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The relative volume of spin states in the phase space is introduced for the ±J model of spin
glasses. Analysis of its temperature dependence shows that the Nishimori line separates the
pure ferromagnetic-like region in the high-temperature side of the ferromagnetic phase from
the randomness-dominated region in the low-temperature side. The peak value of the relative
volume of the perfect ferromagnetic state is shown to be equivalent to the entropy. Upper
and lower bounds on the entropy are derived, which determine the value of the entropy quite
precisely.
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§1. Introduction

After a long history of researches, the problem of spin glasses is still essentially unsolved. In

particular, there are controversies on the existence and structure of the spin glass phase in finite

dimensions. Even our knowledge on the spin states in the ferromagnetic phase is very limited.

We focus our attention on this latter problem of the spin states in the ferromagnetic phase in the

present contribution.

There are several exact results on the behaviour of Ising spin glasses in finite dimensions. For

example, the exact expression of the internal energy on a particular line in the phase diagram is

known.1) However, such exact results obtained in the early 80s do not give direct information on

spin states. It was relatively recently that a useful inequality on the spin orientation within the

ferromagnetic phase was derived, which clarified the spin states around the Nishimori line.2) We

shall elucidate the derivation and significance of this inequality in some detail later.

We then present a formulation of the problem using the relative volume of space that a given spin

state occupies in the whole phase space. It will be shown that the peak value of this relative volume

is closely related to the entropy on the Nishimori line. We also discuss the lower and upper bounds

on the entropy in which the information-theoretical entropy of frustration distribution plays a key

role.
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§2. Numbers of Up and Down Spins

We review in this section the properties of a basic indicator of the spin state, the difference of

the numbers of up and down spins as a function of temperature in the ferromagnetic phase.2) Let

us consider the ±J model of Ising spin glasses with the Hamiltonian

H = −
∑
〈ij〉

JijSiSj, (2.1)

where the angular brackets denote neighbouring sites on an appropriate lattice such as the square

lattice. The distribution of bonds are assumed to be of ±J type in the present paper; Jij is 1 with

probability p and is −1 with probability 1 − p. This distribution of bonds can be conveniently

expressed as

P (J) =
1

(2 cosh Kp)NB
exp(Kp

∑
Jij), (2.2)

where Kp is defined by exp(−2Kp) = (1− p)/p and NB denotes the number of bonds. The symbol

J here denotes the set {Jij}.

The following quantity to measure the difference between the numbers of up and down spins

plays an important role throughout the argument:

mA(T, p) = [sgn〈Si〉]. (2.3)

Here the outer square brackets denote the configurational average over the distribution of bonds

(2.2). The boundary spins are assumed to be fixed up so that the thermal average of a local spin

〈Si〉 has a non-trivial value even in finite-size systems. This quantity mA represents the average

number of up spins minus that of down spins per site.

It can be shown that mA is not a monotonic function of the temperature. This quantity takes its

maximum value at a particular temperature satisfying T = 1/Kp ≡ T (p). This temperature is a

function of the probability p and defines a line in the phase diagram T = T (p), called the Nishimori

line, as shown in Fig. 1.

The relevant inequality is written as

mA(T, p) ≤ mA(T (p), p). (2.4)

It would be instructive to recall the derivation of eq. (2.4). We first rewrite the definition of mA

using a gauge transformation (Jij → Jijσiσj , Si → Siσi):

mA(T, p)=

[
〈Si〉β
|〈Si〉β |

]

=
1

(2 cosh Kp)NB

∑
J

eKp

∑
Jij

∑
S Sie

β
∑

JijSiSj

|∑S Sie
β
∑

JijSiSj |
=

1
2N (2 cosh Kp)NB
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Fig. 1. The phase diagram of the ±J model and the Nishimori line.

×
∑
J

∑
σ′

eKp

∑
Jijσ′

iσ
′
j 〈σi〉Kp

〈Si〉β
|〈Si〉β| , (2.5)

where 〈. . .〉β denotes the thermal average at inverse temperature β = 1/T . By taking the absolute

value of the final expression, we obtain

mA(T, p)

≤ 1
2N (2 cosh Kp)NB

∑
J

∑
σ′

eKp

∑
Jijσ′

iσ
′
j |〈σi〉Kp |

=

[ 〈Si〉Kp

|〈Si〉Kp |

]
= mA(T (p), p). (2.6)

The last line can be verified by using that |〈σi〉Kp | = 〈σi〉2Kp
/|〈σi〉Kp | = 〈σi〉Kp〈Si〉Kp/|〈Si〉Kp | and

comparing with (2.5).

Since the difference of the numbers of up and down spins is equal to the twice of the number

of up spins minus a constant, the relation (2.4) implies that the number of up spins as a function

of the temperature reaches its maximum value at T = T (p) under the boundary condition of up

spins. Therefore, as the temperature is lowered beyond T = T (p), the spin orientation becomes

less ordered in the sense that the number of up spins decreases in spite of the up-spin boundary

condition. This behaviour is counter-intuitive because one naively expects that more and more

ordered states dominate at lower temperatures.

One should remember that the magnetization defined without the ‘sgn’ symbol in (2.3) is probably

a monotonic function of the temperature. As the temperature decreases, thermal fluctuations die

out and the magnitude of an up spin, 〈Si〉(> 0), would increase. This could well lead to an increase

of magnetization even when the number of up spins decreases.
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These observations motivated us to further investigate the spin states in the ferromagnetic phase

using different ideas.

§3. Bayesian Interpretation

Before we proceed to the presentation of new ideas, it is useful to explain an interpretation of

the inequality (2.4) in the context of error-correcting codes.3,4) If we regard the ±J model as an

error-correcting code, mA is identified with the mean bitwise overlap of the decoded message with

the original message.2) This means that maximization of mA gives the best decoded message from

the viewpoint of minimization of bitwise errors. With this fact in mind, we show that the inequality

(2.4) is derived naturally from the Bayes formula.

The a posteriori probability of the original message {Si} given the output {Jij} of the binary

symmetric channel is given by the Bayes formula as

P (S|J) =
P (J |S)P (S)∑
S P (J |S)P (S)

=
exp(Kp

∑
JijSiSj)∑

S exp(Kp
∑

JijSiSj)
. (3.1)

We have assumed that the source messages are generated uniformly and thus the prior P (S) is a

constant. The code bits are Jij = SiSj; with probability 1 − p (which is related to the coefficient

Kp), they have their signs flipped by channel noise.

Let us now focus our attention to the marginal distribution of the ith bit:

P (Si|J) =
∑
S\Si

P (S|J). (3.2)

The Bayes-optimal strategy is to choose the decoded result for Si that maximizes P (Si|J). In other

words, the decoded result will be 1 if P (Si = 1|J) > P (Si = −1|J) and is −1 otherwise. This idea

is equivalent to accepting the sign of the thermal average 〈Si〉Kp because 〈Si〉Kp is positive if and

only if P (Si = 1|J) > P (Si = −1|J) and is negative otherwise.

Since this method maximizes the bitwise marginal probability which is written in terms of a

Boltzmann factor with the inverse temperature Kp, the bitwise overlap of the decoded result with

the original message should acquire its best possible value at T = T (p) = 1/Kp. Thus mA(T, p)

satisfies (2.4). Nothing looks mysterious and it may even seem trivial that mA has its maximum

at this temperature. However, this Bayesian interpretation does not give an explicit clue to a

better understanding of the spin states at various temperatures in the ferromagnetic phase. The

non-monotonic behaviour of the spin orientation as a function of temperature still remains counter-

intuitive, at least to us. We therefore proceed to a different analysis using the volume of phase

space and entropy.

§4. Volume of States

Since the spin state becomes most ‘ferromagnetic-like’ at T = T (p) according to the inequality

(2.4), it should be useful to see the behaviour of the relative volume of the perfect ferromagnetic
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state in the whole phase space defined by

PF(T, p) =

[
log

eβ
∑

Jij∑
S eβ

∑
JijSiSj

]

= β(2p − 1)NB − [log Z(β)]. (4.1)

The average over the bond distribution is taken after the operation of logarithm so that the con-

figurational average is carried out for an extensive quantity as is usual the case in random systems.

The relative volume PF(T, p) reaches its maximum as a function of temperature at T = T (p) as

can be verified by differentiation of (4.1) with respect to β, using that for T = T (p) one has1)

[
〈
∑

JijSiSj〉
]

= (2p − 1)NB . (4.2)

It is also possible to check that PF really has a maximum, not a minimum, at T = T (p) from

convexity of the free energy. Equation (4.1) further suggests that the maximum value of PF is

equal to −S, minus of the thermodynamic entropy if we note that (4.2) indicates that the internal

energy is equal to −(2p−1)NB at T = T (p). Therefore, the entropy on the Nishimori line T = T (p)

directly reflects the relative weight of the perfect ferromagnetic state.

It is quite straightforward to generalize the above analysis to an arbitrary spin configuration

{σi}. The relative volume of a configuration {σi} is

Pσ(T, p) =

[
log

eβ
∑

Jijσiσj∑
S eβ

∑
JijSiSj

]

= (2p − 1)β
∑

σiσj − [log Z(β)]. (4.3)

This quantity has its maximum as a function of the temperature at some T = Tσ larger than T (p).

To see this, we differentiate both sides of (4.3) by β and set the result equal to 0 to find

[〈
∑

JijSiSj〉] = (2p − 1)
∑

σiσj . (4.4)

Let us note here that the left-hand side is proportional to the internal energy and is therefore a

monotonic function of the temperature. And it is trivial that
∑

σiσj < NB unless {σi} is a perfect

ferromagnetic state. Then Tσ satisfying (4.4) is found to be larger than T (p) satisfying (4.2).

These arguments indicate that the perfect ferromagnetic state occupies the largest relative volume

at T = T (p), and the relative volume shrinks as the temperature is further decreased. All other

states reach the maximum relative volume at higher temperatures. The relative volumes of all

states shrink at low temperatures, in particular when T < T (p). This situation is depicted in

Fig. 2.

Therefore, as the temperature is decreased beyond T (p), any specific spin state {σi} given in-

dependently of the bond configuration loses its average relative volume in the phase space. This

means that, at T < T (p), the thermodynamically relevant spin states directly reflect the randomly

5



Fig. 2. The relative volume of states as a function of temperature.

given configuration of bonds. They differ significantly from one bond configuration to another,

while any specific spin state independent of the bond configuration is unlikely to be relevant at

lower temperatures. This is the reason that PF and Pσ decrease below T (p).

In contrast, in the region T > T (p), the perfect ferromagnetic state gradually comes to dominate

the phase space with decrease of the temperature. In this sense, this higher temperature range has

a character similar to the non-random ferromagnetic system while the lower temperature region

T < T (p) is strongly affected by randomness.

These observations do not necessarily mean that the line T = T (p) is a phase boundary. As a

renormalization-group analysis suggests,5) it would in general be a crossover line between the two

regions dominated by the ferromagnetic fixed point and a random fixed point. It is nevertheless

true that the spin state changes remarkably, if unaccompanied by thermodynamic singularities, at

T (p). The non-monotonic behaviour of the difference between the numbers of up and down spins,

mA, directly reflects this crossover.

§5. Bounds on the Entropy

Analysis of the previous section shows that the entropy serves as an important indicator of spin

states at T (p) where the pure ferromagnetic-like and randomness-dominated regions cross over. It

is however very difficult to calculate the entropy exactly. We instead estimate upper and lower

bounds.
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5.1 Lower bound

A lower bound on the entropy is derived from comparison of the free energy with the information-

theoretical entropy of the probability distribution of frustration. For this purpose, we introduce

the entropy of bond configuration by

H(J) = −
∑
J

P (J) log P (J), (5.1)

where

P (J) =
1

2N (2 cosh Kp)NB

∑
σ

eKp

∑
Jijσiσj (5.2)

is the probability distribution of bond configuration summed up over all configurations with the

same distribution of frustration. For example, when J denotes the ferromagnetic configuration

(Jij = 1, ∀〈ij〉), the summation over σ in (5.2) corresponds to the sum of all probability weights of

frustration-free (i.e. Mattis-like) bond configurations. As a consequence, P (J) has the same value

for all frustration-free bond configurations.

The information-theoretical entropy H(J) is related to the free energy F (T, p) at T = T (p) by

the following relation

H(J) = βF (T (p), p) + N log 2 + NB log cosh Kp (5.3)

= −S(T (p), p) − β(2p − 1)NB + N log 2

+NB log 2 cosh Kp. (5.4)

This relation is derived from comparison of the definitions (5.1) and (5.2) with the free energy

−βF (T, p) =
∑
J

eKp

∑
Jij

(2 cosh Kp)NB
log

∑
S

eβ
∑

JijSiSj

=
1

2N (2 cosh Kp)NB

∑
J

∑
σ

eKp

∑
Jijσiσj

× log
∑
S

eβ
∑

JijSiSj . (5.5)

The second equation comes from a gauge transformation.

Equation (5.4) shows that an upper bound on the information-theoretical entropy H(J) leads

to a lower bound on the thermodynamic entropy S at T = T (p). To estimate an upper bound on

H(J), it is useful to define the probability distribution of frustration {π} by

P (π) = 2NP (J). (5.6)

The factor 2N reflects the fact that there are 2N different bond configurations with the same

distribution of frustration; thus there are only 2N−NB different configurations of the frustration

distribution π. If we specialize to the case of hypercubic lattices, π is specified by the values of all
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the plaquette ‘spins’ π✷ = J12J23J34J41; there are N − NB of those. An upper bound on H(J) is

then obtained by maximization of the information-theoretical entropy:

H(J) = −
∑
J

P (J) log P (J)

= −
∑
π

P (π) log P (π) + N log 2

≤ (NB − N)H2(tanh4 Kp) + N log 2, (5.7)

where

H2(x) = −1 + x

2
log

1 + x

2
− 1 − x

2
log

1 − x

2
. (5.8)

The inequality in (5.7) has been derived by maximization of H(π) under the constraint that the

average of each plaquette spin over P (π) is given by [π✷] = tanh4 Kp. Comparison of (5.7) with

(5.4) leads to the final expression of a lower bound of the thermodynamic entropy

S(T (p), p) ≥ −β(2p − 1)NB + NB log 2 cosh Kp

+(N − NB)H2(tanh4 Kp). (5.9)

5.2 Upper bound

An upper bound on the entropy is obtained from the Jensen inequality combined with a varia-

tional method. The following inequality holds for a general function f(J) of bond variables:

−βF (T, p) =

[
log

∑
S

eβ
∑

JijSiSj+f(J)

]
− [f(J)]

≤ log[
∑
S

eβ
∑

JijSiSj+f(J)] − [f(J)] (5.10)

according to the Jensen inequality. Let us now choose

f(J) = h
∑
〈ij〉

Jij (5.11)

and restrict our attention to the case of T = T (p). Since the exact energy is known at T = T (p),

an upper bound on the entropy is obtained by minimization of the right-hand side of (5.10) with

respect to h.

The average over the bond randomness in the argument of the logarithmic function of (5.10) can

be carried out relatively simply and the entropy is found to be bounded as

S(T (p), p) ≤ min
h

{
NB log A + log Z0(K̃) − NB log 2 cosh Kp

−NBh tanh Kp} , (5.12)

where we have rewritten h + Kp as h, and A and K̃ are defined by

2 cosh(K + h) = AeK̃ , 2 cosh(K − h) = Ae−K̃ . (5.13)
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The partition function Z0 is that of the non-random Ising model.

Numerical minimization of the right-hand side of (5.12) gives the result shown in Fig. 3 in the

case of the square lattice. The lower bound from the previous subsection is also shown, alongwith

Fig. 3. Bounds on the entropy for the square lattice. The dotted line shows the leading term of an expansion around

p = 1.

the leading term of an expansion around p = 1 (Nishimori and Sollich, unpublished)

S(T (p), p) ≈ 3NB log 2 · (1 − p)2. (5.14)

We observe that the entropy is bounded very tightly in the high temperature region. Systematic

improvements along the line of Morita and Kühn6,7) should further improve the upper bound.

§6. Discussion

We have tried to clarify the spin states in the ferromagnetic phase of the ±J Ising model of

spin glasses. The first hint was given by an inequality on the number of up spins as a function

of temperature. The average number of up spins first increases as the temperature is lowered and

reaches a maximum on the Nishimori line. Then it turns to a decrease at lower temperatures. In this

sense the lower temperature region may be regarded to be less ordered than the high-temperature

region. This non-trivial behaviour does not necessarily imply a reentrant transition to a non-

ferromagnetic phase; a reentrant transition is characterized by disappearance of magnetization

below a certain temperature, while in the present context it is likely that the magnetization actually

grows: The increase in the magnitude 〈Si〉 of up spins (〈Si〉 > 0) can offset the decrease in the

number of up spins.

The fact that the number of up spins reaches a maximum on the Nishimori line is understood
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relatively naturally from a Bayesian point of view. In fact, some of the other properties of the

±J model derived by the method of gauge transformation can be re-derived within the Bayesian

framework.4) However, as far as the ±J model is concerned the Bayesian approach does not yield

new results on spin states beyond those known from the gauge transformation method.

We therefore turned to another point of view using the relative volume of a spin state in the

phase space. It was shown that the region above the Nishimori line in the ferromagnetic phase is

similar to the pure ferromagnetic system from the behaviour of the relative volume. In contrast,

in the low temperature region, thermodynamically relevant spin states directly reflect the random

bond configuration. This observation is quite consistent with the result from the inequality on the

number of up spins. It was also shown that the relative volume of the perfect ferromagnetic state

on the Nishimori line is equal to the minus of the entropy. Thus the entropy carries important

information on the weight of the perfect ferromagnetic state.

We then derived upper and lower bounds on the entropy using the maximum-entropy method and

the Jensen inequality. Very precise bounds resulted at least in the high-temperature region. Further

refinement of the variational method should improve the upper bound in the low-temperature side.

All in all, we feel that we now have a better – though still not quite perfect – understanding of

spin states in the ferromagnetic phase of the ±J model. Most of the arguments developed here are

very generic and apply to any lattice. Further progress may well require ideas which make use of

the properties of particular lattices, but we nevertheless hope that the present contribution may

contribute some useful building blocks for such developments.
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