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ABSTRACT

Robustness of phoneme recognition to additive noise is in-
vestigated for PLP and acoustic waveform representations
of speech using support vector machines (SVMs) combined
via error-correcting code methods. While recognition in
the PLP domain attains superb accuracy on clean data, it is
significantly affected by mismatch between training and test-
ing noise levels. The classification in the high-dimensional
acoustic waveform domain, on the other hand, is more robust
to additive noise. Moreover, these classifiers perform best
when trained on clean data. We also show that the simpler
structure of the waveform representation allows one to im-
prove performance using custom-designed kernel functions.

Index Terms— Speech recognition, robustness, support
vector machines, error correction codes, PLP.

1. INTRODUCTION

Language and context modelling have resulted in major
breakthroughs that have made automatic speech recogni-
tion (ASR) possible. ASR systems, however, still lack the
level of robustness inherent to human speech recognition
[1, 2]. While language and context modelling are essential
for reducing many errors in speech recognition, humans at-
tain a major portion of their inherent robustness early on in
the process, before and independently of context informa-
tion [3, 4]. In the extreme case, when phonemes or syllables
are recognized at the level of chance (random guessing), no
context and language modelling can retrieve any information
from speech. In the other extreme, when all phonemes and
syllables are recognized accurately, context and/or language
modelling are not needed. Both ASR and human speech
recognition operate between these two extreme conditions,
therefore both sophisticated language-context modelling and
accurate recognition of isolated phonetic units are needed
to achieve a robust recognition of continuous speech. In
recognizing syllables or isolated words, the human auditory
systems performs above chance level already at -18dB SNR
and significantly above it at -9dB SNR. No ASR system is
able to achieve performance close to that of human auditory
systems in recognizing isolated words or phonemes under se-

vere noisy conditions, as has been confirmed in an extensive
study by Sroka and Braida [2].

The basis hypothesis of our work is that compressed rep-
resentations of speech such as PLP [5], because of the strong
nonlinearities that link them to the original acoustic wave-
forms, lead to distributions of different speech units that can
be harder to separate and may vary more with noise. In this
study, we test this hypothesis by performing classification of
phonemes in presence of noise using support vector machines
in the acoustic waveform and PLP domains, with particular
emphasis on exploring the mismatch between training and
testing conditions. We review the classification approach in
Section 2. The experiments, results of which are reported in
Section 3, show that while classification using the PLP rep-
resentation achieves considerably better results on clean data
than the acoustic waveform representation, it is much more
sensitive to additive noise not explicitly represented in the
training data. A waveform classifier trained only on clean
data, on the other hand, provides robust performance across a
broad range of signal-to-noise ratios (SNRs). We also provide
some insights into the importance of custom design of SVM
kernels for improving the accuracy of speech recognition. Fi-
nally, Section 4 draws some conclusions.

2. METHODS

An SVM estimates decision surfaces separating two classes
of data. In the simplest case these are linear but for speech
recognition one typically requires nonlinear decision bound-
aries. These are constructed using kernels instead of dot prod-
ucts, implicitly mapping data points to high-dimensional fea-
ture vectors [6]. A kernel-based decision function has the
form

h(z) = K (2, 2:) +b (1)

where x; are all training inputs, y; = =£1 are class labels,
the bias term, b and «; are parameters determined by SVM.
Two commonly used kernels are polynomial and radial basis
function (RBF) kernels given by (2) and (3), respectively,
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As is commonly done, we choose the kernel parameters (d or
I") and the SVM penalty parameter C' by cross-validation.

We also introduce the even-polynomial kernel for classifi-
cation using acoustic waveforms to take into account the fact
that a speech waveform and its inverted version are perceived
as being the same. This can be accounted for by using even-
polynomial kernels of the form

K(zi,z;) = (14 (@i, 2;)  + (1 — (i, ;). @)

In this work, SVMs are used as binary classifiers to distin-
guish two groups of phonemes, and these binary classifiers
are then combined via error-correcting code methods to ob-
tain multiclass classifiers [7, 8]. To summarize the procedure
briefly, L binary classifiers are trained to distinguish between
K phoneme classes using the coding matrix Mg « 1, with el-
ements Mj; € 0,£1. Classifier  is trained on data of classes
k for which My, # 0 with sgn(My;) as the class label; it has
no knowledge about classes k for which My; = 0. In the case
of one-vs-all classifiers (L = K), My, = 1, if £ = [, other-
wise My; = —1. For the one-vs-one classification strategy,
on the other hand, L = K (K — 1)/2 and each classifier is
trained on data from only two phoneme classes: All elements
of each column of the coding matrix M are set to 0 except
for one 41 and one —1. We also explore a recently proposed
hybrid “all-and-one” method [9]. Broadly, this requires train-
ing both one-vs-one and one-vs-all classifiers; the latter are
used to select the top two candidate classes and the final de-
cision between these is made using the relevant one-vs-one
classifier.

To combine the binary classifiers into a multiclass clas-
sifier, for a given test point x, the decision values of the L
binary classifiers h(z) = [hi(x),---,hr(z)] are obtained.
Then, one chooses class k as the predicted class H(x) if the
k™™ row of the coding matrix, My, = [My1,- -+, Myr], k =
1,---, K has the minimum distance from h(z),

H(xz) = arg mkin d(My, h(z)) . ®)

The distance measure is given by

L

d(My, h(z)) = &(zm) (©6)

=1

where ¢ is some loss function and zx; = My h(x). We
show results below for the exponential loss function £(z) =
e~ ?, which performs comparably or better than the Hamming
(€(2) = [1 — sgn(2)]/2) and hinge (£(z) = (1 — 2)4 =
max(1 — z,0)) losses.

For each of the classifier combination methods above
we investigate the classification accuracy for both PLP and
acoustic waveform representations of speech, and their ro-
bustness to additive noise. Note that no noise compensation

methods are used in order to have a fair comparison between
both representations. The results are reported in the next
section.

3. RESULTS

Classification is performed on the following six phonemes
from the TIMIT database: /b/, /f/, /m/, /t/, /t/ and /z/. Each
phoneme set consists of 1000 examples. A rectangular win-
dow of 64 ms duration is applied to speech waveforms. All
waveforms, x; € R'9%4 from the six phoneme classes are
normalized to have unit norm. The PLP representation, p; €
R%?, is obtained by finding the 12¢" order cepstral coefficients
from each of four consecutive frames across a speech wave-
form. When the data is corrupted by additive noise, the acous-
tic waveforms are normalized to v/1 + o2 where o2 is the
noise variance. This is done to keep the norm of the signal
component roughly independent of noise. In the case of PLP,
we experimented with both this normalization and normaliza-
tion to unity independently of SNR, choosing the latter as it
gave better performance. PLP features are standardized, i.e.
scaled and shifted to have zero mean and unit variance on the
training set. One-vs-one classifiers were trained on 800 exam-
ples and tested on 200 examples per class. For one-vs-all clas-
sifiers, the training set size for the single class was increased
by a factor of five to balance the number of training examples
from the other classes; this was done by adding waveforms
shifted by £50(~ 3 ms) and =100(~ 6 ms) samples.

Regarding the binary SVM classifiers, comparable perfor-
mance is obtained with polynomial and RBF kernels for the
PLP representation so we show results for the former. For the
waveform representation, the polynomial kernel performed
better than the RBF kernel but as discussed below the even
polynomial kernel outperformed both.

Robustness to Additive Noise

Classification results in the PLP and acoustic waveform do-
mains are shown in Figure 1. The best results for both do-
mains are compared here, i.e. even-polynomial kernel with
all-and-one coding for waveforms and polynomial kernel with
one-vs-all coding for PLP. One can observe that a PLP clas-
sifier trained on clean data gives excellent performance (less
than 2% error) when tested on clean data. However, at noise
level as low as 6dB SNR we get an error of 40%, while clas-
sification is at the level of chance for SNR less than 0dB. This
observation is quite general: the PLP classifiers are highly
sensitive to mismatch between the training and test condi-
tions. In particular, the PLP classifier trained at 6dB SNR
does well when tested at the same SNR (3% error) but per-
forms rather badly if the test noise level deviates in either di-
rection (13% error for clean test data, 30% for 0dB SNR). The
classifiers trained on very low SNRs (—12 and —18dB) give
the best results for similarly noisy test conditions but perform
very poorly in testing at low noise.



This can now be contrasted with the results for a classifier
based on acoustic waveform data. One observes that although
the performance of this classifier on clean data (10% error)
is worse than that obtained by PLP classifier trained on clean
data, it is significantly more robust to larger test noise levels
compared to the PLP classifier. For instance, we do not ob-
serve a significant change in classification error (12%) up to
a test noise level as high as 0dB SNR, whereas at the same
SNR the corresponding PLP classifier (trained on clean data)
has an error rate of 78%. It should be emphasized that best
performance using acoustic waveform classifiers is obtained
when training is performed on clean data; training on noisy
data (results not shown) leads to poorer performance. This is
a significant advantage: the acoustic waveform classifier can
be trained once and for all on quiet data and used with per-
formance broadly comparable to PLP across a broad range
of test noise conditions; for the PLP classifiers, on the other
hand, separate classifiers need to be constructed for different
noise levels to give good performance.

Multiclass Coding Methods

We compare different coding techniques in Figure 2 and 3, for
classification in the acoustic waveform domain with polyno-
mial and even-polynomial kernel respectively. For the poly-
nomial kernel, we observe that one-vs-all coding performs
better than one-vs-one for all levels of noise. For the even-
polynomial kernel, on the other hand, one-vs-all gives better
results than one-vs-one at low noise levels while the situation
is reversed under extremely noisy conditions. The all-and-one
coding strategy proves to be a useful compromise solution in
this case that works close to optimal across all SNRs.
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Fig. 1. Classification results for PLP and acoustic waveform
domains. SVMs for acoustic waveforms are trained on clean
data and for PLP, training is done on noisy data sets with SNR
as indicated by the legend.
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Fig. 2. Classification results in the acoustic waveform domain
using a polynomial kernel with one-vs-all, one-vs-one and all-
and-one coding schemes

Effect of Custom Kernel Design

In Section 2, we suggested the use of even-polynomial kernel
and presented classification results using this kernel in this
section. Now we discuss the quantitative effects of this ker-
nel. Figure 4 shows the classification results for both polyno-
mial and even-polynomial kernels in the acoustic waveform
domain. We observe that the latter kernel choice leads to a
reduction of around 5 — 10% in the error rates across all lev-
els of SNR except in extreme noisy conditions (i.e. —18dB
SNR). This is a significant improvement given the fact that
the even-polynomial kernel takes into account just one phys-
ical property of speech perception, and suggests that further
improvements could be obtained by incorporating more prior
knowledge into the kernel design. We are currently investi-
gating the effects of time alignment on the recognition per-
formance and different methods to embed this into custom
designed kernels, with preliminary work showing promising
results.

4. CONCLUSIONS

The robustness of phoneme classification to additive noise
was investigated in numerical experiments using SVMs for
acoustic waveform and PLP representations. The results,
obtained using different coding schemes and loss functions,
show that while PLP representation facilitates very accurate
recognition of phonemes under matched conditions (espe-
cially for clean data), its performance suffers severe degra-
dation with noise mismatch between training and testing
conditions. On the other hand, the high-dimensional acoustic
waveform representation, even though not as accurate as PLP
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Fig. 3. Classification results in the acoustic waveform domain
using an even-polynomial kernel with one-vs-all, one-vs-one
and all-and-one coding schemes

classification on clean data, is more robust to additive noise
and can tolerate significant mismatch between training and
testing conditions. We showed further that the physically in-
tuitive nature of the acoustic waveform representation allows
one to custom design SVM kernels by incorporating prior
knowledge, thus improving classification performance. In
future work we plan to investigate larger phoneme sets and
extend our work on custom-designed kernels to incorporate
invariance to time alignment; it will also be interesting to
study the effects of explicit noise-compensation techniques
in both the PLP and waveform domains.
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Fig. 4. Even-polynomial vs. polynomial kernel for classifica-
tion in acoustic waveform domain
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