-

cation in the acoustic waveform domain these invariances need

to be taken into account by incorporating them in the kernel. By

doing this, in combination with straightforward noise adapta-

tion in the kernel, classification performance can be made rather

robust to noise [5]. In a key refinement, we try to capture the

idea of time derivatives of cepstral features, which measure the

rate of change of features and hence represent the dynamics of

a speech signal. This is done by embedding variations in sig-

nal energy across a phoneme into the kernel. Our experiments

demonstrate the effectiveness of the kernels tuned for acoustic

waveforms under adverse conditions. For comparison, classifi-

cation results in the PLP representation domain using standard

SVM kernels are also reported. We show further that a convex

combination [5] of the decision functions of the PLP and acous-

tic waveform SVM classifiers results in superior performance

across the entire range of SNRs. While this study is focused

on phoneme classification for comparison of the acoustic wave-

form and PLP representations of speech, we believe the results

also have implications for the construction of ASR systems.

The SVM approach to classification of phonemes using

error-correcting output codes (ECOC) [6] is reviewed briefly

in Section 2. Kernel design for the classification task in the

acoustic waveform domain is addressed in Section 3, includ-
ing the extension to time-variation of signal energies. Section

4 presents techniques for noise adaptation in both the PLP and

acoustic waveform domains. The classification results in the

PLP and acoustic waveform domains are reported in Section 5,
where we also discuss the combination of the PLP and acoustic

waveform representations for improved accuracy. It is shown

that the acoustic waveforms perform better for all SNRs below

a crossover point between 6dB and 12dB SNR. Finally, Section

6 has conclusions and an outlook towards future work.

2. Classification using SVMs

Support vector machines [7] estimate decision surfaces separat-

ing two classes of data. In the case of speech recognition, one

typically requires nonlinear decision boundaries which are con-

structed using kernels that implicitly map data points to high-

dimensional feature vectors. A kernel-based decision function

which classifies an input vector x is expressed as

h(x) =
X

i

αiyi〈ϕ(x), ϕ(xi)〉 + b =
X

i

αiyiK(x,xi) + b

(1)

where ϕ is a non-linear mapping function while xi, yi = ±1
and αi, respectively, are the i-th training sample, its class label

and its Lagrange multiplier. K(x,xi) is a kernel function that



satisfies Mercer’s theorem and b is the classifier bias determined

by the training algorithm. Two commonly used kernels are the

polynomial kernel, Kp(x,xi) = (1 + 〈x,xi〉)Θ, and radial

basis function (RBF) kernel, Kr(x,xi) = e−Γ‖x−xi‖
2

.

To obtain a multiclass classifier, binary SVM classifiers are

combined via ECOC [6] methods. A standard approach is to use

K(K−1)/2 pairwise classifiers, each trained to distinguish two

of the K classes. For a test point x, we then predict the class k
for which dk(x) =

PK
l=1,l6=k ξ(hkl(x)) is minimized, where ξ

is some loss function and hkl(x) is the output of the classifier
trained to distinguish classes k and l, with sign chosen so that a
positive sign indicates class k. We compared a number of loss

functions ξ(h); the hinge loss ξ(h) = max(1−h, 0) performed

best and is used throughout this paper.

3. Kernels for Acoustic Waveforms

For a classification task using SVMs, the most important issue

is the use of appropriate kernels that express prior knowledge

about the physical properties of the data. For acoustic wave-

forms, key properties are: (a) sign-invariance and (b) shift-

invariance - the fact that a speech waveform and a version that

is inverted or shifted in time are perceived as being the same.

We construct below kernels that incorporate these invariances,

but to be meaningful these require normalized waveforms. We

then need to account separately for the (c) energy distribu-

tion as illustrated in Figure 1 (top) using log-energy distribu-

tions of 20ms waveform subsegments at the phoneme center

for phoneme classes /aa/ and /v/. Comparing these distributions

shows that the energy of isolated phoneme segments or subseg-

ments (see below) can be very useful in distinguishing them.

Incorporating these properties of acoustic waveforms into

a kernel K(x,xi), using initially the energy of the entire

phoneme segment, results in a kernel Kn(x,xi) given by

Kn(x,xi) = e−(log‖x‖2−log‖xi‖
2)2/2a2

Ks(x,xi) , (2)

where

Ks(x,xi) =
1

(2n + 1)2

n
X

u,v=−n

Ke(x
u∆,xv∆

i ) , (3)

Ke(x,xi) = K(x,xi)+K(x,−xi)+K(−x,xi)+K(−x,−xi) ,
(4)

∆ is the shift increment, [−n∆, n∆] is the shift range, xu∆ is

a segment of the same length as the original waveform x
0 but

extracted from a position shifted by u∆ samples. In this pa-

per, we use the polynomial kernel, Kp for both representations.

However, evaluating Kp for the waveforms requires normaliza-

tion of x and xi to give a sensible estimate of their closeness

i.e. Kp(x,xi) = (1 + 〈x/ ‖x‖ ,xi/ ‖xi‖〉)Θ. This is used as

a baseline kernel for the waveform representation whereas Kp

in its vanilla form is used for the PLP representation.

Next, we evaluate the kernel Kn over T non-overlapping

subsegments of the phoneme as

Kn,s(x,xi) =

T
X

t=1

e
−

“

log‖xt‖
2−log‖xi,t‖2

”2
/2a2

Ks(xt,xi,t) ,

(5)

where xt and xi,t are the tth subsegments of the test waveform

x and the ith training sample, xi respectively. This is done in

order to capture the dynamics of speech over relatively shorter

time durations in a manner similar to the time derivatives and
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Figure 1: Histograms of log-energies of central subsegments of

phoneme classes /aa/ and /v/ for clean waveforms (top), noisy

waveforms at 0dB SNR (2nd row), noise adapted waveforms,

i.e. log
˛

˛‖x‖2 − σ2
˛

˛ (3rd row), and time profile (mean ± stan-

dard deviation) of log energy (bottom).

second order derivatives of the cepstral coefficients. This ex-

tended kernel is sensitive to correlation between the individual

subsegments of the phonemes and gives information about the

phoneme energy over a finer resolution, which can help to dis-

tinguish phoneme classes with similar energy distributions but

different energy profiles as shown in Figure 1 (bottom).

Since PLP, MFCC and other state-of-the-art representations

are based on short-time magnitude spectra and contain informa-

tion about the energy, using similar custom-designed kernels for

classification in the PLP domain will not have any advantage

over the standard (polynomial or RBF) kernels.

4. Noise Adaptation

Features extracted from the test data are adapted to noise to im-

prove the robustness in both domains. Since the noise variance,

σ2 can be estimated during pause intervals (non-speech activ-

ity) between speech signals, we assume that its value is known.

For the PLP representations, the features are standardized, i.e.

scaled and shifted to have zero mean and unit variance per sen-

tence. The optimal performance with PLP is obtained under

matched training and test conditions [4]. However, this is an

impractical target which could be achieved only if one had ac-

cess to a large set of classifiers trained for different noise types

and levels. Therefore, in order to have a fair comparison of

PLP with acoustic waveforms, we use classifiers trained in quiet

conditions, with feature vectors of the test data adapted to noise

using cepstral mean and variance normalization (CMVN) [3], a

noise compensation technique that modifies the cepstral coeffi-

cients in order to minimize the mismatch between the training

and test data. Here, cepstral features are standardized on each

noisy test sentence [3]. By attempting to ’decouple’ the speech

information from the noise, CMVN can significantly improve

the performance of the PLP classifiers. Another common ap-

proach to reduce the mismatch between training and test data

is multi-condition/multi-style training; however, CMVN and its

variants generally perform better [8].

In the case of acoustic waveforms, the test data is nor-



malized to
√

1 + σ2 whereas the training data is set to have

a unit norm for computation of the inner product in the poly-

nomial kernel. This is done to keep the norm of the speech

signal roughly independent of the noise. Explicitly, let x̃ =
x

√
1 + σ2/‖x‖ and x̃i = xi/‖xi‖ for a test waveform x and

training waveform xi. Then the baseline polynomial kernel for

the normalized waveforms is Kp(x,xi) = (1+ 〈x̃, x̃i〉)Θ with

Ks and Ke then defined as in (3, 4).
Similar adaptation as in the polynomial kernel contribution

is also required in (5). The energy distributions of waveform

subsegments change significantly with noise as illustrated in

Figure 1 (2nd row) for an SNR of 0dB. Under the assumption

that speech and noise are uncorrelated, subtracting the estimated

noise variance (σ2) from the energy of the subsegment of the

noisy phoneme should result in distributions of the energies that

are very similar to those of the clean subsegments as shown in

Figure 1 (3rd row). We, therefore, use this adapted energy of

the subsegments in evaluating (5), giving

Kn,s(x,xi) =
T

X

t=1

e

−

„

log|‖xt‖
2−σ2|−log‖xi,t‖2

«

2

2a2 Ks(xt,xi,t) .

(6)

As training for acoustic waveforms is performed in quiet

conditions, noise adaption of the training data xi is not required.

The absolute value of the subtracted energy is used to catch the

rare cases when speech and noise are anti-correlated. There

are two important issues to be addressed when using (6) in the

presence of noise: (a) Normalization of the subsegments - the

use of (6) requires normalization of the clean subsegments to

unit norm and of the noisy ones to
√

1 + σ2. For short sub-

segments there can however be wide variation in local SNR in

spite of the fixed global SNR, and so this normalization may

not be in accordance with the local SNR. (b) Orthogonality

- using short (lower dimensional) subsegments makes fluctua-

tions away from our assumed orthogonality of speech and noise

more likely. To address these issues, we also consider a kernel

Kn,u which is obtained by replacing the last factor in (6) by

Ks(x,xi): this time-correlation part of the kernel is then left

unsegmented, while the energies are still evaluated for subseg-

ments of the phonemes. One might expect that Kn,s outper-

forms Kn,u in the absence of noise but it performs worse in

high noise due to the two limitations discussed above.

In the next section, we show the performance of these ker-

nels for the phoneme classification task in the acoustic wave-

form domain. Classification in the PLP domain is used as a

benchmark for comparison with acoustic waveforms.

5. Results

Experiments are performed on the ’si’ and ’sx’ sentences of

TIMIT database [9]. The training set consists of 3696 sentences

from 168 different speakers. The core set is used for testing

which consists of 192 sentences from 24 different speakers not

included in the training set. We remove the glottal stops /q/ from

the labels and fold certain allophones into their corresponding

phonemes using the standard Kai-Fu Lee clustering [10], re-

sulting in a total of 48 phoneme classes. Among these classes,

there are 7 groups for which the contribution of within-group

confusions towards multiclass error is not counted [10].

Regarding the SVM classifiers for acoustic waveform rep-

resentation, results are reported for Kn,s and Kn,u. For the

PLP representation, comparable performance is obtained with

polynomial and RBF kernels so we show results for the former.
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Figure 2: Classification results - PLP with CMVN using Kp

trained in quiet and matched conditions, waveforms using Kn,s

and Kn,u kernels and the combination of PLP (CMVN) and

waveforms (Kn,u).

Fixed hyperparameter values are used throughout for training

binary SVMs: the degree of Kp, Θ = 6 and the penalty param-

eter C = 1.

For the acoustic waveform representation, phoneme seg-

ments are extracted from the TIMIT sentences by applying

a 100 ms rectangular window at the center of each phoneme

waveform (of variable length), which at 16 kHz sampling fre-

quency gives fixed length vectors in R
1600. In the evaluation of

Ks defined in (3), we use a shift increment of ∆ = 100 sam-

ples (≈ 6 ms) over a shift range ±100 (so that n = 1), giving
three shifted segments of length 1400 samples each. In evaluat-

ing Kn,s, each of these segments is broken into T = 5 subseg-

ments of equal length whereas in Kn,u, the complete segments

are used to compute the time-correlation. The value of a is set

to 0.5 for both kernels. For the PLP representation, we convert

each waveform into a sequence of 13 dimensional feature vec-

tors, their time derivatives and second order derivatives which

are combined into a sequence of 39 dimensional feature vec-

tors. Then, the 9 frames (with frame duration of 25ms and a

frame rate of 100 frames/sec) closest to the center of a particu-

lar phoneme are concatenated to give a representation in R
351.

In this study, we focus on investigating robustness in the pres-

ence of additive white Gaussian noise. To test the classification

performance of PLP and acoustic waveforms in noise, each sen-

tence is normalized to unit energy per sample and then a noise

sequence with variance σ2 (per sample) is added to the entire

sentence.

Classification results using SVMs in the PLP and acoustic

waveform domains are shown in Figure 2. For acoustic wave-
forms, classification results with kernels Kn,s and Kn,u are

presented whereas Kp is used for classification of PLP features.

One observes that a PLP classifier trained on clean data gives

very good performance when tested on clean data i.e. 21% er-

ror. (We achieve slightly better performance than [11] due to

different cepstral representations.) But at 0dB SNR, we get an

error of 63% even with CMVN. This can now be contrasted

with the results of acoustic waveform classifiers. Classification

with kernels, Kn,s and Kn,u exhibits a more robust behavior

to noise and achieves improvements over PLP for noise lev-

els above a crossover point between 12dB and 6dB SNR. The

largest improvement over PLP, of 10% is achieved by Kn,u at
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Figure 3: Optimal and approx. values of λ for a range of test

SNRs. λ = 0 corresponds to PLP classification with CMVN,

λ = 1 is waveform classification with kernel Kn,u.

−6dB SNR. In a comparison of kernels for the acoustic wave-

forms, Kn,s achieves an 8% improvement in quiet conditions

over Kn,u because Kn,s is sensitive to correlation between the

individual phoneme subsegments however, Kn,u performs bet-

ter in high noise e.g. Kn,u achieves a 4% average improvement

over Kn,s between 6dB and −18dB SNRs. This is due to the

limitations of Kn,s in high noise as discussed in Section 4.

In our previous work [5], we established that a combina-

tion of the PLP and waveform classifiers attains better classifi-

cation performance than either of the individual representations.

As waveform classifiers with kernel Kn,u achieve significantly

better results in high noise, therefore we consider its convex

combination with the decision values of the PLP classifiers with

CMVN. For classifiers hp(x) and hw(x) in the PLP and wave-

form domains respectively, we define the combined classifier

output as hc(x) = λ(σ2)hw(x) +
ˆ

1 − λ(σ2)
˜

hp(x), where

λ(σ2) is a parameter which needs to be selected, depending on

the noise variance, to achieve optimal performance. These bi-

nary classifiers are then combined for multiclass classification

as described in Section 2. In Figure 3, the “optimal” λ(σ2) i.e.
the values of λ(σ2) which give the minimum classification er-

ror for a given SNR of the test phoneme, are shown marked

by ’o’. The error bars give a range of values of λ(σ2) for

which the classification error is less than the minimum error

(%) + 2%. We use an approximation of the optimal λ(σ2):
λapp(σ2) = α + β/

`

1 +
`

σ2
0/σ2

´´

, with α = 0.3, β = 0.4
and σ0 = 0.09 as shown in Figure 3 (solid line).

In Figure 2, we compare the classification performance in

the PLP and acoustic waveform domains with the combined

classifier for λapp(σ2). One observes that the combined clas-

sifier often performs better or at least as well as the individual

classifiers. Furthermore, the wide range of errorbars in Figure

3 indicates that the combined classifier is less sensitive to the

values of λ(σ2). Due to this, we found no significant difference
in the performance of the combined classifier for the optimal

λ(σ2) and its approximation, λapp(σ2). Moreover, the values

of optimal λ (between 0.2 and 0.7) for different SNRs suggest
that the combined classifier is not simply a hard-switch between

the two representations and a genuine improvement in perfor-

mance is achieved when 0<λ(σ2)<1. Although the combined

classifier does not achieve the impractical target of PLP classi-

fier trained and tested in matched conditions for SNR>−6dB

as shown in Figure 2, the gain in classification accuracy is sig-

nificant compared to a standalone PLP classifier with CMVN.

For instance, the combined classifier achieves an average of

11% less error than the PLP classifier trained on clean data with

CMVN for −12dB≤SNR≤ 12dB.

6. Conclusions

The robustness of phoneme classification to additive white

Gaussian noise in the PLP and acoustic waveform domains was

investigated using SVMs. We observe that embedding invari-

ances and variations in the signal energy across a phoneme into

the kernel can significantly improve the classification perfor-

mance. While PLP representation allows very accurate classi-

fication of phonemes especially for clean data, its performance

suffers severe degradation at high noise. On the other hand, the

high-dimensional acoustic waveform representation, although

not as accurate as PLP classification on clean data, is more

robust in severe noise. Finally, we demonstrate that a convex

combination of classifiers can achieve performance that is con-

sistently better than both individual domains across the entire

range of SNRs. Currently, our preliminary experiments with

longer phoneme segments (2048 samples) has shown improved

performance in high noise, indicating them to be a more suitable

representation for acoustic waveforms. In future work, we plan

to fine tune the segmentation of kernels by assigning weight

factors to put more emphasis on the variations in energy and

correlation of subsegments of phonemes. This would be done

in order to be consistent with the time derivatives and second

order derivatives of the PLP features.
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