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Abstract. We study the fluctuation-dissipation theorem (FDT) in the glass phase of (1) Bouchaud’s trap model and (2) its
driven counterpart, the “soft glassy rheology” model. We incorporate into the models an arbitrary observable m and obtain
its correlation and response functions in closed form. A limiting non-equilibrium FDT plot (of correlator vs. response) is
approached at long times for most choices of m. In contrast to standard mean field models, however, the plot, in general,
(i) depends non trivially on the observable, (ii) has a continuously varying slope (even though there is a single scaling of
relaxation times with age) and (iii) differs in the ageing and driven regimes. Despite this, all plots share the same limiting
slope for well separated times, suggesting that a meaningful non-equilibrium effective temperature could apply in this limit.
Beyond the trap model, we discuss more generally the status of FD temperatures in such non-mean field systems.

INTRODUCTION

Glasses relax very slowly at low temperatures. They thus
stay far from equilibrium long after preparation, and
show ageing [1]: the time scale for response to pertur-
bations (or decay of correlations) increases with the time
ty since the temperature quench, eventually exceeding
any experimental time scale. Time translational invari-
ance is lost. Because of this sluggishness, glasses are
highly susceptible to external driving, which typically
stabilises a non-equilibrium steady (TTI) state of appar-
ent age O(1/7), for drive-rate y [2].

Let C(t,ty) = (m(r)m{tw)) — (m(2)) (m(ty)) be the au-
tocorrelation function for an observable m, R(z,ty) =
8 (m(t))/6h(tw)|,—o the linear response of m(t) to a
small impulse in its conjugate field £ at time z, and
x(t,tw) = f,;dt’R(t,t’) the response to a field step A(t) =
hO(t —ty). In equilibrium, C(t,ty,) = C(t —ty,) by TTI
(similarly for R and ¥), and the FDT reads —5% x(t—

tw) = R(t,ty) = %;?—WC(t —ty), with T the thermody-
namic temperature. (We set kg = 1.) A parametric FDT
plot of ¥ vs. C is thus a straight line of slope —1/T.

Out of equilibrium, FDT violation is measured by a
fluctuation-dissipation ratio (FDR), X, defined by [3]

X(t,ty) 0
7 EEC(t,tW). (D

d
_EX(tatW) = R(tvtw) =

In ageing systems, violation (X # 1) can persist even
at long times ?#y, — oo, indicating far from equilibrium
behaviour even when one-time quantities, e.g. entropy

have settled to stationary values. Similarly, driven glasses
can violate FDT even for weak driving, ¥ — 0.
Remarkably, however, the FDR for several mean field
models [3] assumes a special form at long times (ageing
case). Taking #, — o at constant C = C{z, 1), X (¢, tw) —
X(C) becomes a (nontrivial) function of the single ar-
gument C. If the equal-time correlator C(z,r) also ap-
proaches a constant G, for £ — oo, it follows that

C
xen) = [ dex(©)T. @)
Clttw)

A limiting non-equilibrium FDT plot is then obtained
by plotting x vs. C for increasingly large times; from
its slope —X(C)/T, an effective temperature [4] can be
defined as T,4(C) = T /X (C). An equivalent FD relation
has been suggested to hold in slowly driven glasses [4]

with T, (C,y = 0) = T4(C,tw — o).

In the most general ageing scenario, a system evolves
on several characteristic time scales, each with its own
functional dependence on #,,. If these become infinitely
separated as t,, — oo, they form distinct ‘time sectors’.
In mean field, T,4(C) is constant in each sector [3]. It
has thus been interpreted as a time scale dependent non
equilibrium temperature, and shown to have many of
the properties of a thermodynamic temperature (e.g. in
controlling of heat flow) [4]. Of crucial importance to its
interpretation as a temperature, it is independent of the
observable m used to construct the FD plot.

While this picture is well established in mean field, ev-
idence beyond mean field is limited. Limiting FD plots
were found in, e.g., Refs. [5, 6]. Observable indepen-
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dence is largely unestablished, but see Ref. [5] for en-
couraging results. Evidence for equivalent ageing and
driven FD plots is limited, but has been found in mod-
els of supercooled liquids {7]. In this work, therefore, we
study a simple non-mean field model for which FD plots
can be calculated for arbitrary observables, allowing de-
tailed study of whether the mean field picture applies [8].

TRAP MODEL

The (undriven) trap model [9] comprises an ensemble of
uncoupled particles exploring a landscape of energy traps
by thermal activation. The traps descend from a common
level, with depths E chosen from a ‘prior’ distribution
p(E) (E > 0). A particle in a trap of depth E escapes on
a time scale 7(E) = 7yexp(E/T) and hops into another
trap, with a depth chosen randomly from p(E). The prob-
ability, P(E,t), of finding a randomly chosen particle in
a trap of depth E at time ¢ thus obeys

AP(E,1) = T E)P(E) +Y(Dp(E) ()

in which the first (second) term on the RHS rep-
resents hops out of (into) traps of depth E, and
Y() = (r‘l(E)>P(Et) is the average hop rate.

For a prior distribution p(E) ~ exp(—E/Ty) the
model shows a glass ftransition at a tempera-
ture Ty, because for T < T the equilibrium state
Poy(E) o< T(E)p(E) o< exp(E/T)exp(—E/T;) is un-
normalizable and the average lifetime () p is infinite.
Following a quench to T < Ty, the system cannot equili-
brate and instead ages. At large times #,, — oo a scaling
limit is reached with P(7,2y) = [T /T(E)]P(E,ty) con-
centrated on traps of lifetime 7 = O(z,). The model thus:
has just one characteristic time scale, growing linearly
with age. We set T = 1, To=1.

To study FDT we assign to each trap a generic ob-
servable m. The landscape is then characterized by the
joint prior distribution o(m|E)p(E), where o(m|E) is
the distribution of m across traps of a fixed energy E.
We consider non-equilibrium dynamics after a quench at
t =0from T =< to T < 1. The initial condition is thus
Py(E,m) = o(m|E)p(E), with subsequent evolution

P(E,m,t)

P(E,m,t) = T Em)

+Y(@)p(E)o(mE)  (4)
where the activation times are modified by a small field %
as 7(E,m) = t(E) exp (mh/T). (Other choices of T(E,m)
that maintain detailed balance are also possible [10, 11].)

To find the autocorrelation function C for m at h = 0
we need the probability that a particle with m,, and
energy E,, at time ¢,, subsequently has m and E at time ¢:

P(E7m7t|EW7mWatW) -
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§(m—my)S(E — Ey)e~ " EIP(Ey my, 1)
fd , e"‘(tl—’w)/f(EW)
+ [ dt
[ T(EW)
The first (second) term on the RHS corresponds to a
particle not having hopped since ¢,, (first having hopped
at t'). After hopping the particle evolves as if “reset”
to time zero since it selects its new trap from the prior
distribution, which also describes the initial state. From
Eqn. 5, an exact expression for C(z,ty) can be found.
To find the response function, we proved

Ta—(z;x(t,tw) = gt‘C(t,tw) + % (m(1)) (m(tw))  (6)

P(E,t—t)o(mlE). (5)

in which (m(r)) = (m(E)) P(ES) 1S the global mean of
m. This generalizes the results of [11, 12] to non-zero
means. We rescale the field A — Th, absorbing a factor
1/T into the response function. The slope of the FDT
plotis then —X = —T /T 4 (= —1 in equilibrium).

Our expressions for C and y each comprise two ad-
ditive components, depending separately on the mean
#(E) and variance A%(E) of o(m|E). Using them, we
numerically calculated C and yx for several different dis-
tributions o(m|E), each specified by given functional
forms of m(E) and A?(E). For simplicity, we considered
only distributions of zero mean (but non-zero variance);
or of zero variance (but non-zero mean).

As expected, the decay of C in general depends on
the waiting time ty,: TTI is lost. For any observable
m that is correlated with E, the equal-time correlator
C(t,t) can also depend on ¢ (either decaying or diverg-
ing). While Eqn. 2 implies that an FD plot can be pro-
duced either with ¢ as the curve parameter (at fixed #y,),
or vice versa, Eqn. 1 in general only ensures a slope of
—X(t,tw)/T with t,, as the parameter. This issue is im-
portant if, as here, C(t,z) is time dependent, requiring
pre-normalisation of ¥ and C to ensure a limiting FD
plot of time independent size. ! To preserve the connec-
tion between X and the slope, the normalisation factor
must be the same for ¥ and C, and independent of .
We therefore use C(¢,t), rather than C(ty,#y ), denoting
the normalized quantities by ¥ and C. A limiting plot
may then be approached at long times. If so, either #,, or
t could be used as the curve parameter. We choose ty,,
because this ensures that FD plots constructed with the
switch-on or switch-off response functions are trivially
related, as discussed more fully in Ref. [13].

For zero mean observables, #(E) = 0, we consider
a variance A*(E) = exp(En/T). For different values of
n, the correlator probes different moments of the prior

! This issue has not arisen in mean field studies, where variables are
usually sufficiently “neutral” that C(¢,7) — const.
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FIGURE 1. FDT plots of ¥ vs C for a distribution o(m|E)
of variance exp(nE/T) (but zero mean) for n = 0.2, 0.0, —0.2;
T = 0.3. For each n data are shown for times 7 = 10%, 107; these
are indistinguishable, confirming that a limit FDT plot has been
attained. Dashed: asymptote ¥ = 1—C fort - e and € — 1.

distribution p(E). For n < T — 1, it is sensitive only to
shallow traps and decays on time scales 1 —ty = O(1),
probing only quasi-equilibrium behaviour and so yield-
ing an FD plot that is a straight line of slope —1 as¢ — oo.
In contrast 2, for T — 1 < n < T the correlator is domi-
nated by traps with 7(E) = O(r), and decays on ageing
time scales t —t, = O(ty). Equilibrium FDT is then vi-
olated. A limiting non-equilibrium FD plot is neverthe-
less approached at long times (Fig. 1) since C and ¥ then
share the same scaling variable (1 —ty)/ty. The slope of
each plot varies continuously with C. In contrast to mean
field, this is not due to an infinite hierarchy of time sec-
tors: the variation occurs across the single time sector
t—ty, = O(ty). More seriously, different observables give
different plots: at a fixed value of C the slopes —X de-
pend on n. For variables with zero variance and mean
m(E) = exp(En/2T) we again find FDT violation for
T —1 < n < T (Fig. 2) with a limiting non-equilibrium
plot that depends (now obviously) on m.

The concept of a non equilibrium FD temperature
is therefore not straightforward in the trap model. Can
it nonetheless be rescued? One difficulty is the non-
uniqueness of the FD plots. Observable dependent FD
plots have also been found in the zero-temperature
Glauber-Ising chain (ZTGIC) [13, 14], for different cor-
relation lengths of the applied field, 4. One could argue
that to probe an inherent T, the properties of the ob-
servable must not change much across the phase space
regions visited during ageing. Applying this to the trap
model, where the typical trap depth E increases with-
out bound for t+ — o, a “neutral” observable requires
A*(E),m(E) — const. as E — co. With this restriction,
we do indeed get a unique FD plot. The same is true for
the ZTGIC, for neutral (random) fields.

2 The regime n > T is meaningless: It gives C(,£) = V¢,

641

0.00

x \ 15
-0.05 | 107
X S 1.0 b

0
-0.10 0.00005 0

1-C
05

015 ¢ n=0.2 n=-0.2 .

i I 1 1 0.0 1 1 1 L
0 02 04_06 08 1 0 02 04_06 08 1t
C C

FIGURE 2. FDT plots of ¥ vs C for a distribution with mean
exp(nE/2T) (but zero variance), for n = 0.2, —0.2; T = 0.3.
Curves are shown for times z = 10°, 107, but are indistinguish-
able except for the zoom-inset on the left (upper: t = 107).
Dashed: predicted asymptote ¥ = 1 —C forz — o, € — 1.

Even with a judicious choice of neutral observable,
however, X still varies continuously across the single
time sector in the trap model. Two thermometers prob-
ing time scales that differ only by a factor of order unity
would thus measure different (and so meaningless) ef-
fective temperatures. Similarly rounded plots are seen
in the ZTGIC [13, 14]. There is, however, the possibil-
ity that the limit of X obtained at large time separation
Xeo = lim,,_, . lim,_,., X (¢,tw) may still give a meaning-
ful T4. Indeed, in the trap model X.. = O is the same
for all variables considered; the ZTGIC also has X.. =0
for domain wall variables (but X., = 1/2 for spin vari-
ables) [14].

We now turn to the driven model, as first defined to
study “soft glassy rheology”. Each particle is assigned a
local elastic “strain” [ and “stress” kl. (We set k = 1.)
After any hop, [ resets to zero. Between hops, [ = Y,
the external strain rate. A particle in a trap of depth E
strained by [ sees a reduced energy barrier E — %lz, SO

[0, + 7)) P(E, L,1) = =7 (B)e" /T P+ Y (1) p(E)S ().
(7
In the glass phase, steady driving (y = const.) interrupts
ageing and restores a steady state. In the limit y — O,
the steady state distribution Po(E) = [dlP..(E,l) ap-
proaches a scaling state with all relaxation times O(1/7).
In our study of driven FDT, we focus on neutral ob-
servables, 7(E) = 0 and A?(E) = const. For these, the

autocorrelation function
C(t,7) = / al / dE P.(E,l) ®)

Tt 0

where P..(E,l) = lim,_,.. P(E,l,t), which can be calcu-
lated exactly. (Because TTI is restored, C and ) do not
depend explicitly upon the waiting time ¢y, so we have
set ty, = 0.) Eqn. 8 can be understood by noting that
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FIGURE 3. a) Correlator and b) response vs. scaled time
for the neutral observable AZ(E) = 1: driven (solid lines);
ageing (dashed). Waiting times (or inverse driving rates)
103,104, 10, 105 are shown (but indistinguishable). ¢) FD
plots: driven (solid); ageing (dashed). For the driven case, driv-
ing rate decreases downwards at fixed C. Temperature T = 0.3.

only particles that have not hopped since time ¢ = 0 (i.e.
those with strains ! > y¢) contribute to the correlator. The
switch-on response function can be shown to be

o [Pu(BL) = Pu(E L+ 1))
x(t,y)_/o dE/O dl o 10,7)
9)

in which I(1,T) = fé ds exp (%)

Using these expressions, we evaluated C(¢,7) and
x(¢,7) numerically. The results are shown in Fig. 3a,b
(with simulation results as a check). In the limit y — O,
t — 0 at fixed yz, C(¢,7) and x(¢,7) depend on ¢ and 7
only through the scaling variable yt, as expected.

Although the scaling functions C(yr) and x(y¢) both
differ strongly from their ageing counterparts C(=2),

ty
X ('{;’&) (compare solid and dashed lines in Fig. 3) the
ageing and driven FD relations are remarkably simi-
lar (Fig. 3c). Both start with a quasi-equilibrium slope
—X(C=1)=x'(C=1)= -1 and finish with slope
x'(C = 0) =0 at intercept x(C = 0) = T. Between these
limits, these is little discernible difference between the
ageing and driven plots. This non-trivial result is consis-
tent with the predictions of Cugliandolo er al., that the
relationship between correlation and response should be
the same in ageing and weakly driven glasses. Despite
this, the inset of Fig. 3c, does reveal a small discrepancy.
To investigate this further, we examined the behaviour of
= —'(C) in the limit C — 0, finding X ~ C'/7 in the
ageing case, but C ~ X7 [log(1/X)]T=1/2 in the driven
case. Therefore, the driven and ageing FD plots are only
equivalent to within minor logarithmic corrections. Fi-
nally, this similarity of ageing and driven FD relations is
notrobust with respect to non-neutrality of observable, or
to driving mechanisms that respect detailed balance [8].
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CONCLUSIONS

We have shown that the mean field concept of a non equi-
librium FD temperature is not straightforward in the trap
model. FD plots, in general, (i) depend on observable,
(ii) have a slope varying continuously across a single
time sector, (iii) differ in the ageing and driven cases.
Nonetheless, neutral observables do all share a unique
(observable independent) FD plot, which is the same (to
within logs) for ageing and driven systems. Although
the slope of the plot varies continuously, there remains
the intriguing possibility that the limit of X obtained for
large time separations X.. = lim, .. lim, ., X (¢,t,) may
still corresponds to a meaningful T g. Indeed, for the trap
model, X.. is the same (zero) for all variables considered;
this value even holds in trap models with slow dynamics
arising from entropy rather than energy barriers [15].
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