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Online learning from finite training sets
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PACS. 87.10.4e— General, theoretical, and mathematical biophysics (including logic of biosys-
tems, quantum biology, and relevant aspects of thermodynamics, information
theory, cybernetics, and bionics).

PACS. 02.50.—r — Probability theory, stochastic processes, and statistics.

PACS. 05.90.4+m- Other topics in statistical physics and thermodynamics.

Abstract. — We analyse online (gradient descent) learning of a rule from a finite set of
training examples at non-infinitesimal learning rates 7, calculating exactly the time-dependent
generalization error for a simple model scenario. In the thermodynamic limit, we close the
dynamical equation for the generating function of an infinite hierarchy of order parameters
using ‘within-sample self-averaging’. The resulting dynamics is non-perturbative in n, with a
slow mode appearing only above a finite threshold nmin. Optimal settings of n for given final
learning time are determined and the results are compared with offline gradient descent.

Neural networks have been the subject of much recent research because of their ability to
learn rules from examples. One of the most common learning algorithms is online gradient
descent: The weights of a network (‘student’) are updated each time a training example from
the training set is presented, such that the error on this example is reduced. In offline gradient
descent, on the other hand, the total error on all examples in the training set is accumulated
before a gradient descent weight update is made. For a given training set and starting weights,
offline learning is entirely deterministic. Online learning, on the other hand, is a stochastic
process due to the random choice of training example (from the given training set) for each
update. It becomes equivalent to offline learning only in the limit where the learning rate
n — 0 [1]. In both cases, the main quantity of interest is the evolution of the generalization
error: After a given number of weight updates, how well does the student approximate the
input-output mapping (‘teacher’ rule) underlying the training examples?

We do not consider in the following non-gradient descent learning algorithms, and also
restrict ourselves to gradient descent on the most common measure of error on a training
example, the squared output deviation (see eq. (1) below). For interesting recent results on
more general, optimized online learning algorithms, see, e.g., [2, 3].
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Most analytical treatments of online learning assume either that the size of the training
set is infinite, or that the learning rate 7 is vanishingly small. Both of these restrictions are
undesirable: In practice, most training sets are finite, and non-infinitesimal values of 7 are
needed to ensure that the learning process converges after a reasonable number of updates.
General results have been derived for the difference between online and offline learning to first
order in 7, which apply to training sets of any size (see, e.g., [1]). An explicit analysis of the
time evolution of the generalization error for finite training sets was provided by Krogh and
Hertz [4] for an offline learning scenario with n — 0. For finite 5, progress has been made in
particular for so-called soft committee machine network architectures [5], but only for the case
of infinite training sets. In this Letter, we provide the first exact calculation of generalization
performance for a scenario with both non-infinitesimal learning rate 5 and finite training set
size of a examples per weight. A discussion of our results from a more practical point of view
can be found in the conference proceedings [6].

We consider online training of a linear student network with input-output relation

y=w'x/VN.

Here x 1s an N-dimensional vector of real-valued inputs, y the single real output and w the
weight vector of the network. ‘T’ denotes the transpose of a vector and the factor 1/v/N
is introduced to ensure typical outputs of Q(1) for input and weight components of Q(1).
Whenever a training example (x,y) is presented to the network, its weight vector is updated
along the gradient of the squared error on this example, z.e.,

Aw = —7g Vwé(y — WTX/\/W)2 = (yx/\/ﬁ— %XXTW) (1)

where 7 is the learning rate. We are interested in online learning from finite training sets,
where for each update an example is chosen randomly (with replacement) from a given
set {(x*,y*),p = 1,...,p} of p training examples. (The case of cyclical presentation of
examples [7] is left for future study.) If example p is chosen for update n, the weight vector is
changed to

Wot1 = {1 = wx*(x")T +4]}wn + nyx/VN (2)

Here we have also included a weight decay +; the rescaled version A = ya (where o = p/N 1is
the number of examples per weight) corresponds to the weight decay commonly used in offline
learning [4]. For simplicity, all student weights are assumed to be initially zero, i.e., wp=o = 0.

The main quantity of interest is the evolution of the generalization error of the student. We
assume that the training examples are generated by a linear ‘teacher’, i.e., y* = W*TXH/\/W—F
&H, where £# is zero mean additive noise of variance o?; generalization of our results to nonlinear
perceptron teachers is straightforward using the methods of [8]. The teacher weight vector is
taken to be normalized to w2 = N for simplicity, and the input vectors are assumed to
be sampled randomly from an isotropic distribution over the hypersphere x> = N. The
generalization error, defined as the average of the squared error between student and teacher
outputs for random inputs, is then

1
€g = 55 (Wn — W) = 55V, where V, = W, — Wix.

In order to make the scenario analytically tractable, we focus on the thermodynamic limit
N — oo of a large number of input components and weights, taken at constant number
of examples per weight @« = p/N and updates per weight (‘learning time’) ¢ = n/N. In
this limit, the generalization error eg(¢) becomes self-averaging and can be calculated as an
‘annealed’ average over the random selection of examples from a given training set followed
by a ‘quenched’ average over all training sets.
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We begin by deriving from (2) an update equation for the annealed average (denoted (.. .))
of a generalized version of the generalization error, ¢, = ﬁvIMvn, with M an N x N matrix.
Performing the average over the random choice of training example for update n explicitly (and
discarding terms of relative order O(N~1)), we find

N (fensr) = () = b= dwa) M (v, = L (VT [\W+ S(AM 4 MA)| v, )

4 To . 0 M {64 = )T () + o (e ) b )

where ) = n/a is a rescaled learning rate, A = Y x#(x*)T is the correlation matrix of the
training inputs, and b = \/LF ZH EFxP. We now want to transform (3) into a closed dynamical

equation for (e,). The first term in curly brackets depends on quenched variables only and
therefore acts as an unproblematic constant w.r.t. the annealed average. The two terms linear
in (v,,) are also straightforward: An annealed average of (2) yields directly

N ((vag1) = (va)) = i [=(A + A) (va) + b — Aw,].
Starting from vq = —w,, this can easily be solved, with the result (for N — o)
(vi)=(A+A) " {b - Aw, —exp[—ijt(A+ A)] (b + Aw,)}

which again depends only on quenched variables. The terms in (3) quadratic in v, present
the main problem. The second term on the r.h.s. shows that the evolution of ¢ = ¢, (M =1)
depends on €,(M=A) which in turn depends on ¢, (M = A?) and so on, yielding an infinite
hierarchy of order parameters. We treat these by introducing an auxiliary parameter h through
M = exp(hA); all order parameters ¢,(M = A™), m = 1,2,..., can then be obtained by
differentiating the order parameter generating function(') e, (h) = ﬁvg exp(hA)v,. This
still leaves the last term in (3), which cannot be obtained in this way due to the presence of
the factors ¢# = % (x*)T exp(hA)x*. Using arguments from [10], however, it can be shown
that these are ‘within-sample self-averaging’: Up to fluctuations of O(N_l/Q), all ¢# are equal
to each other and hence to the training set (‘sample’) average

1 1 1 1
;;c” =—5 tr Aexp(hA) = Eg'(h) where g(h) = v trexp(hA).

Thus, the last term on the r.h.s. of (3) becomes (9, = 9/0h)

~9
a1 1 9 1 oy

Combining all the above ingredients, the dynamical equation (3) does indeed close. For
N — oo, where (e, (h)) — €(t, h), it takes the form

[0r + 2(X + )] e(r, h) = Vi(r,h) + 73 Va(r, h) + 71 g'(h) Ope(r, h=0) (4)

with Vi 2(7, h) known functions of quenched variables. A rescaled learning time 7 = 7¢
has been introduced here, which is the relevant time variable for the limit of infinitesimal

(I)A similar approach has recently been used to study simple spin glass dynamics [9]; we are
grateful to A.C.C. Coolen for pointing out this connection.
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learning rate, 7 — 0. The linear PDE (4) is most easily solved in terms of Laplace trans-

forms w.r.t. 7, é(z,h) = fOOOdT exp(—z7) €(7, h) etc., with the initial condition e(7=0,h) =
Fwwl exp(hA)w,. Formally treating the term dxe(r, h =0) as a known inhomogeneity, the
solution is obtained from the Laplace transform of the r.h.s. of (4) by convolution (over h)
with the appropriate Green’s function of the differential operator 20, + z + 2A. We write the

result in the form
€(z,h) = 01(z, h) + va(z, h) + 7 a(z, h) Oné(z, h=0). (5)

Differentiating w.r.t. A and setting A = 0 then gives a simple self-consistency equation for
Opé(z,h = 0), whose solution can be inserted back into (5). Finally, the physically relevant
Laplace transform of the time-dependent generalization error €4(t) is found by setting A = 0.
Using 05 054 = @ 002 (see (7) below), one obtains:

~ o~ * —znt — 7 — = uq (2 = {)2(2',]1) + ﬂ(z’h) 611{)1(2’]1)
(o) = [ et = =0 = {ane )+ 1= 7 0n1(, b }

h=0
(6)

The remaining average over the quenched variables can be carried out directly on u(z, h) and

1,2(z, h) since these are self-averaging. The results can be expressed as averages (...), over

the (self-averaging) eigenvalue spectrum p(a) [10, 11] of A:

eha oc?a+A?  2a(X—o?) a(o? + a)
~ h — - .
oz, h) <2(A+a)2[ T Ztita +z+2A+2a]>a
aeha 0'2 « a
ilz h) = - 3 = — |z —
iz, B <z+2A+2a>a’ eEh = [2 <Z+A+a>a] g

Once h is set to zero, a closed form for all required averages can be obtained in terms of the
known ‘response function’ [10, 11] G(a, A) = (A + 11)_1>a.

Our main result (6) yields directly the asymptotic generalization error, €o = €g(t — 00) =
lim,_,¢ zé;(2). As expected, it coincides with the offline result (which is independent of n) only
for n = 0; as 7 increases from zero, it increases monotonically. Reassuringly, our calculation
reproduces existing Q(n) results for this increase [1]. Intuitively, the larger , the more the
online weight updates tend to overshoot the minimum of the (total, i.e., offline) training error.
This causes a diffusive motion of the weights around their average asymptotic values [1] which
increases €. In the absence of weight decay (A = 0) and for & < 1, however, €, is independent
of 1. In this case the training data can be fitted perfectly and online learning does not lead to
weight diffusion because all individual updates vanish asymptotically. Numerical evaluation
of €, shows this to be indicative of a more general trend [6]: For small training sets (o & 1 or
less), large learning rates n = Q(1) can be used without increasing €., significantly, whereas
for large a, where ¢oo = $0%[1/a + /(2 — )], one needs small n = O(a~") to keep relative
increases small. Eq. (6) also shows that as 5 is increased, €. eventually diverges at a critical
learning rate ne(e, A) = a/0pti(z=0,h=0): As n — 1., the ‘overshoot’ of the weight update
steps becomes so large that the weights eventually diverge. Weight decay counteracts this by
reducing the length of the weight vector at each update, and 7. therefore increases with A
(fig. 1b-d).

Consider now the large ¢ behaviour of the generalization error ¢g(t). From the Laplace
transform (6,7), one sees that for small 7, the most slowly decaying mode exp(—ct) of ¢g(t)
has a decay constant ¢ = 7(A + @min)/a, With amin = (1 — \/5)2 the smallest non-zero
eigenvalue of A [10, 11]. This scales linearly with 7, the size of the weight updates, as expected
(fig. 1a). For small o, the condition ¢t > 1 for ¢,(t) to have reached its asymptotic value €,
is (1 4+ A)(¢/a) > 1 and scales with ¢/a, the number of times each training example has
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Fig. 1. — Sketch of definitions of nmin (minimal learning rate for slow mode)7 )x (crossover to slow

mode dominated convergence) and 7. (critical 7; see text for details), and their dependence on a.

been used. For large «, on the other hand, the condition becomes 5t > 1: a drops out since
convergence occurs before repetitions of training examples become significant.

For larger 5, the denominator of (6) can produce an additional pole of éz(z) on the real
z-axis, giving rise to a new slow mode. From the maximum of dy(z, h=0) w.r.t. z (for real z),
one finds that this mode exists only for 5 above the finite threshold fmin = 2/(a'/?+a~1/2—1).
For finite «, it i1s therefore non-perturbative, i.e., could not be predicted from a small 5
expansion of eg(t). Its decay constant cgw decreases to zero as n — 0., and crosses that of
the normal mode at n.(a, A) (fig. 1a). For 5 > 1y, the slow mode therefore determines the
convergence speed for large ¢, and fastest convergence is obtained for n = 5. From fig. 1b-d,
we see that for A not too large, 7 has a maximum at a = 1 (where 9, = 5.); for larger a, on
the other hand, it decays as n, = 1 + 22~ /% ~ %nc. This is because for a & 1 the eigenvalue
spectrum of A is very broad, extending from (1 — /a)? — 0 to (1 +/a)? ~ 2 [10, 11]. This
corresponds to a (total training) error surface which is very anisotropic around its minimum
in weight space. The steepest directions determine 7. and convergence along them would be
fastest for n = %Uc (as in the isotropic @ — oo case). However, the overall convergence speed
is determined by the shallow directions, which require maximal n & 7. for fastest convergence.

The general points made above are illustrated by the finite ¢ behaviour of ¢4 (t) shown
in fig. 2. The theoretical values, which are obtained by numerical inversion of the Laplace
transform (6), are seen to be in excellent agreement with simulations results for N = 50. This
shows that finite size effects are generally not significant even for such fairly small V.

Above, we saw that the asymptotic generalization error €o is minimal for n = 0. Fig. 3
shows what happens if we minimize ¢z (t) instead for a given final learning timet, corresponding
to a fixed amount of computational effort for training the network. As ¢ increases, the optimal

0.4
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0.1}

0 5 10 15 20t

Fig. 2. — ¢z vs t for different n. Simulations for N = 50 are shown by symbols (standard errors less
than symbol sizes). A = 107*, 6% = 0.1, a as shown. The learning rate 5 increases from below (at

large t) over the range (a) 0.5...1.95, (b) 0.5...1.75.
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Fig. 3. — (a) Optimal 7 vs. final learning time ¢ for online (bold) and offline learning (thin lines), and
(b) resulting €,; (c) scaling of nopit with Int. @ =1, 0 = 0.1, X as shown.

1 decreases towards zero as required by the tradeoff between asymptotic performance and
convergence speed: Minimizing ¢, (%) & ¢+ const - exp(—ct) & ¢ + nez + ez exp(—cqnt) leads
to Nopt = (a + bInt)/t (with some constants a, b, ¢1_4). Although derived for small 5, this
functional form also provides a good description down to fairly small ¢ (fig. 3c), where ngpt
becomes large. For A < o2, however, where for small  the generalization error egz(t) has
a minimum at some finite ¢ (a phenomenon normally referred to as ‘over-training’ [11]; see
fig. 2a), nopr behaves asymptotically as nopy o< 7', without the Int factor. This corresponds
to a fixed effective learning time i required to reach this minimum.

In fig. 3b, we also compare the performance of online learning to that of offline learning
(calculated from the appropriate finite 5 version of [4]), again with optimized values of 5 for
given t. The performance loss from using online instead of offline (gradient descent) learning
is seen to be negligible. This may seem surprising given the stochasticity of weight updates
in online learning, in particular for small t. However, fig. 3a shows that online learning can
make up for this by allowing larger values of 1 to be used. This advantage should become even
more pronounced for input distributions with non-zero mean: for online learning, 7. is not
significantly affected, whereas for the offline case a drastic reduction (by a factor of Q(N~1))
can result [12]. This issue deserves future study, as does dynamic (t-dependent) optimization
of n; performance improvements over optimal ¢-independent 7 may however be small [7]. We
also hope to extend our approach to more complicated network architectures in which the
crucial question of learning dynamics with local minima can be addressed.
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