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- Abstract - 

We study the low frequency stress response of aqueous foams, subjected to oscil

the strain amplitude is progressively increased starting from zero, the initially lin

response becomes nonlinear as yielding sets in. To characterize this crossover fr

liquid-like behaviour quantitatively, the full harmonic spectrum of the stress is m

the free surface of the foam sample in a Couette cell using video microscopy. These observations 
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1. Introduction 

Aqueous foam is a metastable disordered complex fluid, constituted 

closely packed in a surfactant solution. It behaves like a viscoelastic solid

Newtonian liquid, depending on gas volume fraction and applied stress [1-3

reported here, we focus on the nonlinear viscous, elastic and plastic response of 

flow has been probed experimentally and interpreted in terms of interactions on the bubble scale 

[4-7]. Insight into the physical processes explaining the transient dynamics that

onset of yielding requires additional experiments. Such information can be gai

oscillatory strain so that the sample switches back and forth between solid-like

behaviour on well defined scales of time and strain amplitude. Previous studies of th

components of stress and strain [8,9] and discussed in terms of a strain ampl

complex shear modulus. However, much additional information is contained in 

harmonics, or equivalently in the Lissajous representation showing the evolution

strain with the time as a parameter [10]. Indeed, for a fixed strain amplitude and frequency, the 

predominantly elastic sample is of viscous or plastic origin. In contrast, a Lissajous plot does 

directly allow such a distinction since it exhibits a characteristic signature of

response. It has the shape of an ellipse for viscous dissipation or of a parallelo

dissipation. Therefore, Lissajous data provide the opportunity to test physical

of gas bubbles 

 or like a non 

]. In the work 

3D foams at the 

shear-induced transition between solid-like and liquid-like behaviour. Non Newtonian steady 

 accompany the 

ned by applying 

 and liquid like 

e oscillatory 

foam response as a function of strain amplitude were focussed on the fundamental harmonic 

itude dependent 

the spectrum of 

 of stress versus 

complex shear modulus alone does not allow to distinguish whether the dissipation of a 

 the non linear 

gram for plastic 

 foam rheology 

models predicting the onset of plastic response with increasing strain amplitude, corresponding 

on the local scale to the onset of strain induced irreversible bubble rearrangements. The 

evolution of the complex shear modulus with strain amplitude also provides information about 

the mechanisms involved in the sample deformation, but the following example shows that such 

evidence alone can be misleading. In a recent experimental study of a biological yield stress fluid 
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[11] the complex shear modulus was found to be almost independent of strain amplitude up to 

ain hardening is 

esent paper the 

on from solid-like to liquid-like behaviour, 

detecting for the first time the full stress harmonics spectrum.  

Rheological studies of flowing foam, at a macroscopic scale, require great care, because 

ndaries, can be 

e that solid-like 

known as flow 

 are not yet 

clear [4,5,7,8,12-14], a reliable interpretation of engineering strain in terms of local strain 

requires in-situ observation of the sample defo ent. We 

re the flow is 

overview of non 

linear rheological data for foams and concentrated emulsions. In section 2.2, we present 

ical 

 been predicted. 

 (SGR) model and a simple elasto-plastic model fulfil this 

criterion. Section 3 describes the sample preparation and the experimental procedures are given 

in sections 4 and 5. In section  6, experimental and theoretical results are compared and discussed 

in the framework of other recent experiments. On this basis, directions for further development 

of foam rheology models are pointed out.  

 
2. Previous nonlinear rheological experiments and models 

 

the yield strain so that one might have expected that the rheological response is linear in this 

entire range. Remarkably, a Lissajous plot revealed that this is not true: strong str

observed within each strain cycle. Motivated by this context, we study in the pr

oscillatory response of 3D foam at the transiti

the engineering strain, deduced from the relative motion of the sample bou

different from the local strain relevant for physical models, and it is possibl

region and liquid-like region coexist in the same sample. This phenomenon is 

localization [7,12]. Since the conditions under which the flow of foam is localized

rmation during the rheological experim

follow this approach and identify the limits of the range of strains whe

homogeneous.   

The paper is organized as follows: In section 2.1, we first provide a brief 

theoretical models and we focus on those where in addition to conventional rheolog

characteristics, the full harmonics spectrum of the oscillatory stress response has

So far, the soft glassy rheology

 3



 
2.1. Experiments probing nonlinear rheology of 3D foams and concentrated emulsions 

ear rheological 

 been studied by 

d to strain steps 

superimposed to such a constant strain rate [13]. These data alone do not fully characterize the 

tress overshoot 

een probed by 

in, the stress is 

mplitude is 

increased nonlinear response such as shear induced normal stresses sets in [18]. Beyond the yield 

ar modulus as a 

 the yield strain 

ld as a function 

ndence can 

be explained in terms of a structural relaxation time which depends on strain amplitude [9]. 

However none of these oscillatory experiments make use of the information contained in the 

harmonics spectrum of the stress response, which provides the signature of the physical 

 consequence of 

stress heterogeneity. For example, if a steady torque is applied in a cylindrical Couette geometry, 

the stress increases with decreasing distance from the inner cylinder. If the stress remains larger 

than the yield stress only in the vicinity of this cylinder, localized flow sets in. Previous authors 

have ruled out other forms of localized foam flow because they obtained compatible results in 

 
- Experiments probing the solid-liquid transition. Experimentally, the nonlin

response of 3D foam at the transition from solid-like to liquid-like behaviour has

measurements of the stress response to a steady applied shear rate [4-6,15], an

nonlinear response: As the sample passes from solid-like to liquid-like behaviour, there is 

transient behaviour, evidenced by viscosity bifurcation dynamics [16] and the s

reported in shear start-up experiments [15]. Transient dynamics have also b

applying oscillatory strain [8,12,17]. At amplitudes far below the yield stra

sinusoidal and its amplitude scales linearly with strain amplitude. When the strain a

strain, there is a crossover of the real and imaginary parts of the complex she

function of strain amplitude. This feature is often used as a criterion to determine

[8]. Moreover, oscillatory experiments probing how soft disordered materials yie

of strain rate amplitude have recently shown that frequency and strain amplitude depe

processes involved in dissipation, as explained in the introduction. 

- Flow localization. Flow localization of a yield stress fluid can occur as a direct
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different rheological geometries [4,8]. Multiple light scattering studies of the flow profile in 

ple surface for 

ry [5] provided 

with 3D foams 

uence of stress 

heterogeneity. Coexistence of solid-like and flowing regions has been observed inside dry 3D 

foam undergoing steady planar shear start-up flow where the stress is homogeneous [14]. 

Moreover, MRI observations of the flow in the cylindrical Couette geometry have shown that 

Couette experiments [4] and observation of the bubble motion at the free sam

samples obtained with a variety of foaming solutions in the plate-plate geomet

additional evidence in favour of this conclusion.  However, other experiments 

have evidenced flow localization that cannot be interpreted as a direct conseq

steady flow is impossible below a critical strain rate cγ&  [7]. This means that for an engi

strain rate smaller than c

neering 

γ& , part of the sample must remain solid-like whereas an

at a shear rate

other part flows 

cγ& . At strain ratesγ&  larger than cγ& , the stress was found to scale with γ&  following a 

power law. In oscillatory shear experiments, shear localization in the middle of the gap has been 

obs  is highest in the 

 been studied by 

3D foams. 

teady 

shear experiments using a Couette cell [19]. For emulsions with dispersed volume fractions well 

re dilute emulsions, the flow was found to be 

in localization 

was found only in the presence of attractive interactions between the droplets [20].   

           2.2 Models for the rheology of soft disordered materials 

Fluidity models are based on a scalar measure of the “degree of jamming” or structural 

relaxation time, coupled to the flow history of the material: Flow breaks up the jammed structure 

and reduces the viscosity. In contrast, aging re-establishes the jammed structure and enhances the 

viscosity [21-23]. The most detailed approach of this kind is based on a Maxwell equation 

erved [12]. This is an unexpected form of flow localization because the stress

vicinity of the inner cylinder. Let us note that the flow of 2D foams has recently

many authors, but we will not discuss this work in the present paper focussed on 

The flow profile at the free surface of concentrated emulsions has been studied in s

above 0.7, localized flow is reported whereas in mo

homogeneous [19]. In other recent steady flow experiments with emulsions, stra
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t a Gσ σ γ∂ =− + &  where the parameter a is the fluidity [22]. Aging and shear rejuvenation are 

ral evolution of 

 heterogeneities 

 the sense that they are 

ample.   

The SGR Model - The soft glassy rheology (SGR) model is motivated by the strikingly similar 

 

iour in terms of 

rge compared to 

 in detail and so 

e 

time, the mesoscopic length scale is chosen small enough to capture spatial variations of local 

stra upling between 

copic regions in 

elements of the 

material, each of which is characterized by its local yield energy density E and strain l, the latter 

ed to deform 

l elastic energy 

ken to be of the 

 uniform across 

pt time 

1/τ0, and an activation factor determined by the difference of the actual elastic energy to the yield 

value. After a yield, elements are taken to have zero local strain (l=0) relative to a new local 

equilibrium configuration, as well as a new yield energy drawn randomly from some fixed 

distribution ρ(E). This distribution one presumes to be of exponential form, 

expressed by a non-linear differential equation that describe the spatial and tempo

a, as well as its coupling to stress and strain rate. This model predicts flow

reminiscent of shear banding, but which are not intrinsic to the sample in

dependent on the boundary conditions for the fluidity at the walls confining the s

rheology of foams, emulsions pastes and other close packings of small soft units, suggesting that

a generic mechanism may be involved. The model explains the rheological behav

the dynamics of mesoscopic elements [24,25]. They are chosen sufficiently la

the bubbles, grains or droplets so that the local packing structure is not resolved

that the local strain, stress and yield stress of an element are well defined quantities. At the sam

in, stress and yield stress. The SGR model uses a simple mean field co

mesoscopic and macroscopic stress and it describes interactions between mesos

terms of an effective noise temperature, denoted x.  

In more detail, the SGR model describes an ensemble of mesoscopic 

being measured relative to a local equilibrium configuration. Elements are assum

elastically, with l incrementing in step with the global strain γ, until their loca

reaches values of order E; they then yield stochastically. The elastic energy is ta

simple quadratic form kl2/2, with k a local elastic constant that is assumed to be

the material for simplicity. The yield rate is the product of a microscopic inverse attem
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( ) )/exp()/1( 00 EEEE −=ρ  for E>0. The mean E0 of this is used to make the effective 

e parameter x dimensionless, i.e. the energy (density) available for activation is 

wri

 the master equation for the 

probability P(E,l,t) of a given element having yield energy d rain t:  

temperatur

tten as xE0. 

Mathematically, the above assumptions are summarized in

 E an st l at time 

)()()(2/exp1)(
.

EltYPklEPtP ρδ
τ

γ +⎟⎟
⎞

⎜⎜
⎛ −
−−

∂
∂

−=
∂
∂          

elements that do not yield, according to γ=l . The second gives the decreas

0

2

0 xElt ⎠⎝
          (1) 

The first term on the right corresponds to the uniform increment in the local strains of all 

e in probability due 

to y ts are ``reborn'' 

Once P(E,l,t) has been determined, the global stress Σ is taken as the average of all local 

stre nalytically for a 

ions for Σ(t) and 

x=1 

[25, 26]. For smaller x and in the absence of steady shear, the system continues to evolve without 

ted 

can be reasonably fitted using values of x greater than unity. Consequently we will focus 

on t e amplitude and 

0 see Sec. 4 for 

definitions) can then be found by solving the constitutive equation numerically as outlined in 

Ref. [26]. 

We briefly discuss which parameters appear when fitting predictions of the SGR model to 

experimental data. The elastic (G') and viscous (G'') components of the complex modulus 

..

ielding, and the third the corresponding increase in probability when elemen

after a yield; the factor Y(t) can be found from the requirement of conservation of probability. 

sses kl across this distribution. It is possible, in fact, to solve for P(E,l,t) a

given strain history γ(t), and this leads to two coupled constitutive integral equat

Y(t) [24]. 

One can show that a glass (or jamming) transition takes place in the SGR model at 

ever reaching equilibrium: it ages. We will see, however, that the experimental data presen

below 

he steady state predictions of the model. For oscillatory strain in particular, th

frequency dependent complex shear modulus G*(Γ ,ω) and the residual q (

 7



G*=G'+iG'' both scale with the local elastic constant k; this can be eliminated by normalizing by 

ω. The 

ess combination 

 strain Γ 0/ΓSGR; 

the linear response limit value (denoted G below) of G' at each given angular frequency 

dependence on frequency of the SGR predictions is through the dimensionl

Ω=ωτ0. Similarly, the dependence on the strain amplitude Γ0 is through a scaled

the relevant scale is set by kES /=Γ 0GR . The fitting procedure therefore involves finding 

optimal values for x, Ω and ΓSGR.  The result cannot be cast in any simple explicit form but 

 

 association of 

enologically the 

 deformation is 

quasistatic, viscous effects vanish and elastoplastic behaviour is expected to be dominant. In this 

case, foam may be mimicked by a spring connected in series with a slider. The spring represents 

r schematically 

o a force whose 

 (cf. Figure 1b). 

respond to the stress Σ and the 

yield stress Σ  where plastic flow sets in.  To our knowledge, the first analytical prediction of the 

ed in [28]. The 

es and to fit the 

enological yield 

function have been introduced [26,27]. A similar model has also recently been proposed in the 

context of complex polymeric fluids [30]. To summarize, these viscoelastoplastic models 

involving springs, sliders and viscous elements do not explain the physical mechanisms involved 

in foam rheology on the bubble or mesoscopic scale, but they have the merit of providing simple 

examples of the variation of G* with amplitude can be found in section 6.4 below.

 Viscoelastoplastic models - Several constitutive laws [1,26-29], based on the

springs, sliders and viscous elements, have been proposed to describe phenom

homogeneous flow of complex yield strain fluids similar to foams. If the

the static elastic response, characterized by a shear modulus G, whereas the slide

describes the yielding (cf. Figure 1a). It behaves as a rigid link when subjected t

magnitude is below a threshold and it slides freely for forces of larger magnitude

In a material, the force and its threshold value respectively cor

y

stress response to an oscillatory strain of an elastoplastic material is present

complex modulus and the stress harmonic spectrum are given in the appendix.  

To introduce schematically viscoelastic behaviour at low strain amplitud

yielding transition more accurately, an additional viscous element and a phenom
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constitutive laws where the information contained in experimental data is reduced to a relatively 

eters. However, they are restricted to flow regimes where strain 

localization does not occur.  

3. Samples  

negligible over the duration of a rheological measurement. We study Gillette shaving cream 

terature [2]. Its 

nd of foam that 

t-based aqueous 

]. This solution 

contains 1.5% g/g sodium α-olefin sulfonate (AOK, Witco Chemicals), 0.2% g/g Polyethylene-

5 -1

gen containing 

am samples is 

o mimimize the 

rheological memory of the flow history due to sample injection into the rheometer, Gillette 

samples are allowed to coarsen for either 30 or 60 minutes before the experiment is started. This 

 28 µm and 36 µm respectively. For AOK foam, the 

exp e diameter is 50 

µm.  Note that AOK foams coarsen much more slowly than Gillette foams. 

 

4.  Rheological experiments and data analysis 

Immediately after its production, the foam is injected into the cylindrical Couette cell of a 

rheometer (Bohlin CVOR-150) with an inner radius ri = 21 mm, an outer radius ro = 25 mm and a 

rotor height H=48 mm. To prevent wall slip, closely spaced 0.2 mm deep grooves parallel to the 

small number of param

 

We use stable foams for which drainage, coarsening and bubble coalescence are 

which has been used in many rheological experiments published in the li

measured gas volume fraction is 92.5 ± 0.5 %.  We also investigate a second ki

will be called AOK. It is generated by injecting a gas and a polymer-surfactan

solution into a column filled with glass beads, as described elsewhere [14

oxide (Mw = 3 x 10  g mol , Aldrich) and 0.4% g/g dodecanol (Aldrich). Its surface tension and 

viscosity are similar to those of the Gillette foaming solution. The gas is nitro

perfluorohexane vapour. The measured gas volume fraction of the AOK fo

97.0 ± 0.3 %. All experiments are performed at a temperature of 21 ± 1 °C. T

leads to average bubble diameters equal to

eriments are done 20 minutes after sample injection when the average bubbl
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axis of the cylinders are carved into the surfaces in contact with the foam. The air in contact with 

le has aged as 

tating the inner 

 amplitude Γ0 is 

constant, lasting 

5 seconds for 1 Hz and 10 seconds for 0.3 Hz. The rheometer is operating in a controlled strain 

mode. During the experiment it records as a function of time the engineering strain 

Γ(t)= Γ0 Re[exp(-iωt)] which is deduced from the angle of rotation of the inner cylinder θ(t) as :   

 

the samples is saturated with humidity to avoid evaporation. When the samp

described in the previous section, we apply a sinusoidal shear strain by ro

cylinder. The frequency ν =ω/2π, is fixed either to 1 Hz or 0.3 Hz and the strain

increased from 10-3 to 3. This sweep is divided into steps where the amplitude is 

( ) ( )

2 2

3

8 ( )

i o i o

r r t
r r r r

θ
+ −

Note that for linear elastic or Newtonian materials, this macr

( ) i otΓ =  (2) 

oscopic quantity is equal to the 

strain in the middle of the gap. The rheometer

 

 also records the shear stress in the middle of the 

gap Σ(t) which is deduced from the torque M(t) applied to the inner cylinder:  

2

2 ( )M t( )
( )o i

t
H r rπ

Σ =
+

 (3) 

To first order in (ro – ri) / ri, this stress is equal to the spatia y ave ged  the sample, and 

alyze the stress 

ll ra  stress in

in the following, we will neglect the distinction between these two stresses. To an

data, we decompose them as follows: 

( ) ( ) ( )Re i tt G e tω⎡ ⎤Σ = Γ + ΔΣ   0 0* ,ωΓ⎣ ⎦            (4) 

The first term is the fundamental harmonic component. It is related to the applied strain 

via ( )0* ,G ωΓ

in. Note

, defined as the ratio of the fundamental harmonic components of shear stress and 

stra  that in the limit of small strain amplitude ( )0* ,G ωΓ

r modulus. The second term

 does not depend on Γ0 and 

converges to the usual linear complex shea  in Eq.(4), ( )tΔΣ , 

contains the contributions of all the higher stress harmonics: 
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( ) ( )
2

cosn n
n

t h n tω ϕ
∞

=

ΔΣ = +∑  (5) 

where  

 ( )
2 /

0
n ω ∫

As shown in Figure 2 the third harmonic (n = 3) provides the dominant part of the nonlinear

i n th e t dt
π ω

ωπ −= Σ  (6) 

 

response, and contributions from harmonics where n is even or greater than 9 are found to be 

insignificant. To quantify the non linearity of the rheological response in a global way, we define 

the stress residual q as the dimensionless root-mean-square variation of ( )tΔΣ :  

 
( )

( )

4
2

2 2 1
1

2
2 2

1 2 1

i
i

i

t dt
q

t dt h h

+
=

+

ΔΣ
= =

Σ +

∫
4

1i

h

=

∑

∫
(7) 

e nevertheless 

corded strain signal Γ(t) which should ideally be perfectly sinusoidal. 

Its anharmonic residual, defined in analogy with q, is found to be smaller than 0.002. Therefore, 

we conclude that nonlinear stress response with 

surface between 

ming 

solution. When oscillatory shear is applied by rotating the inner cylinder, the bubbles move to a 

good approximation on trajectories whose radial coordinate r is constant (cf. Figure 3). The 

black line is used as a tracer and we record its deformed shape as a function of time using a CCD 

camera. The curvilinear displacement of tracer points along their circular trajectories is observed 

∑
 

In our experiments, q is almost equal to the amplitude of the third harmonic. W

discuss our data in terms of q to provide a connection with the SGR model.  We also analyse the 

Fourier spectrum of the re

q well above 0.002 is due only to the nonlinear 

rheological response of the foam. 

 

5. Measurement of the local strain and stress 

Before the shear experiment we draw a black radial line on the free foam 

the two cylinders, using a suspension made of carbon black particles dispersed in the foa
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as a function of r and time t. For r = ri, the bubbles move within experimental accuracy at the 

r = ro they are immobile. This observation excludes 

any

 one oscillation 

noted s0(r). The 

0 unction by the following expression, 

applied for a closely spaced set of radii, covering the range i o  

same velocity as the inner cylinder and at 

 wall slip.  

We focus next on the amplitude of the bubble displacements during

period. The amplitude of the curvilinear bubble displacement at a radius r is de

local shear strain amplitude γ (r) is extracted from this f

r < r < r :  

0 0
0

( ) ( )s r s r
r r

( )rγ ∂
= −      (8) 

a tangent to the 

 is not accurate 

for r very close to either ro or ri and the corresponding points are omitted. The second term that is 

subtracted on the right hand side represents the change of s  with r expected for a rigid rotation 

0 and σ0(r) the amplitudes of the 

fundamental harmonic components of the  σ at a radius r. 

Since inertial forces acting on the foam are negligible in the investigated range of frequencies 

 in view of Eq.(3) they are related as follows [31]:  

∂

The derivative in this expression is evaluated approximately by constructing 

experimental s0(r) curve. Due to the imperfection of the tracer, this construction

0

without any strain.  

Similarly, we can look at stress amplitudes, denoting Σ

 shear stress Σ(t) and of the local tress s

and strain amplitudes, and

( )0 0 2

( )o ir rrσ +
= Σ      

2

4r
 (9) 

 

6. Results and discussion 

6.1. Onset of strain localization - To monitor flow homogeneity we observe the bubble 

motion at the free surface of Gillette samples as described in section  5. As a reference, we 

calculate the displacement s0(r) for a Newtonian fluid or a linearly elastic solid. In both cases the 

displacement amplitude s0(r), normalized by the displacement amplitude of the rotor, s0(ri) is 

predicted by: 
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( )
( )

0

0 i

s r BAr
s r r

= +       ( ) 

nd ro. Figure 4a 

tte foam during 

Γ0 = 0.3 and 0.5 

0 = 0.7 there are 

deviations larger than the error bar. These results are further analyzed in Figure 4b where the 

q (8). For a 

e stress. In 

r the middle of 

the gap where the local strain reaches  2 Γ . This is the signature of strain localization, setting in 

mplitude of 0.9 

ofile, indicating 

rotor because in 

presented in Figure 4 was carried out only for one type of foam sample but qualitatively, strain 

an about 0.6 is 

ndrical Couette 

from the axis the cylinders, localization 

1. Thus, we can 

exclude stress heterogeneity as the direct origin of the observed localization. Moreover, at least 

in simple shear and steady flow, the fluidity model outlined in section 2.2 predicts flow that is 

localized in the vicinity of boundaries, contrary to our observations.  

These features demonstrate that for the foams investigated here, there exists a regime of 

localized oscillatory flow which is explained neither by stress heterogeneity, nor by fluidity 

10

where the constants A and B are chosen to fit the boundary conditions at ri a

compares Eq. (10) to the normalized displacement amplitudes measured for Gille

a strain amplitude sweep.  In view of the experimental uncertainty, the data for 

are in good agreement with Eq. (10). However, for the largest amplitude Γ

local strain amplitude γ0(r) is derived from the measured values of s0(r) using E

linearly elastic material or a Newtonian fluid, γ0(r) is expected to scale with 1/r2, as th

our geometry, this implies γ0(ri) ≅ 1.20 Γ0 and γ0(ro) ≅ 0.85 Γ0, in rough agreement with our data 

for Γ0 = 0.3 and 0.5. However, for Γ0 = 0.7 the deformation has a maximum nea

0

above Γ0 = 0.6 ± 0.1 as reported previously [12]. Moreover, above a strain a

± 0.1, we systematically observe a sharp discontinuity in the displacement pr

strongly localized strain as shown in Figure 5. The picture is blurred close to the 

this region the bubbles motion is faster than close to the stator. The quantitative analysis 

localization only close to the middle of the gap for strain amplitudes larger th

observed for all of the investigated foams and frequencies. Since in cyli

geometry, the stress increases with decreasing distance 

would a priori be expected close to the inner cylinder as mentioned in section 2.
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models. Our results also show that this localized flow only sets in at strain amplitudes well above 

ime where it is legitimate to 

com

educe from our 

 amplitude γ0(r). 

0 0 alized 

by the yield stress Σ  which is determined as explained in section 6.3. For Γ  < 0.6, all the data 

 is indeed valid. 

 previous MRI 

ng in a Couette geometry that in regions of the 

order of 25 bubble diam xperiments 

this would correspond to a significant fraction of the gap.  

At strain amplitudes Γ  larger than 0.6 there clearly are deviations between local and 

 to a wide range 

t the observed strain localization is not 

induced by the stress variation in the gap. Moreover, it is consistent with the coexistence of 

liquid-like and solid-like regions reported in [32]. This finding is robust with respect to changes 

(t) versus Σ(t) is 

s found for all 

investigated samples. At small amplitudes, the plot has an elliptic shape (Figure 7b), as expected 

for linear viscoelastic behaviour. With increasing strain amplitude, a cross over to a 

parallelogram shaped Lissajous plot is observed, as expected for elastoplastic materials (Figure 

7b) (for further details see the appendix), and in qualitative agreement with Lissajous plots 

the yield strain. As a consequence, there is a well defined reg

pare our data to models of yielding that do not predict flow localization. 

6.2. Local constitutive relation - We now use Eq. (8) and Eq. (9) to d

observations the constitutive law relating local stress amplitude σ0(r) and strain

In Figure 6, this relation is compared to the one between Σ  and Γ . Here stresses are norm

y 0

are consistent, showing that in our case the continuum description of foam flow

This verification is necessary, since it has been suggested on the basis of

measurements of Gillette foams steadily flowi

eters, the continuum description can break down [7]. In our e

0

macroscopic rheological behaviours. Indeed, a narrow range of σ0(r) corresponds

of γ0(r). This local rheological behaviour confirms tha

of liquid volume fraction and bubble size in the investigated range.  

 

6.3. Nonlinear rheological response – A typical Lissajous plot showing Γ

shown in Figure 7a for a Gillette sample. The same qualitative behaviour i
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predicted in the framework of the SGR models [24]. A variety of complex fluids showing similar 

t and steep parts 

 and solid-like 

 this behaviour 

ponents of stress and strain from 

which we deduce the amplitude dependent complex shear modulus G*(Γ0 , ω) = G’(Γ0 , ω) + i 

 G’(Γ0 , ω) 

 by a constant 

here G’(Γ0 , ω) 

 regimes is used 

to estimate the yield stress Σ  as illustrated by the geometrical construction. Similar criteria have 

ss in 3D foams 

on Σy = |G*(Γy, 

 0.15 ± 0.01 for 

Gillette foam, and Γy = 0.22 ± 0.02 for the AOK foam. Figure 8a and Figure 8b show the 

evolution of the elastic and loss moduli normalized by G as a function of the normalized strain 

-like behaviour 

ω) close to the 

maximum of G”(Γ0 , ω).  Our results are in qualitative agreement with previously reported data 

for moderately dry foams [8,12] and concentrated emulsions [33]. Let us recall that G scales as 

surface tension divided by mean bubble radius and that the complex shear modulus at low 

frequency scales as G. Therefore, the normalization by G allows variations in average bubble 

behaviour have been classified in a phenomenological survey of large amplitude oscillatory 

strain responses [10]. These materials typically present a yield stress, and the fla

of the Lissajous diagram for large strain amplitudes correspond to liquid-like

response which alternately predominate during the oscillations. To analyze

quantitatively, we first focus on the fundamental frequency com

 

G”( Γ0  , ω) defined in Eq. (4).  The insert of Figure 8a shows the typical evolution of

with stress amplitude Σ0. There is a linear regime at small Σ0, characterized

modulus that will be denoted G, and followed by the non linear regime w

decreases following a power law. The intersection between these two asymptotic

y

been used in many previous studies to detect yielding [8,10,19]. The criterion that we use here 

has been shown to be consistent with other methods for detecting the yield stre

[12]. From this estimation, we derive the yield strain amplitude using the relati

ω)| Γy. Within the studied range of frequency and bubble size, we obtain Γy =

amplitude Γ0/Γy.  We notice the evolution of G* with strain amplitude usually observed for 

foams: At small Γ0  a solid-like regime where G”(Γ0 , ω) << G, at large Γ0  liquid

with G’(Γ0 , ω) << G”(Γ0 ,ω) and a crossover between G’(Γ0 , ω) and G”(Γ0 , 
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size between different samples to be taken into account. For Γ0 < Γy, only the normalized 

Γ0 , ω) is smaller 

s in gas volume 

Γ0 > Γy  the G* 

oth investigated 

bubble sizes superimpose to a good approximation. Remarkably, at the strain amplitude where 

n the curves 

tion induced by 

ince they set in at well separated strain 

amp of yielding and 

tion in ste

Finally, we plot in Figure 9 the anharmonic residual stress q defined in Eq. (7). For strain 

Γ Γ it of 

 more than one 

es where strain 

Γ0 , ω) which is 

very similar for Gillette and AOK foam for Γ0 > Γy, the respective stress residuals are clearly 

distinct: q rises much faster with strain amplitude for AOK foam compared to Gillette foam. We 

fina quency of 1 Hz 

ts related to the 

 

6.4 Comparison of our data with models – To introduce the discussion of specific 

models, we first recall recent measurements showing that the complex shear modulus of foams 

scales with strain amplitude and frequency as expected if a single structural relaxation time 

G’(Γ0 , ω) data are similar for all kinds of foams, whereas the normalized G’’(

for AOK foam than for Gillette foam. This can be explained by the difference

fraction [8] and rate of coarsening induced bubble rearrangements [34,35]. For 

data obtained at 1 Hz and 0.3 Hz with AOK foam and with Gillette foam for b

the onset of localized flow is observed, there are no distinctive features o

representing the G* data. Moreover, we notice that yielding and strain localiza

oscillatory deformation are clearly distinct phenomena, s

litudes. This result is qualitatively consistent with previous observations 

localiza ady shear start-up experiments with dry foam [14].   

amplitude 0 << y, the observed small level of anharmonicity is too close to the lim

detection to be interpreted quantitatively. However, for Γ0 ≥ Γy, q increases by

order of magnitude as the strain increases by a factor of 3. At amplitud

localization sets in, the residual stress saturates. In contrast to the modulus G*(

lly note that the stress residuals measured for an applied strain oscillation fre

and 0.3 Hz are very similar. These latter findings strongly argue against artifac

limited frequency bandwidth of the rheometer.  
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dependent on strain rate amplitude, governed the stress relaxation and the rearrangement 

n a strain cycle. 

n analogy with 

 rearrangements 

that relax stress and that occur randomly in time would lead to Maxwell liquid behaviour. (Here, 

gements is 

 approximately 

s clearly have a 

to the highest 

 shaped 

plot arises because rearrangements typically occur only if enough elastic energy has been built 

us to refine the 

n the following 

 to compare our 

yond the scope 

of the present paper.  A similar remark applies to models based on a minimal strain rate [23] 

whi not yet capture 

models to be 

 
Comparison with viscoelastoplastic models – For elementary elastoplastic behaviour, an 

analytical calculation first presented in [28] and recalled in the appendix predicts the stress 

response to oscillatory shear, given by Eq. (15). At strain amplitudes Γ0 >> Γy, this result reduces 

to asymptotic power law decays: 

processes on the bubble scale.  This relaxation time characterizes the dynamics globally, but it 

does not indicate how bubble rearrangement events are distributed in time withi

This is a new feature that our harmonics (or Lissajous) data allow us to probe. A

the Green Tobolsky model [36] well known in polymer rheology suggests that

we make the simplifying assumption that foam elasticity in the absence of any rearran

linear).  For a Maxwell liquid the Lissajous plot has an elliptical shape. This is

true for strain amplitudes up to the yield strain, but at higher amplitudes the plot

different shape, resembling a parallelogram. We find this behaviour up 

investigated strain amplitudes where we observe flow localization. The parallelogram

up locally. Our data contain the signature of this process, and therefore allow 

physical description of the process of yielding. On this basis, we discuss i

paragraphs the elastoplastic and SGR models.  It would also be of great interest

data to fluidity models, but this would require complex calculations which are be

ch successfully describe steady foam flow. In their present form, they do 

transient visco-elastic effects. Further theoretical work allowing additional 

compared to our data would be of great interest.  
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Note that the full analytic solution presented in the appendix shows that Eq. (11) is already 

reached at strain amplitudes close to Γy  whereas the asymptotic power law for G”( Γ0, ω) is 

 of Γ0/Γy. The 

oduli data only 

0 y 0 y

mainly due to coarsening induced bubble rearrangements which are not taken into account by 

reover, it is remarkable that the predictions of the elastoplastic model 

still e might identify 

 with the part of 

The merit of the elastoplastic model is to predict the non linearity of G*( Γ0, ω) with 

 on the scale of 

bubble radius R 

hen the foam is sheared. Yielding in foams 

and emulsions is due to bubble or droplet rearrangements that arise when, under the effect of an 

applied strain, unstable configurations are created. Dimensionally, the yield stress also scales as 

Τ /R.  The quantitative evolution of yield strain and elastic shear modulus with gas volume 

fraction has been described by phenomenological expressions [8]. 

Γ = ⎜ ⎟⎜ ⎟Γ⎝ ⎠
     (12) 

reached only at strain amplitudes more than a decade larger than Γy. Figure 8a shows good 

agreement between Eq. (11) and the experimental data in the whole range

prediction for G”( Γ0, ω) given by Eq. (15) is in good agreement with the loss m

for Γ /Γ  >1 (cf. Figure 8b). This is consistent with the fact that, for Γ /Γ  << 1 the dissipation is 

this elastoplastic model. Mo

 hold in the regime where we observe a cross-over to localized flow. Here, on

the slider of the model with the region where the shear is localized and the spring

the foam that may remain elastic.  

strain amplitude using only two free parameters G and Γy whose physical origin

the microstructure is known [1]. The scaling of G with surface tension T and 

arises from the change of interfacial energy induced w
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Despite its success in describing the behaviour at large strain amplitudes, basic 

arp transition 

e, the predicted 

easured data, as 

 Γ0 close to Γy. 

All these features suggest that a distribution of yield strains is necessary to describe the data 

 

modulus data to 

this framework 

 used to predict 

 close to Γy, is 

elastoplasticity a good concept for modelling foams accurately. A second shortcoming of the 

entally observed 

 the plastic and 

to be fitted at a 

 G*(Γ0) over an 

extended range of frequencies. Indeed, it reduces to a Voigt model in the linear viscoelastic 

reg ntally observed 

 high frequency 

 
-  Comparison with the SGR model. For noise temperatures x close to 1, the SGR model 

predicts a strain amplitude dependence of the shear modulus similar to the experimental results 

shown in Figure 8. The ratio G”( Γ0  , ω)/ G’(Γ0 , ω) at low strain amplitude and low frequency is 

predicted to depend on x as follows: 

elastoplasticity remains an incomplete phenomenological model. It predicts a sh

from linear elastic behavior to plastic flow as a function of Γ0. As a consequenc

anharmonicity for strain amplitudes just above Γy is much larger than the m

shown in Figure 9. A related weak discrepancy appears in the decay of G’ with

more accurately. Marmottant et al have recently introduced a phenomenological yield function

that describes such a distribution and which allows experimental complex shear 

be fitted accurately [27]. Explicit predictions for the anharmonicity derived in 

have not yet been published. Only if the same distribution of yield strains can be

strain amplitude dependencies of both the stress Fourier spectrum and G*

basic elastoplastic model is that it does not account for the dissipation experim

for Γ0 <<  Γy. To describe this feature, a viscous element connected in parallel to

elastic elements of the model has been proposed [27]. It allows the foam data 

given frequency, but this model is not able to predict the experimentally observed

ime, which is incompatible with the Maxwell liquid behaviour experime

[13,34,37,38] at low frequencies and the power law increase G* ∼ ω1/2 found at

[13,37,39].  
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0
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G x
G

ω π⎛ ⎞ 
ω

Γ
= −⎜ ⎟Γ ⎝ ⎠

 (13) 

bble sizes and 

he relation (13) 

hese values then 

cy Ω will not 

necessarily be small enough for Eq. (13) to apply exactly. In practice, we fit x and Ω to the data 

he height of the 

plat GR is then fitted 

afterwards to reproduce the experimental value of the strain where the maximum of G''/G occurs. 

The best fits obtained in this way are for x =1.08 (Gillette) and x =1.05 (AOK), close to 

x within 

r a rather broad 

y via Ω = 2πντ0 

= 0.3 Hz or 1 Hz one gets values of τ0 in the range from 0.01s to 0.3s. As regards the 

strain scale, finally, ΓSGR =Γy is satisfactory for the Gillette foam, while for AOK the best fit 

se to Γy as 

n Figures 7 and 

 agrees with the 

experimental data for strain amplitudes up to Γ0/Γy around 2, with deviations setting in at larger 

strain amplitudes. The predictions for the loss modulus G”/G agree quite well across the whole 

range of Γ0 calculated. For the AOK foam, also the anharmonic residual q is predicted rather 

well by the model, while for the Gillette foam the onset of anharmonicity is predicted to be much 

We have G”( Γ0  , ω)/ G’(Γ0 , ω) ≅ 0.10 for the Gillette foam for both bu

frequencies, and G”( Γ0  , ω)/ G’(Γ0 , ω) ≅ 0.055 for AOK foam.  Therefore, t

suggests x ≅ 1.07 and x ≅ 1.05 for the Gillette and AOK foams, respectively. T

have to be tuned slightly to allow for the fact that the fitted (dimensionless) frequen

for G''/G, as this has the most structure in its dependence on strain amplitude Γ0. This is done by 

minimizing the error in the predicted values for the maximum of G''/G and t

eau in G''/G in the linear response regime of small Γ0. The strain scale ΓS

the values expected from relation(13). Fits of similar quality can be obtained by varying 

the range ±0.01. The optimal associated values of the fitted frequency vary ove

range, Ω=0.3±0.2 for both Gillette and AOK. Translating to the attempt frequenc

with ν 

value is slightly smaller at ΓSGR ≈ 0.85 Γy. The fitted strain scale is therefore clo

expected.  

The SGR predictions using the parameter values given above are shown i

8. For all foams and frequencies investigated, the predicted elastic modulus G'/G
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steeper than observed experimentally. The lower quality of the predictions for G'/G and q may in 

 

of the sample as 

ysically one 

expects that even elements which are strained beyond their yield barrier cannot yield arbitrarily 

l2  

/G, in line with 

ted by the SGR model. Independently of these two shortcomings, 

r the AOK than 

To explore the above suggestion further, we have investigated a modified SGR model where the 

ve, i.e. once an 

e then no longer 

n be simulated 

iques [40]. At large strain amplitudes most SGR 

can show analytically that the predictions for G*(ω) then become amplitude-independent and 

 the basic yield 

+ 

part be due to the fact that the SGR model cannot capture the observed onset of strain

localization at large values of Γ0/Γy, given that it treats elements from all areas 

statistically indistinguishable. In addition, it is likely that the exponential form of the yield rate 

assumed in the model, cf. Eq. (1), becomes unrealistic for large strain amplitudes: Ph

quickly, so that the exponential increase of the yield rate with  must be cut off eventually. One

might expect that this would restore a somewhat more gradual decrease of G'

experimental data, than predic

why the model prediction for the anharmonicity q is so much more accurate fo

for the Gillette foam remains unclear. 

exponential in Eq. (1) is replaced by unity when the exponent becomes positi

element has been strained past its notional yield point. Because the l-dependenc

appears as a simple factor, this model is not easy to study analytically, but ca

efficiently using waiting time Monte Carlo techn

elements are pushed quickly into the regime where the cutoff on the yield rate kicks in, and one 

reduce to those of a Maxwell model with relaxation time τ0. 

To rectify this clearly unphysical behaviour, one can in addition postulate that

rate 1/τ0 in Eq. (1) should increase with strain rate and be replaced by 1/τ0 bγ&  for some 

constant b, see e.g. [9,41]. The predictions of this version of the SGR model can still be worked 

out analytically in the limit of large strain amplitudes. Intriguingly, we find - and have confirmed 

by comparing with simulation results - that G' and G'' decay with strain amplitude according to 

the same power laws as in the elastoplastic model, see Eqs. (11)(12). This supports the view 

expressed above that such a modified SGR model should be capable of producing a good overall 
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fit to the experimental data. Because results at intermediate strain amplitudes currently have to 

ulation we have not, however, attempted detailed fits of the relevant model 

parameters. 

 
physicist’s point 

due to processes on the scale of the bubbles and the liquid films. At this level of understanding it 

models. In his 

ar modulus and 

 predict the free 

 of the foaming 

liquid and bubble size, or to fix the elastic constant of the mesoscopic regions and the scale of 

retation of the 

s this point, we 

e to the Laplace 

ces intermittent 

coarsening to the effective noise temperature. Indeed, the Gillette foam that coarsens faster also 

ver, the rate of 

 that the noise 

nsidered in the 

ve shown how 

coarsening induced rearrangements relax stress and lead on a macroscopic scale to Maxwell 

liquid behaviour in the low frequency limit [34,35,38]. A Maxwell liquid, mimicked by a spring 

in series with a viscous element, is characterized by a single characteristic time τ. As a 

consequence, G’ progressively goes to zero for frequencies such that ωτ < 1, in agreement with 

be obtained by sim

6.5 Connection with the foam microstructure and its dynamics. From a 

of view, a complete model of foam rheology should explain how the macroscopic response arises 

should be possible to predict all the free parameters of phenomenological 

pioneering work, Princen has provided insight about the dependence of the she

the yield stress on bubble size and average bubble size [1,2]. This is enough to

parameters of a basic elastoplastic model to foam liquid fraction, surface tension

the distribution of trap depths in the SGR model. Providing a microscopic interp

effective noise temperature x in the SGR model is more challenging. To discus

recall that quiescent coarsening foams have intrinsic, non-thermal dynamics du

pressure driven diffusive gas exchange between neighbouring bubbles [1]. It indu

structural rearrangements in small bubble clusters. One might therefore correlate the rate of 

has the higher noise temperature, according to the fits reported above. Howe

bubble rearrangements is known to be enhanced by steady flow [41], so

temperature would have to depend on shear rate, a possibility which is not co

standard SGR model.  Moreover, previous experiments and simulations ha
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experimental data reported in [13]. The results of creep experiments are consistent with these 

modulus is not 

ransient slowing 

following a transient flow [17], which is the opposite of the 

shear rejuvenation effect observed in glasses. 

 

r the stress in a 

this constitutive 

bubble, or film 

scale.   To answer the first question, we probe in situ the bubble displacement profile at the free 

 wall slip 

tigated types of 

haviour is incompatible with conventional constitutive laws.  

How , demonstrating 

that there is indeed an extended regime of strains where it makes sense to compare the data to 

models. 

e, and we focus 

ty of models of 

ponent of stress 

his information 

is generally represented in terms of the amplitude dependent complex shear modulus G*(Γ0, ω). 

To assess to what extent such models actually capture the relevant physics for foams, we 

measure and report for the first time in addition to G*(Γ0,ω) the full harmonic spectrum of the 

stress response of foam which can equivalently be represented in the form of a Lissajous plot. 

findings [34]. In the SGR model a large spectrum of relaxation times is predicted and the 

experimentally observed very low frequency behaviour of the complex shear 

found for x = 1.07. An additional feature not captured by the SGR model is the t

down of bubble dynamics observed 

7. Conclusion and outlook 

The recent literature on liquid foam rheology raises the question whethe

liquid foam is a well defined function of strain and strain rate, and, if so, how 

law is related to physico-chemical processes and structures on a mesoscopic, 

sample surface of a Couette cell and show that strain localization clearly distinct from

and not directly induced by heterogeneous stress is a robust feature of the inves

foams and oscillatory flows. Such be

ever, localization only sets in at strain amplitudes far above the yield strain

This conclusion allows us to investigate the second question raised abov

on a previously unexplored feature of the nonlinear rheological response. A varie

complex yield strain fluid rheology predict how the fundamental harmonic com

induced by an oscillatory strain depends on strain amplitude at low frequency. T
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These data resolve quantitatively how stress relaxation is distributed in time within a cycle of 

ificantly on the 

, in contrast to the G*(Γ0, ω) data which do not show 

suc

For the driest investigated foam and at strain amplitudes well below the onset of flow 

localization, the SGR model accurately predicts the evolution with strain amplitude of three a 

”(Γ0,ω) and the 

able parameters 

of the real and 

exponents are predicted correctly, without any free parameters. However, neither of the two 

 the viscoelastic 

tion observed at  

ture work, it would be of great interest to construct 

a model of foam viscoelasticity and plasticity by combining the known facts about foam physics 

on the bubble scale with features of successful phenomenological models. We expect that the 

We acknowledge stimulating discussions with C. Gay, P. Marmottant and S. Cox and during the 

informal workshop on Foam mechanics, Grenoble, 21st - 27th January 2008. We thank D. 

Hautemayou for his technical help and we acknowledge financial support from E.S.A. (MAP 

AO99-108: C14914/02/NL/SH).  

 

 

deformation, so that elastoplastic and viscoelastic behaviour with a strain rate dependent 

relaxation time can be distinguished.  We find that this feature depends sign

physicochemical constitution of the sample

h a dependency in the vicinity of the yield strain.  

priori independent functions, describing the nonlinear rheology:  G’(Γ0,ω), G

measure of the anharmonic response q. The fit is obtained with only two adjust

(x, Ω). Phenomenological elastoplastic models capture the power law decay 

imaginary parts of the complex shear modulus in the liquid like regime. The two respective 

mentioned approaches predicts the previously reported frequency dependence of

behaviour over an extended range [13,37,39] and accounts for the flow localiza

high strain amplitudes. As a perspective for fu

data reported in this paper will be useful in this context. 

 

Acknowledgements 
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Appendix: Oscillatory response of an elastoplastic material 

ain respectively 

he material that 

ponents. Figure 

10a illustrates the relation between shear stress  and strain Γ predicted for an ideal elastoplastic 

material subjected to the oscillatory strain shown in Figure 10b.  

rely elastic and 

 as the strain. If 

y n 

Figure 10b). As long as the slider is stuck, the plastic strain is constant so that any variation of 

duces an equal change of the elastic strain and a stress variation ΔΣ = G 

ΔΓ. and any further 

e elastic strain 

As the applied strain decreases after having reached its maximum value, as for instance at 

t = 0 in Figure 10b, the slider becomes stuck. From here on, the evolution of the applied strain 

al to Γ0-Γ(t) and therefore a stress variation 

) 1). Indeed, this expr

well as the relation ΔΣ = G ΔΓ that must be valid as long as the slider is stuck. As time goes on, 

the stress decreases to –Σy at a time denoted as t1 (cf. Figure 10b). An elementary calculation 

yields: 

  

Figure 10 illustrates the basic elastoplastic response that can be mimicked by a combination in 

series of a spring and a slider (cf. Figure 1). Plastic strain and elastic str

correspond to elongations of the slider and of the spring. The total strain Γ in t

can be applied experimentally is given by the sum of its elastic and plastic com

Σ

We now calculate the stationary response of such an elastoplastic element to an applied 

strain Γ(t)= Γ0  cos(ωt). If Γ0 is smaller or equal to Γy, the response is pu

G*(Γ0, ω) = G. In this case, the stress oscillates sinusoidally with the same phase

the strain amplitude is larger than Γ , the stress-strain relation becomes hysteretic, as shown i

the applied strain ΔΓ in

 If the stress magnitude reaches the yield stress, the slider becomes mobile 

increase of the applied strain magnitude induces only plastic strain while th

remains constant in this case. 

induces a decrease of the elastic strain equ

Σ(t) = G Γy + G Γ0 (cos(ωt  – ession satisfies the initial condition at t = 0 as 

 1 0
1 ( 2 / 1)yt arccos
ω

= − Γ Γ +  (14) 
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The stress then remains saturated until the minimum of the applied strain is reached at a time 

lastic strain 

(ωt) + 1) until it 

ntil the time t = 

 G*(Γ0, ω), we 

calculate the Fourier component of the stress oscillation at the frequency ω and divide it by the 

strain amplitude [28]. These expressions are simplified without any loss of generality by scaling 

stress and strain so that G = 1 and Γy = 1:  

which is half the oscillation period T. As the strain starts increasing again, the e

increases by –Γ0-Γ(t). Therefore the stress increases as Σ(t) = - G Γy + G Γ0 (cos

reaches the value Σy, at the time T/2 + t1. The evolution then remains saturated u

T, and from then on the whole process continues periodically. To determine

 

( )( )( ) ( )( )( )
1 1

1 1

/ 2/ 2
* i tω

⎫⎪
0 0 0

0 0 / 2 / 2

2( , ) 1 1 1 1
t T tT T

i t i t i t

t T T t

G cos t e dt e dt cos t e dt e dt
T

ω ω ωω ω ω
+

− − − −

+

⎧⎪Γ = + Γ − − + − + Γ + +⎨ ⎬Γ ⎪ ⎪⎩ ⎭
∫ ∫ ∫ ∫

   

(15) 

 

 

 

  ( ) ( )0 00 0
2 2

0 0 0 0

2 2 4 12 11 arccos i
π

⎛ ⎞− + Γ Γ −⎛ ⎞− + Γ − + Γ
= − +⎜ ⎟⎜ ⎟⎜ ⎟Γ Γ Γ Γ⎝ ⎠⎝ ⎠
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Figure 1 : (a) Schematic model of elastoplastic behaviour based on a spring and a slider, 

representing respectively an elastic modulus G and a yield stress Σy. (b) Stress-strain relationship 

of such an elastoplastic element. 
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Figure 2  Stress residual q defined in Eq. (7) and odd harmonics from n =3 to 9 versus normalised 
strain amplitude, for AOK foam at 1Hz. The harmonics are normalized in the same way as the 
stress residual. 
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Figure 3 : Top view of the Couette cell illustrating the coordinates used in the analysis. The 
dashed line represents the tracer position before shear, and the continuous thick line shows its 
position after rotation of the inner cylinder. The thick arrow represents the amplitude of 
curvilinear tracer displacement s0(r), measured at a time t when Γ(t) reaches its maximum value 
Γ0. 
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Figure 4: a l distance for 
increa eter = 28 
µm ed for linear elastic 
deformation or Newtonian flow (Eq. (10) with A = - 0.11 mm-1 and B = 71 mm). Typical error 
bars are indicated. b) The local strain amplitudes derived from (a) using Eq.(8) are plotted versus 
the radial coordinate. The dotted lines correspond to the local amplitude expected in the middle 
of the gap for linear elastic deformation or Newtonian flow (γ0((ri+ro)/2) = Γ0).  

 

) Normalized amplitude of the curvilinear displacement versus radia
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Figure 5 : Image of the f  strain 
amplitude Γ0 is 0.9 and the pictu  0. The rotor and the 

aximum. 
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Figure 6 : Comparison of local and macroscopic normalised stress amplitudes versus strain 
amplitude. The lines correspond to the macroscopic stress amplitude Σ0/ Σy versus engineering 
strain amplitude Γ0. The symbols represent the local stress amplitude normalized by the yield 
stress, σ0(r)/ Σy versus local strain amplitude γ0(r). These data are deduced from Figure 4. 
Typical error bars for γ0(r) and σ0(r)/ Σy are drawn.  The sample is Gillette foam (average bubble 
size = 28 µm) and the frequency is 1 Hz.  
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Figure 7 : a) Parametric plots of stress Σ(t) versus strain Γ(t) for applied strain amplitudes 
Γ0 = 0.055, 0.15, 0.25, 0.43, 0.72 and 1.2 corresponding to contours of increasing thicknesses. 
The frequency is equal to 1 Hz. The sample is Gillette foam (bubble size 28 µm). Figures b) and 
c) schematically illustrate the response expected for viscoelastic (b) and elastoplastic response 
(c). 

 

Γ 

 35



0.1

1

0.1 1 10

G
'(Γ

0 , 
ω

) /
 G

Γ 
0
  /Γ

y

a)

-3/2

10

100

1 10 100

G
'(Γ

0 , 
ω

 ) 
(P

a
)

Σ
0
 (Pa)

G

0.1

1

0.1 1 10
Γ  /Γ

0 y

G
ille

tt
e

A
O

K

1 Hz

0.3 Hz

1 Hz

28 µm

36 µm

50 µm
1 Hz

0.3 Hz

b)

G
''(

Γ 0 , 
ω

) /
 G

Σ
y

  

mplitude. The 

in the legend of 

responds to the elastoplastic oscillatory response (Eq. (15)). The other lines 

show the prediction of the SGR model (see text) (dashed line: x = 1.07, Ω = 0.3 and ΓSGR = Γy, 

dotted line: x = 1.05, Ω = 0.3 and ΓSGR = 0.85 Γy). In the hatched region, the onset of strain 

localization is observed. The insert in a) shows the evolution of the elastic modulus with stress 

amplitude for AOK foam. 

Figure 8: Normalised elastic and loss shear moduli versus normalised strain a

symbols correspond to Gillette and AOK foams at two frequencies, as shown 

(b). The full line cor
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 (7) versus normalised strain amplitude, for Gillette and 

AOK foams as shown in the legend. The continuous line corresponds to the elastoplastic 

oscillatory response (Eq. (15)). The other lines correspond to the SGR model (dashed line: x = 

1.07, Ω = 0.3 and ΓSGR = Γy, dotted line: x = 1.05, Ω = 0.3 and ΓSGR = 0.85Γy). In the hatched 

region, the onset of strain localization is observed.   

 
 

Figure 9 : Stress residual q defined in Eq.
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Figure 10 : a) Elastoplastic stress-strain relation, in response to a sinusoidal applied strain of 

period T and amplitude Γ0 (cf. Figure 1a). The instant t1 is defined by Eq. (14). b) Time 

evolution of the stress (thick line) if a sinusoidal strain (thin line) is imposed with an amplitude 

exceeding the yield strain.  
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