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In supervised learning, the redundancy contained in random examples can be
avoided by learning from queries, where training examples are chosen to be max-
imally informative. Using the tools of statistical mechanics, we analyse query
learning in a simple multi-layer network, namely, a large tree-committee machine.
The generalization error is found to decrease exponentially with the number of
training examples, providing a significant improvement over the slow algebraic
decay for random examples. Implications for the connection between information
gain and generalization error in multi-layer networks are discussed, and a compu-
tationally cheap algorithm for constructing approximate maximum information
gain queries is suggested and analysed.

1 Introduction

In supervised learning of input-output mappings, the traditional approach has
been to study generalization from random examples. However, random exam-
ples contain redundant information, and generalization performance can thus be
improved by query learning, where each new training input is selected on the
basis of the existing training data to be most ‘useful’ in some specified sense.
Query learning corresponds closely to the well-founded statistical technique of
(sequential) optimal experimental design. In particular, we consider in this paper
queries which maximize the expected information gain, which are related to the
criterion of (Bayes) D-optimality in optimal experimental design. The general-
ization performance achieved by maximum information gain queries is by now
well understood for single-layer neural networks such as linear and binary per-
ceptrons [1, 2, 3]. For multi-layer networks, which are much more widely used in
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practical applications, several heuristic algorithms for query learning have been
proposed (see e.g., [4, 5]). While such heuristic approaches can demonstrate the
power of query learning, they are hard to generalize to situations other than the
ones for which they have been designed, and they cannot easily be compared with
more traditional optimal experimental design methods. Furthermore, the existing
analyses of such algorithms have been carried out within the framework of ‘prob-
ably approximately correct’ (PAC) learning, yielding worst case results which are
not necessarily close to the potentially more relevant average case results. In this
paper we therefore analyse the average generalization performance achieved by
query learning in a multi-layer network, using the powerful tools of statistical
mechanics. This is the first quantitative analysis of its kind that we are aware of.

2 The model

We focus our analysis on one of the simplest multi-layer networks, namely, the
tree-committee machine (TCM). A TCM is a two-layer neural network with N
input units, K hidden units and one output unit. The ‘receptive fields’ of the
individual hidden units do not overlap, and each hidden units calculates the sign
of a linear combination (with real coefficients) of the N/K input components to
which it is connected. The output unit then calculates the sign of the sum of all
the hidden unit outputs. A TCM therefore effectively has all the weights from
the hidden to the output layer fixed to one. Formally, the output y for a given
input vector x is

y = sgn (Z{‘:l O'Z') o; = sgn (x;rwl-) (1)
where the o; are the outputs of the hidden units, w; their weight vectors, and xT =
(xT,...,x}) with x; containing the N/K (real-valued) inputs to which hidden

unit ¢ is connected. The N (real) components of the K (N/K)-dimensional hidden
unit weight vectors w;, which we denote collectively by w, form the adjustable
parameters of a TCM. Without loss of generality, we assume the weight vectors to
be normalized to w? = N/K. We shall restrict our analysis to the case where both
the input space dimension and the number of hidden units are large (N — oo,
K — o0), assuming that each hidden unit is connected to a large number of
inputs, i.e., N/K > 1. As our training algorithm we take (zero temperature)
Gibbs learning, which generates at random any TCM (in the following referred to
as a ‘student’) which predicts all the training outputs in a given set of p training
examples O = {(x*,y*),p = 1...p} correctly. We take the problem to be
perfectly learnable, which means that the outputs y* corresponding to the inputs
x* are generated by a ‘teacher’ TCM with the same architecture as the student

0

but with different, unknown weights w". It is further assumed that there is no
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noise on the training examples. For learning from random examples, the training
inputs x* are sampled randomly from a distribution FPy(x). Since the output (1)
of a TCM is independent of the length of the hidden unit input vectors x;, we
assume this distribution Py(x) to be uniform over all vectors x' = (x{,...,x5)
which obey the spherical constraints x? = N/K. For query learning, the training
inputs x* are chosen to maximize the expected information gain of the student,
as follows. The information gain is defined as the decrease in the entropy .S in the

parameter space of the student. The entropy for a training set 0w is given by
SO = — / dw P(w|©®) In P(w|0®). )

For the Gibbs learning algorithm considered here, P(w|©) is uniform on the
‘version space’, the space of all students which predict all training outputs cor-
rectly (and which satisfy the assumed spherical constraints on the weight vectors,
w2 = N/K), and zero otherwise. Denoting the version space volume by V(eP),
the entropy can thus simply be written as S(©®) = In V(0®). When a new
training example (x?*!, yP*1!) is added to the existing training set, the informa-
tion gain is I = S(O®) — 5O+, Since the new training output y?*' is
unknown, only the expected information gain, obtained by averaging over y?t! is
available for selecting a maximally informative query x?*1. As derived in Ref. [2],
the probability distribution of y?*! given the input xP*! and the existing training
set OP) is P(yP+1=£1|xP+1, OF)) = v¥, where vF = V(OPTV)| pyi_yy /V(OP).
The expected information gain is therefore

<1>P(yp+1 |xp+1 @) = —vTInot —v"Inov™ (3)

and attains its maximum value In2 (= 1 bit) when v = 1, i.e., when the new

input xPT1 bisects the existing version space. This is intuitively reasonable, since
vt = % corresponds to maximum uncertainty about the new output and hence to
maximum information gain once this output is known.

Due to the complex geometry of the version space, the generation of queries
which achieve exact bisection is in general computationally infeasible. The ‘query
by committee’ algorithm proposed in Ref. [2] provides a solution to this prob-
lem by first sampling a ‘committee’ of 2k students from the Gibbs distribution
P(w|©®)) and then using the fraction of committee members which predict +1
or -1 for the output y corresponding to an input x as an approximation to the
true probability P(y = £1|x, ®(p)) = v*. The condition v* = % is then approx-
imated by the requirement that exactly k£ of the committee members predict +1
and —1, respectively. An approximate maximum information gain query can thus
be found by sampling (or filtering) inputs from a stream of random inputs until
this condition is met. The procedure is then repeated for each new query. As
k — oo, this algorithm approaches the exact bisection algorithm, and it is on this

limit that we focus in the following.
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3 Exact maximum information gain queries

The main quantity of interest in our analysis is the generalization error ¢z, defined
as the probability that a given student TCM will predict the output of the teacher
incorrectly for a random test input sampled from Fy(x). It can be expressed in
terms of the overlaps R; = %WZTW? of the student and teacher hidden unit weight
vectors w; and w? [6]. In the thermodynamic limit, the R; are self-averaging, and
can be obtained from a replica calculation of the average entropy S as a function
of the normalized number of training examples, & = p/N; details will be reported
in a forthcoming publication [7]. The resulting average generalization error is
plotted in Figure 1; for large «, one can show analytically that ¢; o exp(—oe% In 2).

This exponential decay of the generalization error ¢, with o provides a marked
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Figure 1: Left: Generalization error ¢, vs. (normalized) number of examples a, for
ezact maximum information gain queries (Section 3), queries selected by construc-
tive algorithm (Section 4), and random examples. Right: In ¢, vs. (normalized)
entropy s. For both queries and random examples, In¢; & %s (thin full line) for
large negative values of s (corresponding to large a).

improvement over the ¢; o 1/a decay achieved by random examples [6]. The
effect of maximum information gain queries is thus similar to what is observed
for a binary perceptron learning from a binary perceptron teacher, but the decay
constant ¢ in €, o exp(—ca) is only half of that for the binary perceptron [2]. This
means that asymptotically, twice as many examples are needed for a TCM as for
a binary perceptron to achieve the same generalization performance, in agreement
with the results for random examples [6]. Since maximum information gain queries
lead to an entropy s = —aln 2 in both networks, we can also conclude that the
relation s & In ¢, for the binary perceptron [2] has to be replaced by s ~ In eé for
the tree committee machine. Figure 1 shows that, as expected, this relation holds
independently of whether one is learning from queries or from random examples.
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4 Constructive query selection algorithm

We now consider the practical realization of maximum information gain queries
in the TCM. The query by committee approach, which in the limit £ — oo
is an exact algorithm for selecting maximum information queries, filters queries
from a stream of random inputs. This leads to an exponential increase of the
query filtering time with the number of training examples that have already been
learned [3]. As a cheap alternative we propose a simple algorithm for constructing
queries, which is based on the assumption of an approximate decoupling of the
entropies of the different hidden units, as follows. Each individual hidden unit
of a TCM can be viewed as a binary perceptron. The distribution P(w;|©(®))
of its weight vector w; given a set of training examples ©() has an entropy S;
associated with it, in analogy to the entropy (2) of the full weight distribution
P(w|©®). Our ‘constructive algorithm’ for selecting queries then consists in
choosing, for each new query x#*1, the inputs xf+1 to the individual hidden units
in such a way as to maximize the decrease in their entropies S;. This can be
achieved simply by choosing each x,fL'H to be orthogonal to W} = <W¢>P(w|@(u))
(and otherwise random, i.e., according to Fy(x)) [7], thus avoiding the cumbersome
and time-consuming filtering from a random input stream. In practice, one would
of course approximate w! by an average of 2k (say) samples from the Gibbs
distribution P(w|©("); these samples would have been needed anyway in the
query by committee approach.

The generalization performance achieved by this constructive algorithm can
again be calculated by the replica method; as shown in Figure 1, it is actually
slightly superior to that of exact maximum information gain queries. The a-
dependence of the entropy, s = —«a/In 2, turns out to be the same as for maximum
information gain queries; this indicates that the correlations between the individ-
ual hidden units become sufficiently small for K — oo, so that queries selected to
minimize the individual hidden units’ entropies also minimize the overall entropy
of the TCM.

5 Conclusions

We have analysed query learning for maximum information gain in a large tree-
committee machine (TCM). Or main result is the exponential decay of the gen-
eralization error ¢; with the normalized number of training examples a, which
demonstrates that query learning can yield significant improvements over learn-
ing from random examples (for which ¢, o 1/« for large a) in multi-layer neural
networks. The fact that the decay constant ¢ in €z o exp(—ca) differs from that
calculated for single-layer nets such as the binary perceptron raises the question
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of how large ¢ would be in more complex multi-layer networks. Combining the
worst-case bound in [3] in terms of the VC-dimension with existing storage ca-
pacity bounds, one would estimate that ¢ could be as small as O(1/In K) for
networks with a large number of hidden units K. This contrasts with our result
¢ — const. for K — oo, and further work is clearly needed to establish whether
there are realistic networks which saturate the lower bound ¢ = O(1/In K).

We have also analysed a computationally cheap algorithm for constructing
(rather than filtering) approximate maximum information gain queries, and found
that it actually achieves slightly better generalization performance than exact
maximum information gain queries. This result is particularly encouraging con-
sidering the practical application of query learning in more complex multi-layer
networks. For example, the proposed constructive algorithm can be modified for
query learning in a fully-connected committee machine (where each hidden unit is
connected to all the inputs), by simply choosing each new query to be orthogonal
to the subspace spanned by the average weight vectors of all K hidden units. As
long as K is much smaller than the input dimension N, and assuming that for
large enough K the approximate decoupling of the hidden unit entropies still holds
for fully connected networks, one would expect this algorithm to yield a good ap-
proximation to maximum information gain queries. The same conclusion may
also hold for a general two-layer network with threshold units (where, in contrast
to the committee machine, the hidden-to-output weights are free parameters),
which can approximate a large class of input-output mappings. In summary, our
results therefore suggest that the drastic improvements in generalization perfor-
mance achieved by maximum information gain queries can be made available, in
a computationally cheap manner, for realistic neural network learning problems.
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