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We have solved the quantum version of the Mattis model with infinite-range interactions.
A variational approach gives the exact solution for the infinite-range system, in spite of the
non-commutative nature of the quantum spin components; this implies that quantum effects
are not predominant in determining the macroscopic properties of the system. Nevertheless,
the model has a surprisingly rich phase behaviour, exhibiting phase diagrams with tricritical,

three-phase and critical end points.
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§1. Introduction

Quantum spin systems with randomness are of active current interest because the interplay of

L,2) However, full exact

randomness and quantum fluctuations often leads to nontrivial behaviour.
analysis of such systems is very difficult, partly due to the randomness and partly due to non-
commutativity of quantum spin operators. We therefore solve in the present paper a quantum
version of the Mattis model with infinite-range interactions to investigate the effects of coexistence
of randomness and quantum fluctuations.

The Mattis model was originally proposed as a simple spin glass model exhibiting only random-
ness, but no frustration.?) Tt consists of Ising spins interacting via unfrustrated random exchange
interactions. The randomness can be gauged away, giving a simple ferromagnetic Ising model. The
model is nevertheless nontrivial under an external field, in which case the problem reduces to that

of the Ising ferromagnet with random local fields. In this paper we study the quantum version

of the Mattis model in an external field. This is a more complex problem because, even in the
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absence of external fields, one cannot gauge away the randomness in the exchange interactions
without violating the commutation relations of the quantum spin operators.

There have been several investigations of the quantum Mattis model including the dispersion
relation?) and the symmetry of the ground-state.”) These studies show that the non-commutativity
of spin operators does not necessarily play an important role in the determination of the qualitative
behaviour of the system. However, there has to date been no explicit solution for the equilibrium
behaviour of the infinite-range model, even without an external field. The exact solution given in
the present paper fills this gap; it also shows explicitly that, as was to be expected from the earlier

45) quantum fluctuations do not affect the structure of the phase diagram in an

studies cited above,
essential way. The physical reason for this fact is that the effective field acting on a spin is the sum
of very many other spins when the range of interactions is infinite; but the sum of many quantum
spin operators behaves like a classical vector. Hence, as we show, the problem reduces effectively
to that of a single-site quantum spin in a classical external field.

In spite of this fact, the system exhibits very rich phase behaviour. There are essentially three
ordered phases, two with collinear spin orientations (parallel or antiparallel to the external field),
and one with non-collinear spins. These phases are separated by first or second order transition
lines which terminate or meet at critical, tricritical, three-phase or critical end points. All these
types of phase behaviour can be explicitly and exactly derived by relatively simple but nevertheless
nontrivial manipulations.

The paper is organized as follows. The model is defined and its variational free energy derived in
§2. Extremization of the variational free energy gives the exact solution of the infinite-range model,
even for quantum spins. (In an appendix, we also confirm the variational result by a direct explicit
calculation.) The three special cases of the Ising, Heisenberg and XY models, which already exhibit
the three types of ordered phases mentioned above, are treated in §3. In §4, then, the model is
analysed for general values of the anisotropy parameter in the exchange interaction. While no
additional ordered phases appear, the resulting phase diagrams now exhibit new and nontrivial
features such as tricritical, three-phase and critical end points. The final section is devoted to

conclusions.

§2. Model and free energy

The system we consider consists of N spin-1/2 quantum spins S;. We use the rescaled spins
o; = (2/h)8S;, whose components have eigenvalues o = +1 (a = z,y, z), to describe the state of
the system; this makes correspondences with classical Ising models easier to see. The Hamiltonian

is defined as

1
H = —Nz&gjai-JO'j—;B'Ui. (2.1)

i<j



Here the sum runs over all pairs of sites, J is a general 3 x 3 coupling matrix, B is an external
field, and the & = £1 are quenched random variables. If only J,, and B, are nonzero, then only
the z-components of the spins, o, appear in H. Because the o} all commute with each other, the
quantum nature of the problem is then irrelevant, and one recovers the classical Mattis model®)
which is formulated in terms of Ising spins.

It should be noted that the infinite-range model does not have a lattice structure, and conse-
quently the concept of randomness in & does not have its direct significance. In fact, the present
model is identical to a two-sublattice infinite-range model with all bonds within a sublattice being
ferromagnetic and all bonds between different sublattices antiferromagnetic. Randomness does not
play an explicit role here. Nevertheless, such an infinite-range model can serve as a mean-field
approximation to the Mattis model in finite dimensions with real randomness. This is clear from
the case of the ferromagnetic Ising model in a random field, which is equivalent to the classical
Mattis model in a uniform field.) We therefore retain the terminology of randomness and disorder
in the following.

To solve the model (2.1), it is tempting to try to gauge away the quenched disorder by the
transformation o; — &;0;. But this is impossible, because the gauged spins would no longer obey

the required commutation relations
[oF, aiﬁ] =23 Z eamaz (2.2)
v

with €43, the fully antisymmetric unit tensor. Instead, we solve the model using a variational mean
field theory which treats the spins as uncorrelated with each other. Because we are dealing with
a model with infinite range interactions, this approximation becomes exact in the thermodynamic
limit N — oo; an explicit self-consistency argument for this fact is given in Appendix A. A
direct solution of a special case given in Appendix B also confirms the variational result. Finally,
Duffield et al”) have given a unified treatment of a large class of long-range quantum spin systems
with site disorder (including the one we consider) and derived an expression for the free energy
by mathematically rigorous techniques. The fact that their result coincides with our variational
calculation is probably the most direct confirmation of its exactness.

In the mean field approach, we start from a trial Hamiltonian
H, 0= — Z hz 0
i
with the associated variational free energy
F = Fy + (H — Hp), .

Here (...), denotes an average over the Boltzmann distribution defined by Hy, and Fj is the

corresponding free energy. The fact that mean field theory is exact then means that the minimum



of F with respect to the h; is not just an upper bound on the true free energy F, but in fact equal

to it in the thermodynamic limit. One easily evaluates F' as

F= —TZanCOShﬁ|hi|
i

—% > &gmi-dm; =Y (B — hi)-m,

i<j %

where 3 = 1/T as usual. The magnetizations are given by
m; = (o) = t(6h;)
in terms of the “vector hyperbolic tangent”

t(v) = — tanh(|v]).

|v]

Minimizing F' with respect to the h; gives the conditions

1
X hz — B — &N ijij = 0, (2.3)
J#i

where the x; are the local susceptibility tensors

o 6mz
Xi = ahZ

(2.4)

with components given by X?ﬂ =om§/ Bh? . It is easy to show that the x; are positive definite and
hence invertible; explicitly, one finds (h; = |h;|)

h; ® h;
7 hz2

_ h; ® h; \ tanh Sh;
h? pBhi

with 1 denoting the 3 x 3 identity matrix. Hence the minimization conditions (2.3) can be written

(1 — tanh? Bh;) + (1

as

1

h;, =B +fiNZ§ijj
J#i
1
=B+&J(namy —nom_) — NJmi, (2.5)
where
m 1
+ = Nni 7

are the magnetizations of the sublattices I+ = {i : & = £1}, respectively; n, and n_ give the
fraction of spins contained in the two sublattices. The last contribution to h; in (2.5) can be
neglected in the thermodynamic limit, and so the local variational fields become dependent only

on the sublattice, not the site ¢ itself: all the spins in the same sublattice feel the same local field



and hence have the same magnetization. One can now rewrite the variational free energy per spin,

f =F /N, in terms of the sublattice magnetizations alone, with the result

Fmy,m ) = ~Tnys(imy]) — Tn_s(m.|
- %(n+m+ —n_m_)-J(nymy—n_m_)
- B-(nymy +n_m_), (2.6)

where the entropic contribution is expressed as usual in terms of the entropy of a binary distribution,

1 1 1-—- 1-—
s(m) = — _;mln —;m_ len 2m- (2.7)

The true free energy per spin is obtained as the minimum of the variational free energy, hence the

final result

f= min f(my,m_). (2.8)

m,m._
In the following, because the variational free energy is exact for N — oo, we drop the tilde on
f. The requirement that f(m,,m_) must be stationary with respect to m_ and m_ gives two

self-consistency equations which can be written in the compact (and intuitively appealing) form

my =t[(nyJmy —n_Jm_ + B)/T] (2.9)
m_ =t[(—nyJmy +n_Jm_ + B)/T)| (2.10)

We emphasize that the energetic terms in the free energy (2.6) are exactly of the form that one

would expect if the sublattice spins
zEIjE

were classical vectors rather than quantum operators. Working out commutation relations such

as

[U—H U—i— Z [Uz aU

+ t,j€I4

Z 21 Z GQMJ

ZEI+

indeed shows that in the thermodynamic limit N — oo the vectors o+ become classical, with all
components commuting with each other. Note that even though the m . are classical, the quantum
(spin) nature of the problem is still reflected in the functional form (2.7) of the entropic contribution

to the free energy (2.6).



Having derived the free energy of our model for general J and B, we specialize from now on to

the case

J =diag(1,1,A), B =(0,0,B). (2.11)

The parameter A here interpolates between three important limits: For A = 0 and 1, respectively,
we have the XY and Heisenberg versions of the model, while for A — oo the classical (Ising) Mattis
model is recovered. We will analyse these three cases separately first before studying the richer
behaviour obtained for intermediate values of A. Because all phase diagrams are symmetric under
B — —B, we generally restrict ourselves to B > 0.

Finally, before proceeding, we note that with the choice (2.11), the model has a trivial rotational
symmetry in the zy-plane. We break this symmetry by requiring that mﬁ_ = 0 and m% > 0.
Minimization of (2.6) with respect to rotations of m_ implies that the components of m and m_
in the xy-plane are antiparallel to each other, thus also m¥ = 0, and m* < 0. So the minimization
in (2.8) only has to be carried out over the four magnetization components m?7 , m?, m%, m®, with
the latter being respectively non-negative and non-positive. We also assume throughout that the
positive sublattice I, contains more spins than the negative one, i.e., ny > n_, and take n_ > 0 in
order to exclude the trivial case of an anisotropic quantum ferromagnet without disorder. Instead
of ny and n_, we will sometimes use the parameter €, defined by ny = (1 +¢€)/2; ¢ — 1 then

corresponds to the disorder-free limit, and our assumptions on n and n_ translate into 0 < e < 1.

§3. Ising, Heisenberg and XY models

3.1 Ising limit (A — o)

In the limit A — oo, the free energy (2.6) is minimized when the sublattice magnetizations point
along the z-axis. We thus only have two nonzero order parameters m?* and m? to consider, and
effectively recover the Mattis model with classical Ising spins. Using s(m) = s(—m), the free energy

simplifies to

f/A = ~Tnis(m?) — Tn_s(m?)

1 .
— §(n+mi —n_m?)? — B(nym? +n_m?), (3.1)

and the stationarity conditions (2.9) and (2.10) become

m? = tanh[(nym?% —n_m? + B)/T] (3.2)
? = tanh[(—nym® +n_m?® + B)/T). (3.3)

Here we have introduced the rescaled temperature 7 = T/A and field B = T/A which are the
relevant control parameters for A — oo.
Considering first the zero temperature limit 7' — 0, the only possible solutions of (3.2) and (3.3)

are m3 = %1, so we only need to compare the four resulting values of f. For large B, one



finds in this way that m3 = m* = 1. We call this phase A, to indicate that both sublattice
magnetizations m and m_ are aligned along the direction of the field B, with both pointing in
the same direction. At B = n4, there is a first order transition to m?% = 1, m®> = —1; we denote
this new phase A_ because the sublattice magnetizations, while still aligned with the field, now
point in opposite directions. Finally, at B = 0 we have the conventional first order transition where
both magnetizations change sign, and then the mirror image of the A, —A_transition occurring
at B = —n4. As pointed out earlier, all phase diagrams of our model have this symmetry under
B — —B, so we will not mention results for B < 0 in the following.

In the T-B phase diagram, the first order transitions found above for T = 0 mark the beginnings
of two first order transition lines, both ending in critical points. The general procedure by which we
find such points is outlined in Appendix D; after a little algebra, the two relevant conditions (D-2)
and (D-5) become

ni[l = (m%)% + n_[1 — (m2)?]

T
0=nymi[l — (m%)?] —n_m”[1 — (m?)?). (3.4)

These need to be solved along with (3.2) and (3.3). The critical point that marks the end of the

first order transition line at B = 0 has m?% = m? = 0 and is thus located at T=ny+n_ =1,

B = 0. The critical point terminating the A;—A_ transition line, on the other hand, has to be
found numerically, along with the location of that line itself. The resulting phase diagram is shown
in Fig. 1 for e = 0.01.

Note that because of the critical point terminating the line of first order transitions between
A, and A_, these two phases can be smoothly transformed into one another by moving along a
continuous path in the T-B phase diagram. Along this path, the value of m?* changes sign by
passing through zero; the points where this happens obey B= ny tanh(2§ /T), as is easily derived
from (3.2) and (3.3). As in the case of the liquid-gas transition, this makes the thermodynamic
distinction between the two phases somewhat arbitrary. Unlike the traditional case, however, the
critical point is not due to a symmetry under sign reversal of the magnetization; the critical value
of m* is therefore nonzero (and, by (3.4), positive). This implies that just below the critical
temperature, the A;—A  transition is actually between two phases with m? > 0, rather than two
phases with opposite signs of m? .

The case of € = 0 in the Ising limit is worth an attention although we generally assume e > 0.
When e = 0, the system is equivalent to the random-field Ising model with symmetric distribution
of randomness. This problem has already been solved by the mean-field approximation.®) The
phase diagram is similar to Fig. 1 except that the smooth crossover between the Aand A_phases
along the dotted line is now replaced by a second order transition. This fact can be verified easily,

for example, in the case of B = 0 by setting ny = n_ = 1/2 in (3.2) and (3.3) and rewriting these
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Fig. 1. Phase diagram for the Ising limit A — oo, for ¢ = 0.01. The dashed lines indicate first order transitions,
and end in critical points. The transition at B/A = 0 and T'/A < 1 is a conventional one, where all magnetizations
change sign; at the other transition (B/A # 0), the relative orientation of the sublattice magnetizations changes
from antiparallel (A_) to parallel (A4). The dotted line indicates the points where the A_ and A4 phases transform
smoothly into each other as m® passes through zero. As the inset shows, the A_—A_ critical point is not on this

line; it has m? > 0.

z

equations for the combination m? —m

Finally, we note that the results (3.1,3.2,3.3) are valid not only in the limit A — oo, but for all
A > 0, as long as both sublattice magnetizations m; and m_ point along the z-axis. This means
that the properties of the A, and A_ phases are independent of A when expressed as functions
of B and T. In particular, the first order A, —~A_ transition as well as the first order transition at

B =0, T < 1 will be present in all phase diagrams unless “masked” by other phases.

3.2 Heisenberg model (A =1)
In the Heisenberg case A = 1, the coupling matrix (2.11) is isotropic, and the free energy (2.6)

can be rewritten as

1
f=-Tnys(my) —Tn_s(m_)+ §m2
—nimi —n?m? — Bm,, (3.5)
where my = |my4|, and m and m, denote the modulus and z-component, respectively, of the

average magnetization

m=nm, +n_m_



of all spins. The only dependence on the orientation of the magnetizations is through the last term,
which takes its minimal value —Bm (remember that we assume B > 0) when m, = m, i.e., when

m is parallel to B. This gives the free energy

1
f=-Tnys(my) —Tn_s(m_) + §m2

—nimi —n?m? — Bm (3.6)

which needs to be minimized subject to the constraints [nymy —n_m_| < m < nym4 +n_m_.
Note that the values of m,, m_ and m determine the orientations of the magnetizations uniquely.
This is clear geometrically because nim, n_m_ and m all lie in the same plane (the zz-plane,
by our assumption that m¥ = m? = 0) and form a rigid parallelogram; see Fig. 2. The angle of a
possible rotation of this parallelogram about the origin is fixed by the requirement that m must be
parallel to B (i.e., along the positive z-axis for B > 0). The remaining indeterminacy with respect

to a reflection about the z-axis is removed by our assumption that m? > 0.

Fig. 2. Geometry of the magnetizations for the Heisenberg model. Shown are (in the zy-plane) the total magnetiza-
tion m = nymy +n_m_ and the sublattice magnetizations scaled by the fractions of spins in the two sublattices,
nymy and n_m_. The moduli of the sublattice magnetizations m4 = |m4| and m_ = |m_| are kept constant
while m = |m| is decreased from left to right. For the maximum value of m, we have an A phase (left), then we
obtain an R phase, with m_ rotating from the positive (upward) towards the negative (downward) z-axis. Finally,
when m assumes its minimal value (right), we obtain an A_ phase. This kind of sequence is observed when passing
through the R phase in the Heisenberg phase diagram by decreasing the field B at constant T'; the moduli of the
sublattice magnetizations remain constant, and they rotate in such a way as to keep m pointing along the direction
of the field (the z-direction).

Focussing now on the minimization of (3.6) with respect to m, we note that for B > n_m4 +
n_m_— this minimum occurs at the maximum value of m, m = nym, +n_m_. Geometrically, this
implies that both m and m_ are directed along the positive z-axis, so we have an A phase. The

free energy becomes

f=-Tnyis(my) —Tn_s(m_) — %(n+m+ —n_m_)?

—B(nym4 +n_m_),



and the sublattice magnetizations therefore obey

m4 = tanh[(nymy —n_m_ + B) /T (3.7
m_ = tanh[(—nym4 +n_m_ + B)/T). (3-8)
For small fields obeying B < nymy — n_m_, on the other hand, f is minimized at the minimum

value of m, m = nymy —n_m_. With m_ now pointing along the negative z-axis, we have an

A_ phase with free energy

f=-Tnys(my)—Tn_s(m_) — %(n+m+ +n_m_)?

—B(nym4y —n_m_),
and corresponding self-consistency equations

my = tanh[(nymy +n_m_ + B) /T (3.9)
m_ = tanh[(nymy +n_m_ — B)/T]. (3.10)

The above results are identical to (3.1), (3.2) and (3.3) for the Ising case, bearing in mind that
A =1 and my = m? here, and that m®* = £m_ in the A, and A_ phases, respectively. This
conclusion agrees with our general statement in § 3.1 that properties of the A, and A_ phases are
independent of A.

For intermediate values of B, finally, the minimum of the free energy (3.6) occurs at a non-
extremal value of m. In this regime, we have a new, rotated (R) phase where neither m_ nor m_

point along the z-axis. Minimization of (3.6) with respect to m gives now m = B, and thus

1
f=-Tnis(my) —Tn_s(m_) —nim? —n’>m? — EBQ.
Stationarity with respect to m4 and m_ yields the self-consistency conditions
my = tanh(2nymy /T)
m_ = tanh(2n_m_/T) (3.11)

in which the moduli of the sublattice magnetizations are decoupled and the field B no longer
appears. This may seem surprising at first, but has a simple explanation: From (2.9) and (2.10),

the effective fields that determine the sublattice magnetizations are (using J = 1 for A = 1)
hy=+(nymy—n_m_)+ B.
But in the R phase, m = B, so that
hy =x+(ngmy—n_m_)+ (nomy+n_m_) =2nymy

and the coupling of the sublattices and dependence on B disappear, in agreement with (3.11).

The geometrical implication of (3.11) is that only the orientations but not the moduli of the

10



sublattice magnetizations change as the R phase is traversed. Figure 2 shows that as m (and thus
B) decreases, m_ rotates away from the positive z-axis and towards the negative z-axis; when it
reaches the latter, a transition to an A _ phase occurs. The magnetization of the positive sublattice,
m, first rotates away from the z-axis and then back towards it; this follows from the fact that
m = nym4 + n_m_ must keep pointing along the positive z-axis.

Above, the A.-R and R—A_ phase boundaries were given as B = nymy + n_m_, respectively.
At T = 0, where m; = m_ = 1, these reduce to B=ny +n_ =1and B =ny —n_ = ¢ for
nonzero temperatures, we have to find the phase boundaries numerically by solving the relevant
self-consistency equations for m and m_. We then find (see Fig. 3) that there is a line of second
order transitions connecting the zero-temperature A, -R and R-A_ transitions; the R phase only
occurs inside the “loop” formed by this line. The only other feature of the phase diagram is the

first-order transition line at B = 0, T' < 1, which is identical to the one found for the Ising case.

1.2 ‘

1 i

0.8 - ]

m 067 ]
0.4
0.2+ A ]

0 ,,,,,,,,,,,,,,,,,,,,,,,, 4

Fig. 3. Phase diagram for the Heisenberg case A = 1, for ¢ = 0.4. The dashed line shows the conventional first
order transition at B = 0, where all magnetizations change sign; the solid line is a line of second order transitions
between aligned (A4 or A_) and rotated (R) phases. The sublattice magnetization m_ passes smoothly through

zero on the dotted line.

3.3 XY model (A=0)
As the final “simple” case we consider the XY version of our model, which is obtained for
A = 0. In this case it is convenient to introduce the mirror image (in the xy-plane) of m_ about

the z-axis, given by m_ = (—m?,0,m?2), and the corresponding total (pseudo-) magnetization

11



m =nymy +n_m_. In these variables, the free energy (2.6) becomes

1
f=-Tnys(my) —Tn_s(m_) — 57’712 — B,
=—Tnys(my) —Tn_s(m_)
1 1
—§m2 + iﬁ@ — Brn,. (3.12)

Minimizing over the allowed values of m, € [—m, ] gives m, = B as long as B < m. The last
two terms in (3.12) then reduce to the constant —B?/2, and the remainder of the free energy
is minimized (for given my and m_) when m takes its maximum value m = nymy + n_m_.

Geometrically, this means that m,, m_ and m are all parallel to each other. The free energy is

f=-Tnys(my) —Tn_s(m_)

1 - 2 1 2
—— _m_)*—-B
2(n+m+ +n_m_) 5B
while the stationarity conditions

m4 = tanh[(nymy +n_m_)/T]

m_ = tanh[(nymy +n_m_)/T]

show that my = m_, hence also m = my = m_ with m = tanh(m/T"). The three vectors m,
m_ and m_ are therefore not just parallel, but in fact identical; their orientation in the xz-plane
is given by the ratio of m, = B and m. Reverting to the original vectors, we have that m_ and
m_ are rotated away from the z-axis and are mirror images of each other under a reflection about
this axis; we therefore have an R phase. The average magnetization m always points along the
positive z-axis. Starting from B = 0, m_ and m are directed along the negative and positive
z-axes, respectively (this follows from m* = 0 and m% > 0). As B is increased, both sublattice
magnetizations rotate towards the z-axis which they reach at the point where B = m.

For larger B, we have an A, phase. In this phase, m, = 7n; inserting this into (3.12), the

minimum with respect to 7 is again reached for m = nymy +n_rm_, giving
f=-Tnys(my) —Tn_s(m_-) —B(nymy +n_m_),

and thus m4 = m_ = m = tanh(B/T). All vectors m,, m_ and m_ are again identical to each
other; because they are now oriented along the z-axis, the same is true of the original magnetizations
m,, m_ and m. In Fig. 4, we show the resulting phase diagram; as expected, there is a line of
second order transitions between the R and A, phases. Note that obtaining this line numerically
is trivial for the XY model: Combining /i = tanh(m/T) and B = m gives B = tanh(B/T). It
follows in particular that in the XY limit, the phase diagram is actually independent of the amount

of disorder (as specified by €).
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It may appear strange that the disorder has no effect on phase behaviour in the XY limit
A = 0. But there is in fact again a very simple explanation for this. In the model (2.1), make
a gauge transformation only on the x and y-components of the spins, of — &0f, of — &ol.
This leaves the commutation relations (2.2) unaffected; indeed, it is just a rotation by = around
the z-axis of the spins with £ = —1. But this transformation actually gauges away the disorder
completely, so all results must be independent of €, in agreement with our findings above. Note
that this argument relies on the fact that only the z- and y-components of the spins appear in the

disordered (interaction) part of the Hamiltonian (2.1), and is therefore restricted to A = 0.

Fig. 4. Phase diagram for the XY case A = 0. The solid line indicates the second order transition between the
rotated (R) and the aligned (A4) phases. Note that this phase diagram is independent of ¢, i.e., of the amount of

disorder.

§4. Phase behaviour for general A

We now turn to the study of our model (2.1) for general values of A. The differences in the phase
diagrams for the three cases studied above (A = 0, 1 and co) already suggest that nontrivial phase
behaviour may occur for intermediate values of A. To orient ourselves, we consider first the zero
temperature limit, using A and B as the axes of our phase diagram (and considering € as fixed).

For large A, we expect essentially Ising behaviour, with an A, phase for large B, a first order
transition to A_ at B = niA, and the conventional first order transition at B = 0 where all
magnetizations change sign. In fact, as explained in §3.1, this will be the zero temperature phase
behaviour for general A unless other phases intervene. We therefore study next the limits of

stability (i.e., the spinodals) of the A} and A_ phases with respect to a transition to the R phase.

13



This is easiest if we write the sublattice magnetizations as

my = m+(sin ¢+703COS ¢+) (41)

m_ =m_(—sin¢_,0,cos ¢_). (4.2)

Here ¢4 are the angles (in the zz-plane) that m and m_ make with the z-axis; the signs of the
angles were chosen such that our conventions m% > 0 and m? < 0 always imply non-negative

angles. Using that my =m_ =1 at T = 0, the free energy (2.6) thus simplifies to

f = —%(’I’L+ Sin¢+ + n— Sin¢—)2
—%A(m_ cos ¢4 — n_ cos ¢p_)>
—B(nycos ¢ +n_cosp_). (43)

With only two order parameters (¢4 and ¢_) remaining, it is straightforward to find the matrix
of second derivatives of f. The criterion (D-2) implies that a spinodal instability occurs when the
determinant of this matrix vanishes. Evaluating the latter for ¢ = ¢_ = 0, one finds for the

spinodal of the A phase the condition

B? - B+ (A A% =0, (4.4)
while for the A_ phase (¢4 =0, ¢_ = m) the corresponding result is

~B?>+ Be+ A - A =0. (4.5)

The signs of the expressions on the 1.h.s. have been chosen such that they are positive when the
phases are stable. Also, because of the symmetry of the free energy (4.3) under ¢4 — —¢; and
¢_ — —¢_ or p_ — 2w — ¢_, these spinodals automatically satisfy the critical point criterion (D-5)
and so are in fact critical points. Figure 5 shows a plot of the spinodals lines (4.4) and (4.5) for
e = 0.4. We see that the A, phase is stable for large fields, but destabilizes as B is lowered; the
A _ phase, on the other hand, tends to be stable for smaller values of B, and large A. Nontrivially,

however, the A_ spinodal shows re-entrance: For A € [A, 1], with
1
Ao = 5(1 + V1 _62)7

Eq. (4.5) has two physical solutions for B, so the A_ phase is unstable at zero field, becomes stable
at intermediate values of B, and destabilizes again as B is increased further.

In Fig. 5, the first order A, -A_ transition line B = n A is also shown. Moving along this
transition line from large to small A, the first spinodal which one crosses is that of the A phase,

at the value of A given by
2¢+1

AIsing =2 m

14



Fig. 5. Zero temperature phase diagram for ¢ = 0.4. The transitions between the three phases Ay, A_ and R
are indicated by bold lines (solid for second order, dashed for first order). Dotted lines show the continuations
of the phase boundaries into metastable or unstable regimes. Note that the A_-R transition is re-entrant for
Are < A < 1. Also, for Agri < A < Arsing, the first order A—A_ transition is—because of the instability of the A
phase—pre-empted by a first order transition from A_ to R. Below Ay, this transition is second order, implying

that at A = Ay there is a tricritical point (marked by the circle).

For large values of A, the instabilities of the A4 and A_ phases are therefore pre-empted by the
first order A;—A_ transition. In this regime, we expect pure Ising behaviour even at non-zero
temperature, and this is indeed what we find (see below).

Now consider a value of A just below Ari,s. The A_ phase is stable for B = 0, and remains
so until at B = n, A the free energy of the A, phase becomes lower. The latter is still unstable,
however, because we are below the A, spinodal. There must therefore be a stable phase with
lower free energy. This phase can only be an R phase (it is neither A4 nor A_), and a first order
transition to this phase must actually occur at B < nyA. This implies that there is a line of first
order A_-R transitions extending to the left of the point A = Agng, B = n4 Arging. Where this
line meets the A_ spinodal (i.e., the line of second order transitions between A_ and R), there will
be a tricritical point. Applying the criterion (D-6) to the free energy (4.3), one finds after some
algebra that this point obeys, in addition to (4.5),

B? = A(A—1)(4A - 3).

It can be shown that, as e varies between 0 and 1, this tricritical point moves smoothly from
A=1,B=0toA=3/2,B =3/2. In particular, if we call Ay the value of A at the tricritical
point, we have 1 < Ay < 3/2 < Arging < 2 for all €.
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Having clarified the structure of the zero temperature phase diagram, we can now move on to the
finite temperature case. The numerical results we show were obtained as follows: For spinodals and
tricritical points, we derived analytically the form of the relevant conditions (D-2) and (D-6) (for
our free energy (2.6) with the four order parameters m? , m*, m% and m”). We then solved these
numerically, along with the self-consistency equations (2.9). First order transitions were located
as usual by comparing the free energies of the relevant phases. All results were obtained from
double-precision routines for solving nonlinear simultaneous equations, and cross-checked using a
symbolic manipulation software package with “arbitrary precision” floating point operations. We
can distinguish a total of seven different phase diagram topologies, depending on the value of A:

Regime 1: XY -like behaviour (0 < A < Aye). For small values of A, the phase diagram has
essentially the same features as for the XY limit A — 0; an example is shown in Fig. 6. It is
clear that this behaviour cannot persist up to A = 1, however: From the zero temperature phase
diagram, we know that for A;e < A < 1, there must be re-entrant behaviour. Correspondingly,
the second order R-A transition line must develop a “dent”—as if someone was pushing against
it from the positive T-direction—as A increases; this dent will reach T' = 0 exactly at A = Aye.
Before this happens, re-entrance will already be visible for nonzero T'; Fig. 6 confirms this. In
principle, one could use the appearance of re-entrance at nonzero T' to further divide this regime
into two subregimes, but we choose not to do so because the overall topology of the phase diagram
remains unchanged.

To clarify the physical nature of the observed re-entrance, we show in Fig. 7 the B-dependence of
the angles ¢4 which the sublattice magnetizations m and m_ make with the z-axis. The two sets
of curves correspond to vertical cuts through Fig. 6 (bottom), at temperatures just below and just
above the appearance of the re-entrance. Bearing in mind the definitions (4.1,4.2) of ¢4, we see
that m and m_ start off at B = 0 by pointing along the positive and negative x-axis, respectively.
As B is increased, they both rotate counter-clockwise at first. Below the re-entrance, this rotation
stops before either of the two magnetizations reaches the z-axis, and reverses. Eventually, both
m, and m_ then rotate towards the positive z-axis, reaching it at the R-A, transition. The
behaviour above the re-entrance is now recognized as a more extreme form of this, where the initial
counter-clockwise rotation of the two magnetizations continues until m and m_ point along the
positive and negative z-directions, respectively. This gives the R—A_ transition; when the reversal
of the counter-clockwise motion sets in, both m_ and m_ eventually ‘detach’ again from the z-
axis, marking the transition back to the R phase. The behaviour as B is increased further then
resembles that below the re-entrance, resulting in the final R-A . transition.

Regime 2: Between XY and Heisenberg (Ape < A < 1). At A = Ay, the R-A transition line
“pinches off” at the B-axis; for larger A, we therefore have two separate transition lines of this kind

(see Fig. 8). For low enough temperatures, the sequence of phases observed as B is increased from
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Fig. 6. Phase diagrams in regime 1 (A < A..) for € = 0.4. The solid lines mark second order transitions between

the phases. As in Fig. 1, the dotted lines show where the A_ and A phases transform smoothly into each other
(mZ = 0). For small A (top, A = 0.9), the phase diagram resembles qualitatively that of the XY model (Fig. 4). In

the bottom graph, A = 0.95 is close to A, = 0.958 ..., and re-entrant behaviour appears at nonzero temperature.

This is a precursor of the transition to regime 2.

—— @, (T=0.45) |
——— @ (T=0.45)
— @, (T=0.5)
——— @ (T=0.5)

Fig. 7. The dependence of the angles ¢+ of the sublattice magnetizations on the field B, at constant temperature

T. The parameters ¢ = 0.4, A = 0.95 are as in Fig. 6 (bottom). Two sets of curves are shown, for 7" = 0.45 and

0.5; these correspond to vertical cuts through Fig. 6 (bottom) just below and just above the temperature where

re-entrance at constant T is first observed.
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0 is therefore R—A_-R—-A . As the Heisenberg case A =1 is approached, the R—A_ transition line
(a loop, if we bear in mind its mirror image for negative B) moves closer to the horizontal axis
B =0 and at A =1 collapses into the first order transition line of Fig. 3. The latter exists for all
A > 1 (extending up to T =1, i.e., T = A, as expected from our discussion of the Ising case) and

will not be mentioned explicitly in the following.

15

Fig. 8. Phase diagram in regime 2 (A, < A < 1), for € = 0.4 (where A;e =0.958...) and A = 0.96. The lines have

the same meaning as in Fig. 6. Re-entrant behaviour now occurs even at zero temperature.

Regime 3: Heisenberg-like (1 < A < Ayy). To make the eventual connection with the Ising limit
A — oo more apparent, we will use the rescaled variables T = T/A and B=B8B /A as the axes
of all phase diagrams from now on. In the numerical examples, we also switch from ¢ = 0.4 to
€ = 0.01, where the intermediate regimes explained below are somewhat easier to visualize. In the
regime 1 < A < Ay, the phase diagram has qualitatively the same shape as for the Heisenberg
case A = 1: A loop of second order transitions between R and A, or A_, respectively, beginning
and ending on the B-axis (see Fig. 9). At A = Ay, the tricritical point that we found earlier
appears on the T = 0 axis, marking the transition to the next regime.

Regime 4: Tricritical (A < A < Ag). As A increases, the tricritical point moves out to larger
T. To the left of it, the A_-R transition is now first order (see Fig. 9). One might naively expect
that as A is increased further towards the Ising limit of large A, the “loop” of transitions between
R and A_ or A, would simply collapse at Aging onto the Ising first order A ~A_ transition line.
In fact, two other regimes appear first.

Regime 5: Tricritical plus three-phase (Az < A < Acgp). It turns out that the R-A transition

loop with the tricritical point on it does not just shrink along the B direction, but also moves
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Fig. 9. Phase diagrams in regimes 3-7 (A =1, 1.2, 1.4, 1.5, 2 from the outside to the inside), for ¢ = 0.01. Solid
and dashed lines mark second and first order transitions, respectively; the circle indicates a tricritical point. See

following figures for details.

towards smaller values of T' as A is increased. Eventually, at some As, the Ising A, A _ transition
line therefore “pokes” through the loop. This must happen at a point where the transition is first
order; at a point with a second order transition this would be impossible, as it would imply a first
order transition between two phases which are actually identical, being both in critical coexistence
with the same third phase. This means that one has a point where three phase transition lines
meet, i.e., a three-phase point; see Fig. 10. There is still a tricritical point where the R-A phase
transition changes from second to first order. Note that this regime generally corresponds to only
a very small range of A; for e = 0.01, we estimate Az ~ 1.39 and Acgp ~ 1.41.

Regime 6: Critical end point (Acgp < A < Aging). The relative positions of the tricritical and
three-phase points in the previous regime change as A increases, until at some Acgp they coincide.
From there onwards, the tricritical point is no longer accessible (it is in a metastable or unstable
part of the phase diagram). Instead, as shown in Fig. 11, one now has a line of second order A -R
transitions that meets a line of first order transitions (between A_ and R for small T', and between
A_ and A for large f) at a critical end point. As A increases, this point shifts towards lower
temperatures and eventually disappears at A = Apg,g. Fig. 12 illustrates the transition between
regimes 5 and 6 by showing the curve traversed by the tricritical point as A is varied, together
with the Ising A;-~A_ transition line. The value of A where these two curves meet (i.e., where
the tricritical point “collides” with the A;—A_ transition and thus turns into a critical end point)

defines ACEP .
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Fig. 10. Detail of a phase diagram in regime 5 (A = 1.4, ¢ = 0.01). Solid and dashed lines mark second and first
order transitions, respectively; circles indicate tricritical points. There is a three-phase point where the three first

order lines meet.

Regime 7: Ising-like (A > Aggng). Finally, for large values of A, one has pure Ising behaviour,
with a A-independent phase diagram (when represented in terms of B and T') exhibiting the by

now familiar line of first order A;—A _ transitions (see Fig. 1).

§5. Conclusion

We have solved the infinite-range quantum Mattis model by a variational method that gives
the exact solution in the thermodynamic limit. The model has various interesting aspects such
as randomness (although without frustration), quantum effects and competition between exchange
interaction and external field. We found three ordered phases, two of which have spin states
collinear with the external field and the remaining one with non-collinear rotated spin states. The
phase diagram has a very rich structure depending upon the various parameters, in particular the
anisotropy of the interaction.

We now ask how important quantum effects are in producing the intricate macroscopic behaviour
of the system. The form of the entropy term in the free energy (2.6) is a direct consequence of
the spin-1/2 characteristics of a single quantum spin. The energy term, on the other hand, is
of the form one would expect classically. Thus it is clear that the T' = 0 properties do not
reflect quantum effects. Finite-temperature behaviour, on the other hand, could be affected by
quantum fluctuations. This fact is somewhat counter-intuitive since quantum effects are usually

most important at low rather than high temperatures. An interesting manifestation of finite-
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Fig. 11. Detail of a phase diagram in regime 6 (A = 1.5, ¢ = 0.01). Solid and dashed lines mark second and first
order transitions, respectively. There is a critical end point where the line of second order transitions meets the

first order line.
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Fig. 12. The transition between regimes 5 and 6, for ¢ = 0.01. The dashed line shows the Ising A;—A_ transition
line (which, when plotted in terms of B = B/A and T = T/A as done here, is independent of A). The solid line
shows the curve traversed by the tricritical point as A is varied, moving from right to left with increasing A. The
crossing of the two curves (i.e., the value of A for which the tricritical point meets the A4—A_ transition and thus
turns into a critical end point) defines Acep. Note that for lower values of A than shown here, the tricritical point

would first continue to move right, but eventually swing back towards the B-axis, meeting the latter at A = Agy;.
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temperature quantum effects is seen in the equations of state (3.8) to (3.10) of the Heisenberg
model in the A, and A_ phases. These equations of state have exactly the same form as for
the Ising case (3.2) and (3.3), which would not be the case if the spins in the Heisenberg model
were classical vectors. The transverse (i.e. = and y) components of the spin-1/2 operator have
disappeared and only the z component comes into play, as would be expected for a single quantum
spin in a classical field.

We stress that, even though the quantum nature of the individual spins in the model does manifest
itself at finite temperatures, this does not produce any qualitatively new ordered phases beyond
those already found at T' = 0. The possible types of ordering are thus determined by the classical
considerations for the ground state; quantum effects only control how these ordered phases and the
boundaries between them are arranged in the finite temperature phase diagrams.

Finally, a natural question that arises is how our results would change in the more physically
realistic case of finite range interactions (corresponding to finite dimensionality of the system).
While we cannot give a definite answer to this question at this point, existing investigations of
finite-dimensional quantum Mattis model*®) do suggest that the classical picture gives reasonable
predictions for some features of the model. On the basis of these results, we conjecture that our
observations for the infinite-range model should give an at least qualitatively reliable guide to the

finite-dimensional problem. Future work is obviously needed to clarify this point.
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Appendix A: Self-consistency of mean field approximation

In this appendix, we show that mean field theory gives exact results for the generalized Mattis
model (2.1). The intuitive reason for this is clear: The field that each spin experiences is an average
of O(N) other spins and therefore becomes nonfluctuating (and classical) in the thermodynamic
limit.

To see more explicitly why the mean field approximation, which assumes that all spins are
uncorrelated with each other, becomes self-consistent for N — 0o, we consider a generalization of

our original Hamiltonian (2.1) to site-dependent fields:

1
H=-= Y ¢&itjoi-Joj— > Bi-o;.
i

1<j

The fluctuation-dissipation theorem then relates the susceptibility matrix to the spin-spin correla-
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tions according to

0 (o) OF

6B, ~ BB, P \Aoibei). Aei=oi= (o). (A1)
For given ¢ and 7, this is an equality between 3 x 3 tensors, whose components are written explicitly

as 0(af) /0B] = 8 <AO’?AO';/>. We can thus verify that mean field theory is self-consistent by

working out the susceptibility matrix and using it to show that correlations between different spins
vanish for N — oo.
To obtain the susceptibility matrix, we start from the mean field equations. By a direct general-
ization of (2.5), these are
hi=B;+&J(namy —n_m_) — %Jmi. (A-2)
For the case of site-independent fields B; = B, they reduce to (2.5), with the fields h; and magne-
tizations m; being the same for all spins in each of the two sublattices I (in the thermodynamic
limit). We now add a small perturbation ¢ B to the field of one of the spins; without loss of gen-
erality, this spin can be taken as o;. For definiteness, we also assume that o1 is in the positive
sublattice I ; the calculation for the opposite case is completely analogous. The solution to the
mean field equations (A-2) will then be such that all spins in the sublattice I_ still have the same
fields h_ and magnetizations m_. In I, on the other hand, we have to distinguish between the

field and magnetization of the chosen spin (h; and m4) and those of all other spins in the sublat-

tice; we denote the latter by hs and ms. Using that the average magnetization of this sublattice

is now
1
my = N—n_i_[ml + (Nn+ — 1)m2]
1 n (1 1 )
N Nn+m1 N’I’L_|_ ma
the mean field equations (A-2) then take the form
1 1 1
hi=B+B+J [le + (n+ — N) mz] —Jn_m_ — NJml
1 1 1
hs =B+ J le—l— n+—N mo —Jn,m,—Nng

1 1 1
Subtracting the corresponding equations for § B = 0 gives relations between the deviations of the

fields (dhy etc) and magnetizations (dmy etc) from their values for site-independent fields:
1
ohy =0B + (n+ — N) Jodmo —n_Jdm_

1 2
oho = NJJml + (n+ — N) Jomso —n_Joém_

1 1 1
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For small § B, we can linearize these using
omy = X+(5h1, omo = X+5h2, om_ =x_0h_,

where x, and x_ are the local susceptibility tensors (2.4) of spins in the two sublattices; because
these are evaluated for the unperturbed solution (with site-independent fields B), there is no need

to distinguish between x; and x,. We thus obtain

x;léml — <n+ - %) Joms+n_Jém_ = 6B

1 _ 2
—~Joma + [xﬁ — (n+ — N) J] smo+n_Jém_ =0

1 1 1 1 B
NJ(Sml + <n+ — N) Joms + [x — (n_ — ﬁ) J] om_ = 0.

These equations can solved explicitly for the changes in the magnetizations; keeping only the

leading order terms for N — oo, one finds

dm; =x,0B
1 _
dmgy = NX+J[1—TL+X+J—TLX_J] 1X+5B
1 _
dm_ = —Nx,J[l—n+x+J—n_x,J] 1x+(5B.

The 3 x 3 tensors multiplying ¢ B on the r.h.s. give the entries of the susceptibility matrix Om;/0B;
(for the case j = 1 € I, considered here; as stated above, the case j € I can be treated in exactly
the same fashion). We read off that these entries are of O(1) only for ¢ = j, while all off-diagonal
terms are O(1/N). The fluctuation-dissipation theorem (A-1) then implies that all correlations
(Ao;Ac;) between different spins ¢ # j are O(1/N); in the thermodynamic limit, mean field

theory therefore becomes exact.

Appendix B: Direct solution for a special case

It is possible in some cases to derive the variational free energy (2.6) directly from the Hamiltonian
(2.1). We consider the example of the Heisenberg model (A = 1) here to confirm the variational
calculations.

Setting i = 1, the Hamiltonian (2.1) can be written in terms of total spin operators as

4 1
H=—~ (si + 82 — §S2> —2BS,,

where we have ignored a trivial constant term. The spin operators are defined by

1
Si:EZa’i’ S=8,+S5_.

el
Because the quartet {S’i, S?, 52,Sz} form a set of mutually commuting operators, the Hilbert

space of the N-particle system is spanned by their simultaneous eigenspaces |sy,s_;s,m). The
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free energy per spin fy is therefore

fv= —%m Sty dty o Rlorortiba ot

54,5
S4+85—
« —i_z: —%s(s—f—l) i 2m(3B
e e (B-1)
s=|s4—s_| m=—s

Here the sums over si run from 0 (or 1/2 if Ny is odd) to N1/2 (= ntN/2). The symbol d7,
denotes the number of multiplets of total spin n in a system of M spin—% particles. We show in

Appendix C that d7f, is given explicitly by

oo [ M-1 M-1
M= \IM+n-1 sM+n+1

(2n 4+ 1)M!

B GM —n)(GM+n+1)!° (B-2)

To evaluate the free energy (B-1), we first carry out the sum over m,

i: s _ E0HIB — ~(or)38
N eBfB — ¢—PB

m=—3s

Setting L = £0B, we therefore need to evaluate the following sum over s:

S++s— 28
Z e_W5(5+1)+(25+1)L

s=|sp—s_|
dz e TR ;

— eL e 37 Z e2s(L7ﬁ/Nfzz\/ﬁ/N)
V2w s=|sp—s_|
dz 1.2

L —5Z

=€ e 2 X

V2

o2ls+—s—|(L—B/N—iz/B/N) _ ,2(s4+s—+1)(L—B/N—iz\/B/N)
1 — 2(L=B/N—izy/B/N)

Rescaling the integration variable by /6N, we thus have

S++s5—
Z e—%s(sﬂ) [e(2s+1)ﬁB _ e—(25+1)ﬂ3]

s=|s;—s_|

1
(3) fuc
2

2854 —s_|(B=1/N=iz) _ ,2B(s+s_+1)(B=1/N—i2)
X o—BB _ gB(B—2/N—2iz)

e2Bls4—s—|(=B—1/N—iz) _ 2f(s4+s-+1)(-~B—1/N—iz)
a eBB _ oB(—B—2/N—2iz)

The thermodynamic limit of the free energy is then expressed as

T 15n7,2
— _ 1 1 —=f(Nz
f A}lm — n/dz e 2
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X d5+ d e R ls(s4+1)+s—(s—+1)]
{62ﬂs+—s_|(B—iz) — 2B(s4+s_+1)(B—iz)
X

e—BB _ oB(B—2iz)
e2Bls+—s-|(—B—iz) _ 2B(s4++s—+1)(—B—iz)
oBB _ oB(—B—2iz)

The sum over s can be replaced by an integral in the thermodynamic limit:

1 1 1
S+ = §n:|:m:|:N, Z — EniN/ dmy.
0
S+

Also, for large N the expression (B-2) for the combinatorial terms d% can be simplified to

1 1 Ny!
—IndiF = ln X
NN {[Ni(__mi)]'[Ni( Lmy))!
2Nimy+1
Ni(3+my)+1

=nts(ms) + O(1/N).
The free energy thus becomes

f__ llm —ln/ dZ/ dm+/ dm e_/BNf(Zm+a )

with
1
flz,my,m_) = §z2 —nim? —n2m? — Tnys(my) — Tn_s(m-_)
T eBNInymy—n_m_|(—iz+B) eBN(nimy+n_m_)(—iz+B)
~ lim = _
Ny sinh[3(iz— B)] sinh[3(iz— B)]

eBNIngmy—n_m_|(—iz—B)  BN(nymy+n_m_)(—iz—B)
Suh[p(iz1B)] | smb[B(iz1B)] }

For N — o0, the third and fourth terms in the curly brackets become exponentially small compared

to the first and second terms, respectively, and can therefore be discarded (remember that we

assume B > 0). If we also make the change of variable z — iz (which implies that the free energy

is to be maximized with respect to z), we have

1
zymy,m_) =—=22 —n2m2 —n?2m% —Tn s(my) —Tn_s(m_
+ 2 + o4 + +

1 n {6K|n+m+n_m_|(z+3) eK(n.|.'m.|.—|—n_m_)(z—|—B)}

—im gl sinh[—3(z+B)] + sinh[3(z+ B)]

Because nymy +n_m_ > |nygmy — n_m_|, the first term inside the curly brackets becomes
negligible for z > —B; conversely, for z < —B, the second term can be discarded. We are then left

with
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—Tnys(my) —Tn_s(m_)

nymy +n_m_ z>—B

|nygmy —n_m_| (z < —B)
Taking the derivative of f with respect to z subsequently gives the equations z = —(nym4+n_m_)
ifz>—Band z=—|nymy —n_m_|if z < —B. In addition we have a local maximum at z = —B

if the z-derivative of f is negative for z > —B and positive for z < —B, which translates into the
extra solution z = —B appearing for |[nymy —n_m_| < B <nym; +n_m_. In combination the

full picture now becomes:

B < |ngmy —n_m_|: z=—|nymy —n_m_|
[nygmy —n_m_| < B<nymy+n_m_: z=-B : (B-4)
B>nimy +n_m_: z=—(nymy+n_m_)

Elimination of the variable z using the above result leads us to a reduced free energy minimization

problem involving m4 only, with

(a) Phase A_: B < |nymy—n_m_|
(b) PhaseR: |nymy—n_m_|<B<nymy+n_m_ (B-5)
(¢) Phase Ay: B>nymy+n_m_

It is straightforward to verify from Eqs. (B-3), (B-4) and (B-5) that the free energy in each phase
agrees with that given in §3.2.

Appendix C: Degeneracy factor dj,

We derive here the expression (B-2) for the number of multiplets of total spin 7 in a system of
M spin—% particles. In other words, d’}, is the degeneracy of the state |n,n,), where n is the total
spin quantum number and n, is any of the allowed values (—n, —n+1, ..., n) of the z-component
of the total spin.

We proceed by induction over M. For M = 1, we have d}; = 1 for n = 1/2 and d}}, = 0 otherwise.
Now consider a multiplet of spin 7 in an M-spin system. When one spin-1/2 particle is added, this

multiplet splits into exactly one n + % and one n — % multiplet. The exception is n = 0, where only

a single n = % multiplet is generated. We therefore have

_1 1
R =dyy 4 dy 2 (C-1)
with the boundary condition
Ay =0 (n<—3). (C-2)

Now consider an unbiased random walk with sites numbered by the integers [ = 2n+ 1 and discrete

time t = M — 1. The recursion (C-1) then tells us that

2= M Dan = py(0), (C-3)
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where p;(l) is the site occupation probability at time ¢ of a random walk starting from initial
position lyp = 2 at t = 0. The boundary condition (C-2) simply corresponds to an absorbing wall

at [ = 0. Without this absorbing wall, one would have

_ t
pi(l) =2 t(%(l—lo—kt)) ;

in the presence of the wall, one simply subtracts the reflected solution in the usual way to get

¢ t ¢
pe(l) =2 K%(z—zoﬂ)) N (%(l+lo+t)>

Inserting this into (C-3) immediately gives the desired result (B-2). In writing the above formulae,

we use the convention that the binomial coefficient (Z) is zero whenever k is non-integer or outside

the range 0...n.

Appendix D: Criteria for spinodals, critical and tricritical points

In this appendix, we set out the general criteria that we use to find spinodals, critical points
and tricritical points. Rather than the traditional determinant conditions due to Gibbs,?) we use a
formulation due to Brannock'® which is more convenient, especially for tricritical points.

Let us assume the free energy per spin is given by f(t), where ¥ = (¢1...1y) is a vector of n
(non-conserved) order parameters. Thermodynamic phases correspond to (local) minima of f()
and therefore obey the stationary condition V f(1) = 0. At a spinodal point, there is in addition an
instability direction dip along which the free energy has zero curvature, implying that the gradient

of f remains zero to first order:
(6 -V)Vf(y) =0 (spinodal). (D-1)
The condition for such a d to exist is
|M| =0, M =VVf(). (D-2)

At a critical point, the separation between two neighbouring (in the 1p-space) stable phases becomes
infinitesimal. These phases are separated by an unstable phase (a saddle point of f). Constructing
a curve 1(s) through these three phases (with 1(0) = 1), the state we are interested in), we see
that (the vector-valued function) V f(#(s)) vanishes at three infinitesimally separated values of s.

At the critical point, located at s = 0, these three zeros of V f(#(s)) coincide, so

Similarly, at a tricritical point we have three stable phases coming together, with two unstable

phases between them, so the corresponding criterion is
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Noting that the spinodal criterion (D-1) can be written as V f(1(s)) = O(s?) for the curve 1 (s) =
1 + s61p, we can summarize all three criteria as follows: If there exists a curve 1(s) through the
point ¥ (with (0) = 1) such that

Vi(s)) = O(s), (D-3)

then for [ = 2, 3, 5 respectively 4 is a spinodal, critical and tricritical point.

To evaluate the criterion (D-3) in practice, we write it as

d

k
(£> Vi) =0 fork=1..01—1. (D-4)

s=0

For the spinodal criterion, this reduces to (D-1) if we identify 1) and %'(0). For critical points

(I = 3) one obtains the additional equation

V(0% - V) f() + V(4"(0) - V) f (%) = 0.

Taking the scalar product with d¢ and using (D-1) eliminates the second term, showing that the

criterion for critical points is
(6% - V)*f(y) =0 (D-5)

together with (D-1). Following a similar procedure, one finds that tricritical points obey the
additional condition

(6 - V) f(¢p) —3v- Mo =0 (D-6)

where
v =V (Y- V) f(¥).

Even though the matrix M has a zero eigenvalue (M d@p = 0 from (D-1)), the inverse of M in (D-6)
is well defined: From (D-5), we have §@ - v = 0, so that v is orthogonal to the corresponding
eigenspace. Note that while the first term on the Lh.s. of (D-6) is what one might have expected
naively, the second term cannot be neglected: It accounts for the fact that the curve 1 (s) passing
through the three (infinitesimally separated) stable phases is generally curved rather than straight.

We finally note that (D-6) is derived from (D-4) for ¥ = 3. In principle, the equation for k = 4
gives an additional condition that tricritical points must obey. Because of symmetries present in
our problem, however, this condition is always satisfied in the cases we consider, and so we do not

give its explicit form.
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