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The ‘soft glassy rheology’ (SGR) model gives an appealing account of the flow of nonergodic soft
materials in terms of the local yield dynamics of mesoscopic elements. Newtonian, power-law, and
yield-stress fluid regimes arise on varying a ‘noise temperature’, x. Here we extend the model, to
capture the idea that the noise is largely caused by yield itself. The extended model can account
for the viscosity-bifurcation and shear-banding effects reported recently in a wide range of soft
materials. A variant model may shed light on shear banding and strain-rate hysteresis seen in
glassy star polymers solutions.

PACS numbers:

Nonergodic materials, such as colloidal gels and dense
emulsions, have unusual rheology that is exploited in
many commercial applications such as paints, foodstuffs,
and cleaning products [1]. Understanding their flow
behavior represents a profound challenge to statistical
physics: this is intractable in its full generality, but
promising progress has recently been made at three lev-
els. Fully microscopic work – based for instance on
mode-coupling theory (MCT) – is so far limited mainly
to monodisperse colloidal glasses [2]; it remains techni-
cally formidable. Purely phenomenological approaches,
in which a continuum stress or strain representation of
the local state is supplemented by just one or two vari-
ables (e.g. ‘fluidity’) [3, 4] are much simpler but of rather
limited predictive power, although some recent develop-
ments create a more precise link between microscopic
physics and the structural variables that control the con-
tinuum behaviour. (An example is the recent use of a
time-evolving non-affine parameter in a model of star-
polymer rheology [5].) The middle ground is represented
by mesoscopic models [1, 6, 7], in which explicit but
coarse-grained degrees of freedom obey some specified
dynamics.

Among mesoscopic approaches, the SGR model [7]
has become widely used to interpret experiments on
soft matter, biophysics, and even conventional glasses
[1, 8]. The qualitative successes of SGR include the pre-
diction of power-law (σ ∼ γ̇x−1) and Herschel-Bulkley
(σ − σY ∼ γ̇1−x) regimes for steady-state flow curves,
where σ is shear stress, σY a dynamic yield stress and γ̇
strain rate. These regimes are controlled by an effective
noise temperature, x, which governs the jump rate out
of local traps. In the yield stress regime (x < 1) SGR
also predicts rheological aging, primarily via a so called
‘simple aging’ scenario [9, 10]. This is something that
MCT cannot yet capture [2]. On the other hand, an im-
portant drawback of SGR is that its mesoscopic physics
(trap-hopping) is somewhat generic, with few clues as

to how the parameters of the model should be varied to
address different classes of physical systems – for exam-
ple, hard-sphere versus soft-sphere interactions. (Purely
phenomenological models also suffer from this drawback,
whereas MCT takes as input the equilibrium structure
factor which can account for such differences.) Another
drawback of SGR is that it does not readily admit non-
monotonic flow curves of the type that would lead to
shear banding – the coexistence at fixed σ of layers with
different γ̇, or vice versa [11]. Such limitations may be
linked to the fact that the SGR model takes x as a con-
stant model parameter, while in practice the noise tem-
perature for a given trap should depend on the level of
jump activity in its vicinity.

Currently we are not in a position to derive the x dy-
namics from first principles, nor even mesoscopic ones.
Rather, in what follows we treat the x evolution at a
phenomenological level (rather as fluidity is treated in
[3, 4]). We will show that even a very simple choice can
then account for the ‘viscosity bifurcation’ seen in many
soft materials [4, 12]. On applying a step stress, there is
a stress threshold below which the system remains solid,
but above which it flows homogeneously at a shear rate
that exceeds a finite minimum value; we find moreover
that the critical stress for the viscosity bifurcation itself
depends on sample history prior to the application of step
stress. At imposed shear rate, the same physics results
in coexistence of a rigid, aging, ‘cold’ band (x = x1 < 1)
and a fluid, ergodic, ‘hot’ band (x = x2 > 1) at a common
stress σ obeying 0 = σY (x2) < σ < σY (x1) [13]. Within
a different variant of our model, we also find below a
distinctive hysteretic shear-banding scenario reminiscent
of one reported recently in star polymer solutions [14].
Thus our work points to a possible new connection be-
tween glass-based descriptions of nonergodic matter and
two major experimental scenarios, complementing previ-
ous, purely phenomenological, modelling for these [4, 15].
However, our approach remains semi-phenomenological
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in that the choice of model variant and/or parameters
cannot be linked directly to microstructure.

The SGR model starts from a trap dynamics for meso-
scopic elements. The jump rate out of a given trap is
Γ0 exp[−(E − k`2/2)/x], with Γ0 an attempt rate, E the
well depth, k a (uniform) elastic constant, and ` the lo-
cal strain. The latter evolves between jumps as ˙̀ = γ̇
representing affine shearing by macroscopic strain. New
traps have (for simplicity) ` = 0; they have E values
drawn from a prior distribution ρ(E) ∝ e−E whose form
is chosen, following Bouchaud [10], to engineer an arrest
transition, which occurs at x = 1. As stated previously x
is viewed as an effective noise temperature [7]. However
a clear physical interpretation of this parameter remains
lacking. One idea is that a thermal nonergodic system
will, on cooling, hover in a ‘marginal state’ with an effec-
tive temperature close to that of its glass transition [16];
another is that x is mechanical noise created by plastic
rearrangements elsewhere in the system. The latter im-
plies a coupling between x and the flow dynamics, which
was acknowledged but neglected in previous work (except
[11]), and whose consequences we now explore.

To do so, we start with the SGR equation for the trap
probability distribution P (E, `, t)

Ṗ = −γ̇
∂P

∂`
− Γ0e

−(E−k`2/2)/xP + Γρ(E)δ(`) (1)

(with Γ = Γ0〈e
−(E−k`2/2)/x〉P the total jump rate) and

couple this to a relaxation-diffusion dynamics for x:

τxẋ(y) = −x(y) + x0 + S + λ2 ∂2x

∂y2
= 0 (2)

We have assumed for simplicity that x and γ̇ depend on a
single spatial coordinate y in the shear gradient direction.
The source term S(y), which represents the pumping of
noise by jump events, clearly depends on P (E, `, t) at
position y, which we henceforth denote P (y).

In what follows we explore two model variants, distin-
guished according to different choices for the dependence
of S upon P (y). Model 1 has

S(y) = a〈`2/τ〉P (y) (3)

where τ = exp[(E−k`2/2)/x] is the (dimensionless) trap
lifetime. In this model the noise is pumped by dissipation
of elastic energy. Model 2 instead has S(y) = ã〈1/τ〉P (y)

such that all jumps contribute equally to noise regard-
less of the local strain released. As discussed below, the
underlying constitutive curve of both models has a ver-
tical branch at γ̇ = 0, terminating in a yield stress; and
a fluid branch that persists to stresses below this yield
value (Figs. 1 and 4). Both models are thereby capable
of capturing a coexistence of unsheared and fluid bands
at a common shear stress. Indeed, many of the flow phe-
nomena that are for concreteness discussed below in the
context of model 1 can in principle also arise in model

2. Beyond these common phenomena, model 2 addition-
ally allows the fluid branch to persist right down to the
origin, allowing it to capture, for instance, the large hys-
tersis loops seen during shear rate sweeps in glassy star
polymers (Fig. 4 below).

In the second equality of (2) we have for simplicity set
τx → 0, so that local jump rates adapt rapidly to changes
in nearby activity levels. In the same spirit, we neglect
fluid inertia and therefore impose force balance, which,
for planar Couette flow, requires uniformity of the shear
stress: σ(y) = k〈`〉P (y) = σ, a constant.

The diffusive term in (2) represents the nonlocal ef-
fect of jumps. More generally one might replace S in
(2) by

∫
dy′dt′S(y′, t′)G(y − y′, t − t′) where G is a ker-

nel. We assume that G is effectively of short range: most
of the noise comes from nearby jumps. (Note that, de-
spite the long-range nature of elastic interactions, the
stress field caused by a randomly signed sum of plas-
tic strains distributed through space is likewise domi-
nated by local contributions [17].) If one further assumes
that a smoothly varying mean activity level governs the
rates of individual stochastic events, a gradient expan-
sion in activity is thereby justified. To obtain (2) as
written, we take the leading order correction within this
expansion, S → S + λ2∂2S/∂y2, and iterate once to set
∂2S/∂y2 → ∂2x/∂y2. The latter replacement should be
harmless, and greatly simplifies the numerical analysis.

To solve the above systems numerically we discretize
into i = 1...n streamlines equally spaced in the y direc-
tion and take on each streamline a separate ensemble of
j = 1...m SGR elements with barrier heights Eij . The
stress on streamline i is σi = (k/m)

∑
j `ij . Periodic

boundary conditions are used, and force balance is im-
posed as follows. Suppose a jump occurs at element ij
when its local strain is ` = l. By updating all elements
on the same streamline as ` → ` + l/m, force balance is
maintained, but with a stress level that is unchanged by
the jump. Further updating all elements throughout the
system as ` → ` − l/mn restores the global stress to the
proper reduced level. This algorithm can also be thought
of as the ηs → 0 limit of one in which a small Newtonian
viscosity ηs is introduced alongside the elastic stress of
SGR elements, and local strain rates are set to maintain
σ(y)+ηsγ̇ = σ at all times. The SGR sector of the numer-
ics is handled by a waiting-time Monte Carlo (WTMC)
algorithm [18] that chooses stochastically both the ele-
ment and timing of the next yield event. After each such
event, force balance is applied; every N WTMC steps,
(2) is then evolved to steady state (we found N ' 10
sufficient for accuracy, and more efficient than N = 1).

We now discuss our results for Model 1, letting Γ0 =
k = 1 define time, strain and stress units. First, note
that in a homogeneous steady state (2) is equivalent to

x = x0 + 2aσ(x, γ̇)γ̇ (4)

which allows us to generate constitutive curves σ(γ̇)
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FIG. 1: Dashed line: constitutive curve σ(γ̇) for x0 = 0.3, a =
2.0. Symbols: WTMC results for quasi-stationary stress σ at
various imposed mean strain rates γ̇ found after start up of
steady shear. Shear banding is present whenever the WTMC
data deviates significantly from the dashed curve. Dotted
lines: viscosity bifurcation points (±0.05) in step stress for
log

10
tw = 1.0, 1.5, 2.0, 2.5 (bottom to top); cf Fig.3.

from the SGR constitutive equation [7] without recourse
to WTMC. The result is shown in Fig.1 for the case
x0 = 0.3 and a = 2.0. Also shown is our WTMC data
for the actual flow behavior in planar Couette flow. This
is quasi-stationary data, taken during a strain window
150.0 ≤ γ ≤ 200.0 following startup of steady shear.
As in any strain-controlled experiment, only the mean

shear rate γ̇ is imposed: the system is free to choose a
banded state, and indeed it does so for a wide window
of strain rates (Figs.1,2). All these data were generated
with n = 100, m = 1000 and λ/∆ = 0.5 or 1.0 (suffi-
cient to resolve the interface). For each run the sample
is ‘fresh’, quenched from a state with P (E, `) ∼ ρ(E)δ(`)
at t = tw ' 1; waiting for a time tw � 1 at x = x0 before
startup of shear yields a larger stress overshoot but the
same plateau stress. Note that the multiple bands seen
at γ̇ = 0.2 in Fig. 2 can only arise in a planar shear flow:
they would presumably be eliminated by any small cur-
vature in the flow geometry, as is almost always present
experimentally.

The results in Fig.1 are consistent with the following
picture. The homogeneous flow curve has a yield stress
σY = σY (x0) inherited from the simple SGR model.
Unlike simple SGR, however, σ(γ̇ > 0) is thereafter a
decreasing function, before re-stabilizing at higher shear
rates. (In fact the initial slope of the curve is positive,
but for the chosen parameters σ(γ̇) has a maximum at
σ−σY ' 2×10−4, invisible in Fig.1, and falls back below
σY for γ̇ ≥ 10−3.) This creates the standard conditions
for shear banding but, unusually, the more viscous band
has γ̇ = 0 [13]. This band is thus effectively solid, with
local strain rate that is close to zero (Fig.2), and slowly
decreasing with time. The latter represents an aging ef-
fect: this band has a low noise temperature x ' x0 = 0.3
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FIG. 2: Profiles of noise temperature x(y) and velocity v(y)
for x0 = 0.3 and a = 2.0 with imposed mean shear rate γ̇ =
0.05, 0.1, 0.2 (dotted, dashed, solid). Data is time averaged
over the second half of a run with total strain 100.

such that σY (x) > σ, which is the condition for noner-
godicity to arise within SGR. This aging can be confirmed
directly by study of the correlator C(t, tw) (the fraction
of unhopped particles) within the low shear band. This
shows simple aging behavior, as does the standard SGR
model at the given x = x0 [9]. In contrast, the high-shear
band has high activity, self-consistently maintaining it in
an ergodic state of high x and low viscosity.

This scenario is supported by simulations on molecu-
lar models [13], and is consistent with experiments on
viscosity-bifurcating materials [4, 12]. Indeed, we show
in Fig.3 a plot of viscosity η = σ/γ̇ against time t fol-
lowing a step stress on fresh (tw = 1) samples. As
expected, without fine-tuning of σ, we find flows that
are homogeneous. There is a clear bifurcation between
σ < σc, for which η(t) is large and increases without
limit with t, and σ > σc for which η(t) falls onto a
plateau. Close to σc the time to nucleate the non-flowing
branch is long for large systems; but assuming this re-
mains finite our best numerical estimate for fresh samples
is σc,f = 0.675± 0.005. Intriguingly, this is very close to
the shear-banding stress plateau found in Fig.1 and well
below the dynamic yield stress σY (x0) for homogeneous
flow. For fresh samples, the strain-rate overshoot follow-
ing step stress at σc,f < σ < σY carries the system onto
the fluid branch, where it remains.

The inset to Fig.3 shows another intriguing facet of
the viscosity bifurcation: the critical stress is itself an in-
creasing function of tw (see also Fig.1). Thus, if subjected
to step stress σc,f < σ < σY (x0), a series of samples of
different ages will show a bifurcation between flow (small
tw) and arrest (large tw). In an SGR context this is nat-
ural: in an aged sample, elements have fallen into deeper
traps, so that the strain-rate overshoot is more modest,
and the transient yield events caused by the step stress do
not receive enough feedback to cause runaway to a fluid
state. Although not emphasized in [4], a similar tw bi-
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FIG. 3: Viscosity bifurcation for x0 = 0.3, a =
2.0, n = 100, m = 1000. Main figure: age before shear
tw = 1; stress values (top to bottom at right) σ =
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.64, 0.65, 0.66, 0, 67, 0.68, 0.69, 0.70,

0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.8. Inset: stress σ =
0.72, age before shear log

10
tw = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4.

Dotted line shows the asymptote calculated semi-analytically.

furcation holds for the phenomenological model reported
there, in which an inverse fluidity or ‘jamming param-
eter’, λ, evolves with time. Our SGR results broadly
support the idea [4] that this evolution represents aging.

We next turn to Model 2, focussing on a specific regime
that may be relevant to experiments on star polymers [14]
which showed, under relatively rapid strain-rate sweep
(residence time tr = 10s per observation point), an ap-
parently conventional, monotonic flow curve. However,
for slower sweeps (tr = 104s) a much larger, almost con-
stant, stress was measured at small γ̇. Shear banding
in this region was confirmed by NMR velocimetry, with
γ̇ ' 0 in the slow band [15]. A strong hysteresis was also
seen, the less viscous branch persisting to much lower
strain rates on the downward sweep [14].

Fig. 4 shows data for Model 2 with x0 = 0.15, ã = 3.75.
The right-pointing triangles show the stress response to
a slow upward strain rate sweep for a sample that was
in a homogeneously aged state of tw = 104 before shear.
A stress plateau is clearly seen for shear rates γ̇ < 0.3.
In this regime, the system forms coexisting glassy and
flowing shear bands. At the lowest applied shear rates,
the stress does not have time fully to attain the plateau
value before the strain rate is swept on to a higher value.
This accounts for the reduced stresses at the far left hand
edge of the plot. As would be anticipated, this reduction
is pushed to smaller shear rates for slower ramp rates.
For shear rates γ̇ > 0.3 the system flows homogeneously
on the fluid branch of the constitutive curve.

A remarkable feature of Model 2, not seen in Model 1,
is that the constitutive curve σ(γ̇) remains multivalued
down to γ̇ = 0 where a quiescent glass at x = x0 and a
fluid phase at x1 = x0 + ãΓ(x1)/Γ0 both exist [19]. If a
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FIG. 4: Dashed lines: constitutive curve σ(γ̇) for Model 2
with x0 = 0.15, ã = 3.75. Symbols: WTMC data (n =
100, m = 1000, λ = 0.5∆) for up/down strain-rate sweeps
(left-pointing and right-pointing triangles respectively); tr =
200, 400, 800 (thin, medium, bold symbols), initialized in a
homogeneously aged state of tw = 104. Dotted line, as guide
to the eye, the quasi-steady stress attained at long times in
shear startup for γ̇ ≤ 0.1 in the shear banding regime.

system is prepared on the fluid branch at high γ̇, then
barring macroscopic nucleation events (which do not oc-
cur at measurable rate in our numerics), the shear rate
can be ramped down to zero while maintaining homoge-
neous fluidity. The same applies to the downward part
of an upward then downward shear rate ramp, as shown
by the left-pointing triangles in Fig. 4. Apart from the
absence of nucleation, which we assume would cause a
sweep-rate-dependent escape from the fluid branch on
down-ramping the strain-rate, the WTMC data in Fig.4
intriguingly resembles that reported experimentally in
[14].

Note more generally that nucleation events are hard
to capture in numerics (see e.g. [20]) and their absence
from Model 1 might give, for instance, small shifts in the
tw-dependent σc found there. However, the qualitative
features of both models appear robust to such effects.
Numerical difficulties also impede detailed study of the
limit x0 → 0, which might be the realistic limit when
true thermal noise is negligible [7]. While qualitatively
similar flow curves should arise, this limit of the standard
SGR model is semi-deterministic (the element of lowest
barrier height is always next to yield – reminiscent of
extremal models of self-organized criticality) so that the
treatment of yield-induced noise becomes more delicate.

In conclusion, we have presented an extended SGR
model for soft glasses under flow, in which the noise tem-
perature x varies to reflect the dependence of local jump
rates on yield events elsewhere within the sytem. Two
versions of the model offer a connection to the physics
of viscosity bifurcations (Model 1) and star polymer col-
loids (Model 2), neither of which could previously be ac-
counted for within a simple (uniform x) SGR framework.
So far, our numerical work has addressed only the case of
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periodic boundary conditions. Very recent experiments
however emphasise the perturbing influence of bound-
aries [21], which might or might not be linked to their
effects on the noise temperature; we hope to explore this
in future work. Meanwhile, we believe that mesoscopic
models, such as those developed here, continue to offer a
useful compromise between first principles [2] and fully
phenomenological approaches [3, 4, 14] to the rheology
of nonergodic soft matter.
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