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Abstract

We study query construction algorithms, which aim at im-
proving the generalization ability of systems that learn from
examples by choosing optimal, non-redundant training sets.
We set up a general probabilistic framework for deriving such
algorithms from the requirement of optimizing a suitable ob-
jective function; specifically, we consider the objective func-
tions entropy (or information gain) and generalization error.
For two learning scenarios, the high-low game and the lin-
ear perceptron, we evaluate the generalization performance
obtained by applying the corresponding query construction
algorithms and compare it to training on random examples.
We find qualitative differences between the two scenarios due
to the different structure of the underlying rules (nonlinear
and ‘non-invertible’ vs. linear); in particular, for the linear
perceptron, random examples lead to the same generaliza-
tion ability as a sequence of queries in the limit of an infinite
number of examples. We also investigate learning algorithms
which are ill-matched to the learning environment and find
that in this case, minimum entropy queries can in fact yield a
lower generalization ability than random examples. Finally,
we study the efficiency of single queries and its dependence
on the learning history, ¢.e. on whether the previous train-
ing examples were generated randomly or by querying, and
the difference between globally and locally optimal query con-
struction.

PACS numbers: 87.10.4+e€, 02.50.Ph, 02.50.Wp, 05.90.4+m

I. INTRODUCTION

In recent years, one of the main areas of research in
the field of neural networks and machine learning has
been the issue of generalization: Given a set of training
examples generated by a teacher according to some un-
derlying but unknown rule, one wants to generate, using
a suitable learning or training algorithm, a student (e.g.
a neural network) which can make intelligent guesses for
previously unseen examples (for a review see e.g. [1] or
the textbook [2]). The traditional approach has been to
study the ability to generalize from random ezxamples,
where the input-output pairs which make up the train-
ing set are obtained by picking at random an input value
according to some probability distribution, ‘labeling’ it
with the corresponding output from the teacher and then
possibly corrupting one or both of these values with some
noise.

Recently, however, the alternative approach of query
learning (or ‘active data selection’, ‘experimental design’

etc.) has attracted considerable interest. Here the in-
puts are not chosen at random, but rather by a query
selection algorithm which, depending on the previously
seen examples, selects an input value for the next input-
output pair to be added to the training set. The moti-
vation for query learning is that random examples often
contain redundant information and that eliminating this
redundancy must necessarily improve generalization per-
formance or, equivalently, reduce the number of training
examples necessary to attain a certain level of general-
ization performance. Query learning makes most sense
in situations where labeling inputs is in some sense ‘ex-
pensive’, for example because the teacher output is actu-
ally the result of a complicated physical measurement, or
where the cost of training itself increases strongly with
the number of examples. There is of course a trade-off
in so far as the query selection algorithm itself can be
computationally expensive, possibly off-setting the sav-
ings due to the reduced number of training examples that
are needed; for the sake of simplicity, we shall ignore this
problem in our discussion.

Recent studies of query learning in the neural networks
literature can be divided into groups according to the fol-
lowing two major distinctions: query selection algorithms
can be heuristic or derived from optimization of an appro-
priate objective function, and they can either construct
queries, i.e. calculate (maybe stochastically) the next in-
put value to be queried, or they can filter queries from a
source that provides a string of random input values.

Heuristic query construction has been studied in, for
example, [3-6]. Tt has been pointed out before [7] that,
while heuristic approaches can demonstrate the power of
query learning in specific instances, they do not allow a
systematic study of possible improvements of query se-
lection algorithms, nor do their results generalize easily
to learning problems other than those specifically consid-
ered. We shall therefore restrict our attention to query
selection algorithms derived from optimization of objec-
tive functions. This approach has been used recently
in [8,9] for query filtering and in [7,10] for construction.
However, in these studies, only one objective function
was considered, namely the information gain or entropy
reduction per training example; also, the training algo-
rithms were chosen in such a way that they directly re-
flected the a posteriori distribution of teachers and hence
were optimally matched to the learning problem at hand.
Only in [10] was the generalization error used as objective
function for query construction, but only for one specific
training algorithm.

We extend these considerations in the present paper



by studying how the choice of objective function affects
the performance of a query selection algorithm defined
by optimizing it, and what the influence of a mismatch
between training algorithm and a posteriori teacher dis-
tribution is. (This must be the typical real-world case,
since of course it is never known in advance what the
true a posteriori teacher distribution is.) By considering
learning problems with both linear and nonlinear teacher
rules we also study the effect of the nature of the rule on
the efficiency of query learning. We restrict ourselves to
rules which can be cast in the form of an input-output
mapping, and focus on the case of query construction.
Overall, our aim is not to provide practical query selec-
tion algorithms, but to study some of the basic properties
of query learning.

We remark that the subject of query learning provides
close links between the fields of neural networks, com-
putational learning theory and statistics.
in particular, the field of ‘experimental design’ has been
studied in great depth. We cannot do justice to the vast
body of literature published in this area and refer the
interested reader to references [11-17] for some recent
developments and reviews of older work. Our approach
is closely related to the one used in ‘optimal Bayesian
sequential design’ (see e.g. [18] and references therein);
however, we allow for a distinction between a posteri-
ori teacher distribution and learning algorithm as well as
for different objective functions for query selection and
performance evaluation.

The remainder of this paper is structured as follows: in
section IT we set up a general probabilistic framework for
derivation of a query selection algorithm from a given
objective function. We then apply this framework in
sections III and TV. For a first pass at the problem of
how the choice of objective function affects the perfor-
mance of the corresponding query selection algorithms,
we consider query construction based on optimization of
the two objective functions entropy (or information gain)
and generalization error. We study two specific learning
problems, the ‘high-low game’ [9] and the ‘linear percep-
tron’. These two examples allow us to gain some insight
into the differences between query learning in linear and
nonlinear systems. Since query selection is most effective
when applied to all examples in the training set, 7.e. when
one allows the input of every new example which is added
to the training set to be determined by the query con-
struction algorithm, we consider the performance of the
respective query construction algorithms when applied
to generate query sequences, and compare the results to
training on random examples. As performance measure
we choose the generalization error (see section II for the
precise definition) because generalization is after all what
we want to improve by query selection. For the linear
perceptron, we investigate the influence of a non-optimal
learning algorithm which is poorly matched to the a pos-
teriori teacher distribution. In section V we discuss some
related issues: the efficiency of a single query and its
dependence on the learning history, 7.e. on whether the
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query is part of a query sequence or whether it is an zso-
lated query after random examples; and the difference be-
tween locally optimal query selection, which builds up the
training set step by step in a ‘greedy’ procedure, optimiz-
ing the given objective function at every step, and globally
optimal query selection, which optimizes the whole query
sequence for a given number of examples. We conclude in
section VI with a summary and discussion of our results.

II. THE FRAMEWORK

In this section we introduce a general probabilistic
framework for the derivation of query selection algo-
rithms based on optimization of a given objective func-
tion. The structure follows closely Wolpert’s ‘extended
Bayesian framework’ [19], but we adapt the notation to
make it closer to that normally used in the Neural Net-
works community, see e.g. [1].

Notation

We denote teachers by V and students by A. Each
teacher and each student implement a mapping from in-
puts z (typically € V) to outputs y (often € R). TLet
0{®) denote a (ordered) training set consisting of p ex-
amples (z# y*), up = 1,...,p. We define the following
probability distributions:

P(y|z,V), the probability of, given input z, obtaining
output y from a teacher V. This probability distribu-
tion specifies the input-output mapping implemented by
the teacher V| including possible corruption by noise. If

P(y|x, V) can be written in the form J(y fv(z)), we call
the teacher ‘noise free’, otherwise ‘noisy’.

P(z), the probablhty distribution of inputs when these
are randomly selected, i.e. not queried. As commonly as-
sumed, this distribution also governs the selection of test
examples, from which the generalization error is calcu-
lated.

P(©P)|V), the probability of obtaining a specific train-
ing set from the teacher V (plus noise, possibly, which is
always understood in the following). For randomly (and
independently) selected examples, this can be written as

=[] P"=*, v)P(a"). (2.1)

P(V), the a priori distribution of teachers [20].
P(V|©®)), the a posteriori teacher distribution, which
can be calculated from P(©(®)|V) and P(V) using Bayes’

Theorem

(@(”)I ) P(V)

PVIOY) = T Py PO

(2.2)

P(N|©®), the ‘post-training’ distribution of students
which specifies the learning algorithm in terms of the



probability that training on the given training set ©()
will yield the student A". We shall assume that students
are deterministic, i.e. that for each input z a student
N provides an output which can be written in the form
v = fy(a).

We emphasize that in a real-world learning problem,
normally only P(A|©®)) and possibly P(z) will be
known, whereas all the probability distributions concern-
ing the teachers V will be unknown. Quantitative analy-
sis of a learning problem is only possible, however, if we
make assumptions about these distributions, and indeed
such assumptions have been made in all work on query
learning to date. The necessity of such assumptions fol-
lows from the intuitively obvious result that, in the ab-
sence of any knowledge about the functional form and
complexity of the teacher, generalization—and hence also
its improvement by query selection—is impossible [19].

Candidate objective functions

There are a variety of objective functions that one
might want to be optimized by a query selection algo-
rithm. We restrict our attention to two very common
ones: Entropy (or information) and generalization error.

For a given training set ) the entropy in teacher
space can be defined as the entropy of the a posteriori

distribution [21] P(V| o) )

Sy (@) = —/dV PIIO®)n PVIOP).  (2.3)

The entropy in student space is defined similarly as a
functional of the post-training distribution P(AN]|O®))
which depends on the learning algorithm that we are us-
ing. The information gain due to an additional example
in either teacher or student space is defined as the de-
crease in the corresponding entropy.

We emphasize that student and teacher space entropy
coincide only if P(V|©®)) and P(N|0®)) have exactly
the same form. This is always the case in Bayesian anal-
yses, where V and N are effectively identified (see e.g.
[7]). In recent research on query learning [8,9] where the
distinction between V and A was taken into account, the
learning algorithm was nevertheless always chosen such
that P(V|0®)) and P(N|O®) were still identical. Tn
the applications of our framework in the next section we
shall see that new features can emerge if this is not the
case.

The generalization error is probably the most com-
monly used measure of the performance of a student
when trying to approximate a given teacher. It is de-
fined starting from a specifically chosen error measure

e(y,z,N) (2.4)
which determines how much the output of the student A
for input z is in error compared to the correct output y.

Averaging this over all input/output pairs produced by a
teacher V, we obtain the generalization error, a measure
of how closely A approximates V:

(N, V) = (e(y, 2, N)) p(yls,v)Po)-

In general, it has to be recognised that a decrease in
entropy need not be correlated with a decrease in gener-
alization error, cf. the discussion in [9].

For examples of a class of objective functions which
have a somewhat intermediate character between entropy
and generalization error, the ‘prediction probabilities’
and variants thereof, we refer the reader to [22,23].

(2.5)

Derivation of query selection algorithms

We assume now that we are given an objective func-
tion, such as entropy or generalization error, which our
query selection algorithm is supposed to optimize. We
write this objective function generically in the form

(N, v,00).

We only consider query selection algorithms which are
local in the sense that they work one example at a time,
performing a greedy optimization of the given objec-
tive function at each query selection (see however sec-
tion V, where we discuss what happens if this restriction
is dropped). We also assume that after the new example
is added to the training set, complete retraining takes
place, i.e. the learning algorithm is re-applied to the en-
larged training set ©(P*+1) This excludes a dependence of
query selection on the specific student (a representative
of the distribution P(N|©{)) ) obtained after training
on the existing training data as considered in [5,6]. Of
course, a dependence on the actual—unknown—teacher
V that generated the training data is not possible either,
and so query selection can only be based on the exist-
ing training data ©(). We therefore need to derive a
function e(m,G(p)) which depends only on this existing
training data and the next input, 2. A query construction
algorithm is then defined as picking, each time it is in-
voked, as the next query the value of z at which ¢ (z, O(p))
attains its global optimum (or randomly one such value
if there is more than one global optimum). As pointed
out above, we shall not be concerned with the actual im-
plementation or computational complexity of this opti-
mization process. In order to prevent the construction of
nonsensical queries, we restrict the range of input values
from which the query construction algorithm is allowed
to choose to the support of P(z), i.e. to values of 2 which
could also appear in a random training or test example.
We remark in passing that the function e (2, @), once
obtained, can also be used to define a query filtering (as
opposed to construction) algorithm which accepts a ran-
dom input z with a probability which is a function of the
corresponding value of € (z, @(p)); however, we shall not
consider this possibility further.



In order to obtain the function ¢ (z,©®)), which we
do not want to depend on A, we first average the given
objective function over the post-training distribution:

e(v,0m) =

(e(N,V,0F (2.6)

N)pniem)-

Averaging this over the a posteriori teacher distribution,
we obtain an average objective function which depends
on the training data only:

c(0P) = (c(V,0%) pyjem), (2.7)
We can now calculate the function defining the query
construction algorithm by averaging (2.7), evaluated for
the training data set @) 4 (z,y), over the possible out-
puts y that the teachers in the a posteriori distribution
produce for the input z:

(@7, 2) = (c (0P + (2,9))) pyjr,00) (2.8)
where P(y|z, 9(1’)) is given by
P(slz,0) = [ VP2 PVIED). (29

It can be shown that the same result can be obtained
by first evaluating ¢(V, ) for the training set O®) 4+
(z,y), averaging over the outputs that V' produces on
z, and then averaging this over the a posteriori teacher
distribution:

(0P, 2) = ((c(V,0”) + (2,9))) p(y1s v)) Pvio)

(2.10)

Equations (2.8) and (2.10) constitute the main result
of this section and can be used interchangeably as defi-
nitions of the function ¢ (0() z) which defines a query
construction algorithm.

Evaluation of performance of a query selection
algorithm

The query construction algorithm as defined in the pre-
vious subsection yields a probability of querying z if the
existing training set is ©®)

Pq(2]0%)), 2.11)
which is uniform over the set of all « for which ¢ (9(1’), x)
attains its global optimum and zero everywhere else. We
shall evaluate the performance of this query construc-
tion algorithm when used to generate query sequences,
using the generalization error as our performance mea-
sure. Starting from (2.5) we define first by analogy with
(2.6) the average generalization error with respect to the
post-training distribution:

Gg(va@(p)) = (eg(N,V))p P(N|©(®))- (2.12)

We then define the average generalization error obtained
after a sequence of p queries when the true teacher is V
as

eg,q(V) = (eg(V, @(p)»PQ(@(p)W) (2.13)

where the training sets are now generated according to
the distribution

p

|V=1'[

y* |2k, V) P10 =1)  (2.14)

in analogy to (2.1) which applies to the case of random
examples. By averaging over the a priori teacher distri-
bution, we obtain the generalization error for an average
teacher:

€g.q = (eg.q(V))p(v) (2.15)

Tn terms of ¢5(O%)) = (eg(V,@(p))>P(v|®(p)), this can be
written as follows: P(V[©{®)), the a posteriori distribu-
tion of teachers, can be shown to be the same for random
examples and for query construction. This reflects the
intuitively obvious fact that the way we generate data
by querying or random sampling does not influence our
inferences about the underlying rule [7]. Using Bayes’
theorem, one can thus write

gq = ({eg(V,
(

(
{eg(V, 0P )) pyjom ) pg
= (e5(0%))) py o)

O®)) py (o v))P(V)

(@®)
(2.16)

The distribution Pq(@(p)) can be written as
P
H (y*]z#, 0= ) Py(x*|©H=1) (2.17)

with P(y“|m“,@(“_1)) given by (2.9). For the case of
training sets which are generated by a mixture of queries
and random examples, one can still use (2.16) as long as
in (2.17) the terms PQ($”|® n=1) ) are replaced by P(z*)
for the examples (z#, y*) that were generated randomly.

We remark that if one wants to know the average gen-
eralization error obtained by adding a query 2 and the
corresponding output y to an existing fixed training set

©()  all one needs to do is drop the average over ©®) in
(2.16), with the result

(0P 4+ 1 query)
= ({cz(OW) + (a, Y))) Plylz,00))) Py (a0
= <€g(@(p)’”7)>PQ(z|@(p))~

We have derived equations (2.13), (2.16) and (2.18) in

order to show that for the evaluation of performance of a
query selection algorithm, the same functions ez (V, @(p)),

(2.18)



€z(0)) and €,(©), z) can be used that have to be cal-
culated anyway for the derivation of minimum general-
ization error query construction. However, for the simple
cases that we consider in the next sections, we shall avoid
formal use of these results whenever more direct and in-
tuitive derivations are possible.

III. EXAMPLE: HIGH-LOW

In the next two sections we apply the framework set
out in the preceding section to two specific learning prob-
lems, one nonlinear and one linear. We assume in both
cases that the problem is learnable, i.e. that students and
teacher have the same form. This is an abstraction from
real-world problems—where unlearnable rules must oc-
cur frequently—which will have to be removed in further
research.

In the present section we consider the ‘high-low
game’ [8,9], which is an extremely simple example of
a nonlinear rule with real input z and binary output
y € {0,1}. The output is simply 1 or 0 depending on
whether the input z is greater or less than a certain preset
threshold. Thus, for one-dimensional high-low, a noise
free teacher is specified by a ‘weight’ wy such that

where the Kronecker delta d; ; is equal to 1 if ¢ = j and 0
otherwise, and the step function ©(z) is defined to be 1 if
z > 0 and 0 otherwise. We assume that both inputs and
teacher weights are taken from the unit interval [0, 1].
An N-dimensional generalization of this can be defined
as follows [9]: Inputs are now ordered pairs (¢, z), where
ie{l,2,...,N}, z €[0,1], and a teacher V is defined in
terms of an N-component vector wy = (wy ;)i=1,2,.. N
and gives the output

fV(ia Z) =

As explained in [9], N-dimensional high-low is basically
equivalent to N concurrent one-dimensional high-low
games.

As pointed out above we assume that the rule is learn-
able, i.e. that our students have the same functional form
as the teachers, a student N being specified by an N-
dimensional weight vector wyr. We assume the distribu-
tion of inputs to be P(7,z) = P(i)P(x) with P({) = 1/N,
and P(z) uniform on [0, 1] and zero everywhere else. We
also assume the a priori teacher distribution P(wy) to
be uniform on [0,1]"Y. Under these assumptions, the a
posteriori teacher distribution can easily be derived to be
constant over the ‘version space’, i.e. the set of all teacher
weight vectors which could have generated the training
data, which is here simply a hypercube:

(x —wy)

@(l‘ —wv’i). (32)

N
PYVIOP)) x [[O(wvi — 21,)O(zri — wyi), (3.3)

i=1

where we have denoted by zr,; and zg; the largest and
smallest z-value of inputs from the training set ©) with
a given value of 7 and output 0 and 1, respectively. The
entropy in teacher space then follows from the definition

(2.3) as

N

Sv(@(p)) = Zln (IR,Z' — ;‘13[‘71').

i=1

(3.4)

For calculation of the generalization error, an obvious
error measure is

e(y, (¢, ), N) = [y — fw (i, z)|
which is 0if y and far (7, 2) agree and 1 otherwise, yielding

N
Cg Zsz_wNz

We consider two learning algorithms: Zero temperature
Gibbs learning, which is just given by

(3.5)

(3.6)

Paivbs (V0P = p(y|0®) , 3.7
Ginea(V1O0) = POIOD)| 5 ()
and optimal learning in the sense of [24] for which

Popt ( (NV]e®) H5 wy; — (¥pi+xri)/2).  (3.8)

We remark that whereas for Gibbs learning the entropy
in student space is identical to that in teacher space, the
former is undefined for optimal learning, as is generally
the case for deterministic learning algorithms.

For the generalization error averaged over the post-
training distribution according to (2.6) and then over the
a posteriori teacher distribution as in (2.7) one obtains

N
3
Eg,opt(@(p)) =3 eg,Gibbq( Z TRi— L)

(3.9)

Due to the proportionality between the two results we can
restrict our attention to optimal learning in the following,
dropping the subscript ‘opt’.

Using (2.8), it is straightforward to calculate from (3.4)
and (3.9) the defining functions for query construction for
minimal teacher space entropy and minimal generaliza-
tion error, respectively:

Sy(O®) (i,z)) =

Sy(OP)) + gilng + (1 — ¢:) In(1 — ;)

(3.10)

: QZ(l - qz)a

(3.11)



where we have used the abbreviation

g; = P(y = 1|(i, z),00))

0 < L
= (.I‘ — IL,Z')/(IR,Z' — xL,i) Tr; < <ZTR; (312)
1 x> TR,

Equations (3.10) and (3.11) are both minimized for ¢; =
1/2, i.e. x = (21, ; + «R,)/2. This corresponds to the in-
tuitively obvious method of bisecting a component of the
version space. For ¢; = 1/2 the value of Sy(0®) (i, z))
is independent of 7, so that query construction for mini-
mal teacher space entropy selects randomly any of the N
possible values for 7 and then = (21, ;+R,i)/2. By con-
trast, query construction for minimal generalization error
can only select from those ¢-values for which zp; — z1 ;
is maximal since only then will eg(@(p), (¢,2)) be mini-
mized. Thus, query construction for minimal generaliza-
tion error specifies along which component the version
space should be bisected, a piece of information which
cannot be obtained from the requirement of maximal in-
formation gain. In fact, as explained in [9], one can,
simply by always bisecting the same component of the
version space, construct a sequence of queries which at
each step achieves the maximal entropy reduction but for
which the generalization error never drops below a finite
threshold.

The difference between the two objective functions, en-
tropy and generalization error, is reflected in the average
performance of the two query construction algorithms
when they are used to generate query sequences: Query
construction for minimal generalization error yields, af-
ter a sequence of p = aN = ([a] + Aa)N queries (where
[@] denotes the integer part of a and Aa = a — [a] its
non-integer part) and the corresponding outputs, a ver-
sion space with AaN components of length (1/2)l*l+!
and (1 — Aa)N components of length (1/2)!*) and hence
from (3.9) a generalization error of

(mi o) 1 /1\™ | _Aa
Exl 1NN, en. error ueries) = — — _
8 & 4 1\2 2 )’

(3.13)

so that increasing a by one always reduces the generaliza-
tion error by a factor of 1/2. For minimal teacher space
entropy, on the other hand, one obtains after a sequence
of p queries a version space with components of length
(1/2)P (1/2)P2, ..., (1/2)PN where p; is the number of
times the i-th component of the version space has been
bisected (3, pi = p); averaging over the distribution of
the p; one obtains

€g(min. entropy queries)

(3.14)

Comparing (3.13) and (3.14), we see that for N = 1,
teacher space entropy and generalization error perform
equally well as objective functions for query sequence
construction, whereas for N > 2 a query sequence
constructed for minimization of teacher space entropy
needs to contain more examples than one constructed
for minimization of generalization error in order to ob-
tain the same generalization performance. As N — oo,
(1 = 1/2N)N — exp(—1/2) and thus —In(1/2)/(1/2) =
In4 ~ 1.39 as many examples are needed.

We have seen that query construction both for minimal
teacher space entropy and minimal generalization error
yields a generalization error which decays exponentially
with the number of examples normalized by the number
of parameters of the high-low rule, & = p/N, which is a
drastic improvement over the case of random examples
where the generalization error only decays algebraically
with . This result for random examples has been given
in [8] for N = 1 as eg(random examples) = 1/2(p + 2);
for N > 2 it generalizes to

¢g(random examples) =

D D L
{p:} i=1

N N 1\**?
:2(p+1){1_P+2 1_<1_ﬁ> ” (315

which as @ = p/N — oo gives a decay with 1/2a +
O(1/a?) from the inequalities

1
2(a+2)

< €g(random examples)

gi[l—g(l—e‘o‘)].

Our results in this section show that in the learning
scenario considered, the teacher space entropy (or for the
case of zero temperature Gibbs learning, the equivalent
student space entropy) can serve as a useful guideline for
query construction and does provide a large increase in
generalization performance over random examples, but
does not achieve quite as good a performance as query
construction for minimum generalization error.

(3.16)

IV. EXAMPLE: LINEAR PERCEPTRON

As a second application of the query learning frame-
work set out in section II we now consider the linear
perceptron. A teacher is specified by a vector wy € RV
such that it yields (in the absence of noise) the output

1
VN
for the input x which is also an N-dimensional vector.
Again, we take the problem to be learnable, and thus

H(x) = ng (4.1)



assume students to be of the same functional form, with
weight vectors wy . We will mainly be interested in the
‘thermodynamic limit’ N — oo, p = oo at constant a =
p/N.

For convenience, we consider inputs x from a spherical
distribution,

P(x) x §(x* — No2), (4.2)
and a Gaussian prior on teacher space
P(V) =N (0,091) o exp(—wy,/207,). (4.3)

Here we have used the notation A'(p, ) for a multivari-
ate Gaussian distribution with mean p and covariance
matrix X, and denoted by 1 the N-dimensional unit ma-
trix.

In order to fix P(y|x,V), we consider two forms of
noise: Gaussian noise on the output of variance 1/fy,
i.e.

Plylx, V) = N (fv(x),1/5v)

and Gaussian noise on the teacher weights, yielding the
output corresponding to a perturbed weight vector wy,
distributed as N (wv, &12)1):

P(ylx, V) = (6(y — fv(x)))w,
:N(fv(x),5%X2/N)

which under the spherical constraint for the inputs, (4.2),
is of the same functional form as (4.4) and need not be
considered separately in what follows; all results for noise
on the output also hold for noise on the weights with the
replacement By — 1/0253

Combining (4.3) and (4.4) and using Bayes’ for-
mula one obtains that the a posteriori teacher distri-
bution P(V|0®)) is a Gaussian distribution N (M5, 'a,
([)’VMV)_l) where we have set

(4.4)

(4.5)
(4.6)

1 1
M — “xm) T 4.7
v ﬂvo_Z + N ;x (X ) ( )
and
1 &
a=— yHxH (4.8)
gD
The entropy in teacher space is thus simply
N 1
Sv(@(p)) =—5 InpBy — 5 In |My| 4 constant.  (4.9)

Its independence of the outputs y* in the training
set reflects the well known fact that in linear mod-
els information-based objective functions always lead
to query selection algorithms or ‘experimental designs’
which can be expressed solely in terms of the input val-
ues of the training examples [7,11].

For calculation of the generalization error we start from
the commonly used quadratic error measure

e(y,x, N) = (y—fN( )’

(4.10)
which yields according to (2.5) the generalization error
between student A" and teacher V

1 + ol ( )
— 4+ —=(wpy — wy)~.
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The constant term which arises from the noise on the
teacher alone will be omitted in the following.

For the learning algorithm, we take Gibbs learning
with weight decay (see e.g. [25]), specified by a learn-
ing temperature T' = 1/8 and weight decay parameter
X:

s(N,V) = (4.11)

P(N]O®)

p 5\ y
o exp Z — fv(x"))? —+—§WN

u=1

l\DI»—l

—N MN a, (My)~ ) (4.12)

where we have introduced the matrix M ys, defined as

- 1 & -
MN:A1+ﬁI;XM(XH)

(4.13)

which only differs from My by a multiple of the unit ma-
trix. Tt follows from (4.13) that A/o? is a dimensionless
quantity which we denote by

A= (4.14)

aqm| >

and also simply refer to as the weight decay parameter.
The student space entropy is from (4.12)

N 1
Sy (0P = 5 Ing — 3 In M| + constant.  (4.15)
Averaging over the post-training distribution according
to (2.6) and then over the a posteriori teacher distribu-
tion as in (2.7) we get for the average generalization error
as a function of the training set

, 2
(09) = 72| (My'a - My'a)’

2N
1 1 1 _1]

+ —tr My, + ——tr My, (4.16)
g Py

Since a finite training temperature 7' = 1/ only gives a
positive definite additive contribution to the generaliza-
tion error, we restrict ourselves to the case T' = 0, z.e
B — oo in the following [26]. We remark that optimal
learning in the sense of [24] is obtained as a special case
of Gibbs learning (at T'= 0) by setting the weight decay

parameter X to its optimal value



1 1
Ay = ——— = — 4.1
v [)’VU%Ug s (4.17)

where

2 ) v —1 1/2
(y°) P )11:/(;‘)) /5\;) (4.18)

is the root-mean-squared signal to noise ratio of the train-
ing examples. Ay = 0 thus corresponds to the limit of a
noise free teacher, and a non-zero Ay measures the typi-
cal amount of corruption of noise relative to the average
uncorrupted signal; for Ay = 1 noise and signal levels are
equal on average. In the special case of optimal weight
decay, one has My = Mys and hence the generalization
error assumes the simple form

= (Boohat) =

2
1
) — O-__t M—'

€g,opt ((_)(P) IN /BV

(4.19)

From (4.9) and (2.8) the defining function for query
construction for minimal teacher space entropy follows
immediately as

. . 1
Sy(OP) x) = 5,(00) + 510 My — 1n|M |, (4.20)
where M, is defined as the value of My calculated for
the training set () with the new example (x,y) added:

/ 1 T

My, = My + N (4.21)

The analogous expression for the case of the student
space entropy as objective function is obtained simply
by replacing My by M s, whereas the corresponding re-
sult for the generalization error, which can be straight-

forwardly derived from (4.16) and (2.8), is

@(p) i i M/ 1 M'='al M/~ la! 2
cg(O, x) = tr + (M "2y, — My, )

2N | By

1 1
+— (1 + —xTM5'x ) (M7 — M '%)? | (4.22)

NPy N
where
/ 1 T
M), = My + Nxx (4.23)
and

1
a, —a+ —xxTM;la. (4.24)

N

For the case of optimal weight decay this simplifies to

U_zit M' r

N F (4.25)

Eg,opt (@(p) ) X)

It is to this simpler case that we now turn.

Optimal weight decay

In the case of optimal weight decay, it is straightfor-
ward to derive that under the spherical constraint (4.2)
the defining functions for query construction for min-
imal teacher space entropy, (4.20), student space en-
tropy (which can be derived analogously from (4.15)),
and generalization error, (4.25), are all optimized (z.e.
minimized) by choosing the query x along the direction
of an eigenvector of My with minimal eigenvalue. For
p < N, i.e. @ < 1 this amounts to choosing x to be
perpendicular to the subspace spanned by the previous
training inputs x*, g = 1, ..., p, an intuitively obvious
result.

Applying this query construction algorithm to gener-
ate a sequence of queries, one sees that with each new
query the lowest eigenvalue of My is increased by o2.
After p = aN queries My thus has a (AaN)-fold eigen-
value (Ay + [a] + 1)o2 and a (1 — Aa)N-fold eigenvalue
(Av + [a])o2 (we use the decomposition a = [a] + Aa
introduced earlier). Thus from (4.19) one obtains

€g opt (Optimal queries) = QLGQ (Ay) (4.26)
\Z
with
o2
Gq(Av) = ﬁ(tr M3 ') po o)
Aa 1— A«

= + . 4.27
Ay + o]+ 1 Ay + [«] ( )

This result can now be compared to the generalization
error achieved by training on random examples. We use
the results of Krogh et al. [27], who have calculated in
the limit N — oo the function [28]

<tI’ M > (@(p))

ZIW

G(Ay) =
1
=0y

(l—a—)\v+\/1—a—)\v) +4Av> (4.28)

which is the analogue of Gg(Ay) for random examples.
Thus, for the average generalization error after training
on p random examples, one has

€g opt (random examples) = —G()\v)

20y

The generalization error ¢ opt as a function of a is shown
in figure 1 for various values of Ay = 1/s?, both for ran-
dom examples and for query sequences. Also shown is the
relative reduction in generalization error due to query se-
lection, i.e. the ratio of (4.29) and (4.26) which we denote
by

(4.29)

¢g(optimal queries)

K(a) =

(4.30)

¢g(random examples)



For moderate noise levels (a numerical calculation yields
Ay < 0.92), the maximum of k(«) is reached at a = 1;

its height
4\ 172
14+ — -1 (4.31)
Ay

decreases monotonically with Ay—hence increases with
the signal-to-noise ratio s—and is simply given by
(/\1;)_1/2 = s in the limit of small Ay. Query construc-
tion thus yields the greatest improvement of generaliza-
tion performance for low noise levels. The fact that in the
low noise regime the maximum of x(a) is at & = 1 can be
understood from the fact that for random examples the
average eigenvalue spectrum [29] of My extends down to
(Ay + (1 — v/@)?)o? which tends to zero as Ay — 0 and
a — 1, making tr M;l much larger than for the case of
query construction, where at @ = 1 all eigenvalues of My,
are (Ay + 1)a2. For larger noise levels, the maximum of
k(o) shifts to larger integer values of o and has a height
which can be bounded by 1+4/Ay and which thus tends
to 1 in the limit of large noise levels, Ay — oo.

The plots in figure 1 suggest that independently of the
value of Ay, k(«) tends to 1 as & — 0o, which means that
for a sufficiently large number of examples, the relative
improvement in generalization error that can be obtained
from optimal queries as compared to random examples
tends to zero. This can be confirmed by an asymptotic
expansion of k() which yields

.l-:(a:l_)—1

_5(1+)\v)

1 1
=1+ - — . 4.32
o) =1+1+0() (4.52)
The above result is in stark contrast to the results for the
high-low game obtained above and similar results for the
binary perceptron [8,9], where the asymptotic behaviour
of k(a) for large « is

-1 (4.33)

k() o é (exp(—ca))
for some positive constant ¢, which clearly tends to in-
finity as @ — co. A plausible explanation for this qual-
itative difference might be that in the limit of a noise
free teacher N examples are actually enough to specify
a teacher linear perceptron completely, so that beyond
a = 1 one is trying to reduce generalization error due to
noise; by contrast, for high-low or the binary perceptron,
the teacher cannot be uniquely specified by any finite set
of examples even in the noise free limit. In this sense,
the high-low game and the binary perceptron are ‘non-
invertible’ for any finite o, and thus by querying the av-
erage amount of information about the teacher that can
be gained from each new training example can be kept
finite as @ — oo. This property was shown in [9] to
be a sufficient condition for exponentially decaying gen-
eralization error, at least for the specific query filtering
algorithm considered there. For the linear perceptron,
on the other hand, the information available about the
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FIG. 1. (a) Generalization error eg(a) achieved by train-

ing a linear perceptron on aN random ezamples (higher,
‘smooth’ curves) and on the same number of examples gen-
erated by query sequences (lower curves), in units of o20%,/2.
The weight decay A is assumed to be set to its optimal value
Ay; hence minimum generalization error and minimum en-
tropy queries are identical. The values of the teacher noise
level Ay = 1/s® are 0.01, 0.1 and 1. (b) Relative improve-
ment in generalization error due to querying, x(a), defined
as the ratio of the values of ¢; for random examples and for
query sequences.



teacher is, loosely speaking, ‘exhausted’ at « = 1 and the
information that can be gained from each new training
example tends to zero as a — co.

Non-optimal weight decay

We now turn to the case of non-optimal weight decay,
where the weight decay parameter A in the learning algo-
rithm 1s not set to the optimal value determined by the
signal-to-noise ratio of the teacher as in (4.17).

We consider first query construction for minimization
of the entropy in teacher space (4.9). Since this quantity
is independent of A, the query construction algorithm re-
mains the same as for optimal weight decay. (The same
conclusion holds for the case of minimization of the stu-
dent space entropy.) Therefore, as in the preceding sec-
tion, query construction only depends on the previous
input x* and not on the corresponding outputs. To cal-
culate the average generalization error after a sequence
of p minimum entropy queries, i.e. the average of (4.16)
over the training set distribution obtained by querying,
Pq(@(p)), as defined in (2.16), one can therefore first per-
form the average over the y# to derive

€g(min. entropy queries)
2.2
_ 00y

dGq(A)

dX

AwGq(A) + (Ay — A) (4.34)

where the average over the x* is taken care of in the
definition of the function Gq(-) in (4.27). The analo-
gous equation for the case of random examples as de-
rived in [27] is obtained simply by replacing Gq(-) with
G(-). The resulting values of () are plotted in figure 2
for various values of A and Ay. The most striking fea-
ture is that now k can actually assume values smaller
than 1, implying that minimal entropy query construc-
tion leads to a higher generalization error than random
examples, a seemingly counter-intuitive result. It can be
checked numerically, however, that k < 1 occurs only
when A is smaller than the optimal value Ay, combined
with high teacher noise levels Ay > 2 and values of «
for which the underlying rule is only just beginning to
be learnt, in that €z is still more than over 80% of its
value at @ = 0, 7.e. before any training examples were
presented. In these cases the learning algorithm is over-
confident in that it underestimates the amount of noise
in the training examples, making the entropy reduction
or information gain a spurious indicator of an improve-
ment in generalization ability. The correlation between
reductions in entropy and generalization error is recov-
ered as soon as « is large enough for the generalization
error to be significantly smaller than at a« = 0; in the
limit of an infinite number of training examples, one has
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—Aa(l — Aa)] +0 <i> (4.35)

a3

so that k is again greater than one for large a. The last
result also shows that for fixed, large «, k increases with
increasing (A — Ay)?, i.e. with the degree of mismatch
between the learning algorithm and the actual learning
problem at hand.

Now we consider for comparison the performance of
query construction for minimal generalization error de-
fined by minimizing (4.22). Since we have not been able
to perform this minimization analytically for the general
case, we restrict our attention to the special case in which
a is an eigenvector of the matrix My, and to the limit of
a noise free teacher, Ay — 0. If we also assume that My
has full rank, z.e. that at least N training examples with
linearly independent input vectors have been presented,
then only the second term in (4.22) survives:

(0 %) = % (M/glal, — My ta))”  (4.36)
Setting
A’ = M) 'al, — My a), (4.37)
A =Mjy'a—Mj'a 4.38)
one can derive that
A=A M’gl%xxTA (4.39)

and under the above assumptions and the spherical con-
straint (4.2) one finds that eg(@(”),x) is minimized by
choosing x along A and hence along a. This makes in-
tuitive sense: Under our assumption that a is an eigen-
vector of My, a is proportional to M;]a which 1is in
fact the true teacher, wy, due to the assumptions of full
rank of My and Ay — 0, so that querying along a yields
the largest possible signal y = wi,x/VN = o,|wy| and
hence reduces the generalization error (4.36) (which is
due to the mismatch between A # 0 and Ay = 0) most
quickly. We remark that x « a is a truly sequential
query construction criterion since it involves, through a,
the previous outputs. This in contrast to query construc-
tion for minimum entropy where the optimal query x is
determined solely by the preceding inputs as discussed
above.

Let us now apply the query construction criterion
x x a to a simple case where the above assumptions
are fulfilled. Namely, consider a noise free teacher wy
and a training set of N examples generated by minimum
entropy query construction, ¢.e. containing N mutually
orthogonal input vectors and thus having My = ¢21 and
a = o wy. Querying at x = a(No2/a?)!/? then yields a
new matrix M}, = My + aa’ (¢2/a%) and a new vector



FIG. 2. &(«) for minimum entropy queries for the case of
non-optimal weight decay A # Ay. (a) ‘Under-confident’, i.e.
unnecessarily large weight decay A = 10Ay, for Ayy=0.01, 0.1
and 1. (b) ‘Over-confident’, i.e. inappropriately small weight
decay A = Ay /10, for Ay=0.1, 1 and 10. Notice that in the
last case values of k() < 1 appear, i.e. that a sequence of
minimum entropy queries can lead to higher generalization
error than random examples.
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a’ =a+ yx/VvVN = a+c2wy = 2a; a’ is thus again an
eigenvector of Mj, and hence the next minimum general-
ization error query will have to be selected along a’, i.e.
again along a. dp = Nda such queries in sequence gener-
ate a matrix My and a vector a with Mya = (dp+1)o2a
and a = 02wy (1 + dp), thus leading to a generalization
error (using (2.12) and (4.11))

2
ag -
eg(@(N+5p) V) = ﬁ (MNla — wv)
oloh Wi A2

2 Noj (A4 Néa+1)2 (4.40)

This result contains the size of the perceptron, N, and
for fixed o converges to zero in the thermodynamic limit
N — oo, implying that in this limit ¢; expressed as a
function of « has a step discontinuity at @ = 1. This re-
sult in itself, due to the limiting assumptions that we had
to make, is probably less important than a more general
conclusion which can be drawn: For query construction
even in purely linear learning problems, maximizing in-
formation gain is not necessarily identical to minimizing
generalization error, and to obtain the optimal general-
ization performance one will generally have to resort to
truly sequential query selection.

V. OTHER ISSUES

In the preceding sections we have focussed our at-
tention on query construction when applied to generate
query sequences. We now turn to two other interesting
aspects of query construction: Single queries and locally
vs. globally optimal query construction. We again inves-
tigate them for the two example learning scenarios con-
sidered above, confining ourselves to query construction
for minimum entropy in the case of the linear perceptron
in order to keep things analytically tractable.

Single queries

We refer to a single query which is constructed on the
basis of an existing training set of random examples as
‘1solated’. It is then natural to ask the question: How
does the improvement in generalization capability due to
an isolated query, ¢.e. the decrease in generalization error,
compare with that due to a query in a query sequence
and that due to a random example? The first compar-
ison concerns the question of how the performance of a
single query depends on the previous learning history,
i.e. on the method by which the previous training exam-
ples have been generated (randomly or by querying). It
is not entirely obvious if for answering this question the
relative or the absolute decrease in generalization error is
the relevant quantity, and we shall consider both of these
options below.



1. High-low

As derived in section 11, the average generalization er-
ror after a single query can simply be calculated by av-
eraging the function eg(@(p) , &) over the respective query
construction distribution Pg(2|©®)). For the high-low
game, we thus find from (3.11) that a single query con-
structed for minimum generalization error and teacher
space entropy, respectively, reduces the generalization er-
ror by

Acg(1 min. gen. err. query) = SLNmaX(J:RJ —xri)
(5.1)
and
Aeg(1 min. entropy query)
11 1 -
= VW Z (xri—21,) = ﬁeg(e@)). (5.2)

Let us first consider the dependence of these results on
the learning history. From (5.2), a minimum entropy
query reduces the generalization error by an amount pro-
portional to the generalization error before querying—
which will therefore be large for previous training exam-
ples generated randomly and smaller if queries have been
used—, making the relative improvement independent of
the learning history. Comparing (5.1) and (5.2) one sees
that a minimum generalization error query provides, as
expected, a greater reduction (for N > 2; for N = 1
the two query construction algorithms are equivalent)
in generalization error than a minimum entropy query,
which is also more strongly dependent on the learning
history. For previous training examples generated us-
ing minimum generalization error queries, the maximum
in (5.1) is (1/2)l*] as follows from the discussion before
equation (3.13), giving an absolute decrease in gener-
alization error decaying exponentially with the number
of examples; from (3.13), the corresponding relative de-
crease is (1 — £2)7'/2N and thus between 1/2N (the
value for a minimum entropy query) and 1/N. The dif-
ference to the case of previous random training examples
is most clearly exhibited for N — oo, because in this limit
it follows from the well-known combinatorial ‘collector’s
problem’ (see e.g. [30]) that for any « there is with prob-
ability one at least one component of the version space
for which no training examples exist at all, making the
maximum in (5.1) equal to 1 and yielding an absolute de-
crease in generalization error of 1/8 N, independently of
a. From (3.16) the corresponding relative decrease [31]
s (a 4+ 0(1))/4N.

We now compare isolated queries to random exam-
ples. From (3.15), one finds that the absolute de-
crease in generalization error due to a random exam-
ple after previous random training examples is given by
1/(2Na?) + O(1/Na?), yielding a relative decrease of
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1/Na+0(1/Na?). As a — oo, this tends to zero, reflect-
ing the fact that the information carried by new random
examples becomes more and more redundant. By com-
parison, for an isolated minimum entropy query we found
above that the relative decrease in generalization error is
1/2N, showing that minimum entropy query construc-
tion successfully avoids this redundancy. For a minimum
generalization error query and in the limit N — oo, the
relative generalization error decrease of (a+O(1))/4N is
still larger, by a factor of a/2 4+ O(1), than the relative
decrease achieved by a minimum entropy query, imply-
ing that minimum generalization error query construc-
tion selects among all queries providing non-redundant
information the one with the greatest potential for im-
proving generalization.

2. Linear perceptron

We now turn to the case of the linear perceptron. As
pointed out before, we consider only the case of query
construction for minimum (teacher or student space) en-
tropy. In this case the reduction in generalization error
due to a single query is particularly easy to calculate,
since only the change in G(X) and dG(X)/dX (or Gg(A)
and dGq(X)/dA, respectively) needs to be worked out.
One obtains a result which in general depends on the
learning history through the minimal eigenvalue of My,
which we write as (/\—l-/\min)trfg. For a < 1, however, there
is no such dependence since one always has Ay, = 0 be-
cause the correlation matrix }_ x#(x#)T does not have
full rank. In the case of previous random examples [29]
one obtains, using the fact that in the thermodynamic
limit N — oo the eigenspectrum of My is self-averaging,

for a <1

for a > 1. (5-3)

)\min = 0
(Va—1)?
For a query in a query sequence, one simply has Anin =
[] as discussed in section IV. Using these values of Apin,
one finds that almost always, a query in a sequence leads
to an absolute reduction in generalization error less or
equal to that due to an isolated query. The exception
is the case of overconfidence and high noise level, where
at finite @ a query in a sequence can reduce the gener-
alization error by a larger amount (or increase it by a
smaller amount) than an isolated query. Asymptotically,
a query in a query sequence reduces the generalization er-
ror by (1/28y N)a=?(14+ O(a™")), which corresponds to
a relative decrease of 1/Na+O(1/Na?)), whereas for an
isolated query both the absolute and relative reductions

are bigger by a factor of 1 + 4a=12 4 O(a_l).

Now let us compare isolated queries to random exam-
ples. The reduction in generalization error due to a single
random example can be straightforwardly obtained by
differentiating the analogue of (4.34) for random exam-
ples with respect to Na, and is shown in figure 3 along
with the corresponding results for isolated queries. It can



be seen that the trend of the comparison between query
sequences and sequences of random examples discussed
in section IV is mirrored in the result for isolated queries
and single random examples: For optimal weight decay,
an isolated query always performs better than a ran-
dom example (maximally, it reduces the generalization
error by 5 times as much as a random example, which is
achieved at & = 9/4 in the limit Ay — 0) whereas for non-
optimal, over-confident weight decay and small « it can
perform worse. Asymptotically, the reduction due to an
isolated query is greater by a factor of 1+4oz_1/2+0(oz_1_)
than that due to an additional random example.

To summarize our discussion of single minimum en-
tropy queries for the linear perceptron, we have found
quite a different behaviour than for the high-low game,
as would have been expected from the significant differ-
ences between the two systems regarding the efficiency
of query sequences. Whereas minimum entropy queries
in the high-low game—whether isolated or in a query
sequence—Ilead to a relative improvement in generaliza-
tion error which remains finite as o — oo, the relative im-
provements in the linear perceptron decay towards zero
roughly as 1/a and to lowest order in 1/ /a are iden-
tical to those obtained from random examples. Again,
we argue that the reason for this qualitative difference
is that for large « learning in the linear perceptron is
mainly learning against noise, for which queries are not
significantly more useful than random examples.

We found for both high-low and the linear perceptron
with optimal weight decay that the absolute reduction
in generalization error is always larger for an isolated
query than for one in a query sequence, whether we con-
sider minimum generalization error or minimum entropy
queries. This result makes intuitive sense because, if the
previous training examples have already been generated
by queries, one expects there to be less scope for reducing
the generalization error by another query. We speculate
that this might be more generally valid in learning prob-
lems where the training algorithm is well-matched to the
learning environment, i.e. the a posteriori teacher dis-
tribution. For the linear perceptron with non-optimal
weight decay, i.e. a poorly matched training algorithm,
we find that the above does hold at least asymptotically
(as @ — oo) for minimum entropy queries, but not nec-
essarily for finite a. In terms of the relative reduction
in generalization error, we observe that for large a an
isolated query still performs better than one in a query
sequence, whereas for small « it can be shown that one
can also have the reverse relationship between the two.

Locally vs. globally optimal query construction

All our considerations so far have been based on the
assumption that query construction can be viewed as a
‘greedy’ optimization of some appropriate objective func-
tion. If one 1s looking for query construction algorithms
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FIG. 3. Relative reduction in generalization error (in units
of 1/N) due to an isolated minimum entropy query and a
random example, respectively. (a) Optimal weight decay
A = Ay; Ap=0.01, 0.1, 1. (b) ‘Under-confident’ weight decay
A =10Ay; Av=0.01, 0.1, 1. (c) ‘Over-confident’ weight decay
A = Ay/10; Ay=0.1, 1, 10. Notice that in the last case for
high teacher noise level (Ay=10) a minimum entropy query
can reduce the generalization error less than an additional
random example.



which are applicable independently of the total number
of queries that will eventually be used in the learning pro-
cess, this approach, which we shall call ‘locally optimal
query construction’, is perfectly reasonable. If the total
number of allowed queries were known, one might want
to optimize the query construction algorithm ‘globally’
in order to achieve the optimum of the relevant objec-
tive function after learning from the specified number of
queries and the corresponding outputs (see e.g. [32]). It
is the aim of the present section to compare the perfor-
mance of globally and locally optimal query construc-
tion, with the goal of assessing the loss in performance
that one incurs if one restricts oneself to locally optimal
query construction. We emphasize that what we mean
by globally optimal query construction is not identical
to what is normally referred to as ‘statistical’ (or ‘ex-
act’) design in the statistics literature, where all queries
are chosen before any outputs are received; globally op-
timal query construction shares with this approach the
fact that the total number of training examples is fixed,
but sequentially selects each new query on the basis of
all preceding training examples, inputs and outputs alike.
We also stress that the major disadvantage of globally op-
timal query construction is that it is tied to the specific
number p of queries that is considered; in fact, one must
expect that a globally optimal sequence of p queries can-
not be augmented by more queries later without leading
to suboptimal generalization performance.

We shall first consider the question of possible equiva-
lence of locally and globally optimal query construction
in terms of the final value of the relevant objective func-
tion that they achieve. Intuitively, one expects that if
a globally optimal sequence of p queries can always be
augmented by another query to give a globally optimal
sequence of p 4+ 1 queries, then globally optimal query
sequences can be constructed using a local, z.e. step-by-
step approach. This criterion can be formalized and one
can check that it does indeed hold for the high-low game,
whether generalization error or entropy is used as the ob-
jective function for query construction; thus locally and
globally optimal query construction perform equally well.
For the linear perceptron, however, the situation is dif-
ferent, as we now show. Consider the case of optimal
weight decay, where the generalization error is given by
(4.19). From the convexity inequality

—1
tr My;' > <—tr Mv> = (a2 + )™t (5.4)
one has the bound

3 1 1
)y > -
fg,opt((—) ) - 2ﬁv )‘V + a'

For a < 1, this bound can be tightened using the fact
that My must have at least N(1 — a) eigenvalues of size

Ayol:

(5.5)
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Y

[0

1
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cgopt () > (5.6)
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A result from [33] shows that the above inequalities
can be made into equalities by appropriate choice of
the x*, so that globally optimal query construction
for minimum generalization error saturates the bounds
(5.5),(5.6). Comparing this with the result (4.26),(4.27)
for locally optimal query construction, one sees that the
two achieve identical performance for & < 1 and for the
integer values & = 2, 3, ..., but that for all other values
of a locally optimal query construction performs worse.
This can also be read off from figure 4 which shows the
ratio p of the generalization error achieved by globally
and locally optimal query selection as a function of «a,
for different values of Ay. This ratio attains its minimum
of 8/9 at @ = 3/2 for Ay — 0, and is for large a given
by 1 — Aa(l — Aa)/a?+ O(a~3), showing that although
locally optimal query construction in general performs
worse for finite a, it ‘catches up’ again with globally op-
timal query construction asymptotically.

1.0+

0.95-

0.9

FIG. 4. Ratio p of generalization error achieved by glob-
ally vs. locally optimal query sequences, for the linear per-
ceptron with optimal weight decay A = Ay. Values of Ay are
0.01, 0.1, 1. The globally optimal query sequence leads to a
generalization error which is at most smaller by a factor of
8/9 (at @ = 3/2 and for Ay — 0) than that of the locally
optimal query sequence.

To illustrate the reason for the difference between lo-
cally and globally optimal query selection, we consider
briefly the case N = 2, p = aN = 3. The locally
optimally query construction algorithm selects the first
two queries x' and x? orthogonal to each other and
the third one randomly, leading to a (2 x 2) correlation
matrix (1/N) Y, x#(x*)T with eigenvalues ¢2 and 202.
Globally optima#query selection selects the three queries
x! x? x3 at angles of 120° to each other, making the
eigenvalues of the correlation matrix both equal to 3/2¢2
and thus saturating the bound (5.5). This example also
illustrates another point which was mentioned above: for



an unknown total number of training examples globally
optimal query construction is not normally a good idea.
If, after having chosen the globally optimal queries for
p = 3, we were allowed an additional query, we would
end up with a correlation matrix with eigenvalues 3/202,
5/202 which does not saturate the bound (5.5), whereas
the locally optimal query construction algorithm would
select the fourth query orthogonal to x3, yielding the op-
timal correlation matrix with two eigenvalues of 2¢2.

Summarizing, we have found that in general locally
optimal query construction will perform worse than its
globally optimal equivalent, but that, at least for the two
learning problems we have considered, the differences in
performance, if they exist, become negligibly small for
large values of a. Overall, the advantage of locally op-
timal query construction algorithms, namely their appli-
cability whatever the total number of training examples
is, thus seems to compensate well for the loss in perfor-
mance compared to globally optimal query construction.
It remains a matter of further research to establish how
general this result is.

VI. CONCLUSION

In the present paper, we have considered query con-
struction algorithms derived by optimization of appro-
priate objective functions. After setting up a general
probabilistic framework for this problem in section II, we
have explored in sections IIT and TV the differences be-
tween the objective functions entropy and generalization
error in two learning scenarios, the high-low game and
the linear perceptron, by evaluating the average general-
ization ability obtained after training on examples gen-
erated by a sequence of queries. We have found that
there are strong qualitative differences which are due to
the different structure of the underlying rule in the two
scenarios: In the high-low game with its nonlinear and
‘non-invertible’ rule, the generalization error decays ex-
ponentially with a, the number of examples normalized
by the number of parameters in the system, which is
a dramatic improvement over the asymptotic decay with
1/a for random examples. For the linear perceptron with
its purely linear rule, on the other hand, we have found
that the relative reduction in generalization error due to
querying is much less pronounced and indeed is given by
a reduction factor x(a) as small as 1 + 1/« for large a.
We have related this qualitative difference to the fact
that in the high-low game query construction can re-
alize a finite information gain per training example as
a — 0o, whereas for the linear perceptron the maximal
information gain per example tends to zero in this limit,
the available information essentially being ‘exhausted’ at
a=1.

As to the difference between entropy and generaliza-
tion error as objective functions for query construction we
have found that most of the time the entropy can serve
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as a useful guideline for query construction, but does
not achieve the optimal performance obtained by query
construction for minimum generalization error. For the
case of the linear perceptron, we have observed that if
the learning algorithm is ill-matched to the details of the
learning problem at hand (although the rule was still
assumed to be perfectly learnable), minimum entropy
queries can actually lead to a higher generalization error
than random examples, but only if the teacher is very
noisy, the learning algorithm is over-confident (z.e. un-
derestimates the noise level) and the number of training
examples is so low that the rule is only just beginning to
be learnt.

In section V, we have considered the performance of
isolated queries, 1.e. queries which follow a training set of
random examples, and compared them to single queries
in a query sequence and single random examples. We
have observed in our two example learning scenarios that
for large a an isolated query leads to a greater (abso-
lute) reduction in generalization error than a query in a
query sequence and speculate that this result, as well as
its analogue for the relative reduction in generalization
error, might hold more generally. We have also investi-
gated how much one could improve on the approach we
have adopted in this paper, namely locally optimal query
construction, i.e. ‘greedy’ optimization of the objective
function at each step, by allowing global optimization of
the query construction algorithm for a fixed total num-
ber of queries. We have found that the two methods will
not in general be equivalent, but we expect from the re-
sults for our two example systems that the difference in
performance will be small for many learning problems,
especially for large numbers of training examples.

It should be clear from the above that much remains
to be done in the field of query learning. In particular,
more complicated rules need to be analysed and scenar-
ios with unlearnable rules considered. Also the extension
to classification problems where an entropic cost func-
tion [34-36] might be a more appropriate performance
measure than the generalization error would be desirable.

In conclusion, we would like to stress that the em-
phasis of our work was not on finding practical query
construction algorithms, but rather on exploring some
of the more basic capabilities and limitations of query
construction. In particular, our framework allows differ-
ent characteristics of teacher and student space and thus
makes an analysis of ill-matched learning algorithms and
unlearnable rules possible, in contrast to, for example, a
Bayesian approach. The drawback of this method is that
in principle the query construction algorithms that we
derive are influenced by our assumed knowledge about
the teacher space, making them unlikely candidates for
real-world applications. Of course this is nothing new—
Bayesian analysis, for examples, makes even more strin-
gent assumptions on the structure of the teacher space by
assuming it to be equivalent to the student space. The
search for query selection methods and corresponding ob-
jective functions which are robust against uncertainties



in the structure of the teacher space is still open.
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