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Abstract

We review the use of kinetically constrained models (KCMs) for the study of
dynamics in glassy systems. The characteristic feature of KCMs is that they have
trivial, often non-interacting, equilibrium behaviour but interesting slow dynamics
due to restrictions on the allowed transitions between configurations. The basic
question which KCMs ask is therefore howmuch glassy physics can be understood
without an underlying ‘equilibrium glass transition’. After a brief review of glassy
phenomenology, we describe the main model classes, which include spin-facilitated
(Ising) models, constrained lattice gases, models inspired by cellular structures
such as soap froths, models obtained via mappings from interacting systems
without constraints, and finally related models such as urn, oscillator, tiling and
needle models. We then describe the broad range of techniques that have been
applied to KCMs, including exact solutions, adiabatic approximations, projection
and mode-coupling techniques, diagrammatic approaches and mappings to
quantum systems or effective models. Finally, we give a survey of the known
results for the dynamics of KCMs both in and out of equilibrium, including
topics such as relaxation time divergences and dynamical transitions, nonlinear
relaxation, ageing and effective temperatures, cooperativity and dynamical hetero-
geneities, and finally non-equilibrium stationary states generated by external
driving. We conclude with a discussion of open questions and possibilities for
future work.
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1. Introduction

After many decades of research our theoretical understanding of the glass
transition remains substantially incomplete. Ideally, a comprehensive theory should
explain all thermodynamic and kinetic properties of glasses, both at the macroscopic
and the mesoscopic level. It should also be consistent with the wealth of experimental
data which has been accumulated in the past century, and to which ongoing work is
continuing to add.

Theoretical approaches to the glass transition range between two extremes. At
one end of the spectrum are microscopic theories, which start from first principles
(e.g. Newton’s equations for classical particles). To arrive at predictions that can
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be compared to experiment, rather drastic mathematical approximations are then
required, whose physical meaning can be difficult to assess. One of the most
successful theories of this kind is the mode-coupling theory (MCT, see references
at the end of this introduction), which predicts a dynamical arrest in sufficiently
supercooled liquids that arises from the nonlinear interaction of density fluctuations.
On the other extreme are phenomenological theories which incorporate a set of basic
ingredients chosen on the grounds of physical intuition as most relevant for glass
transition dynamics. Predictions are normally easier to derive from such theories,
and conceptual ideas can be tested relatively directly. This flexibility is also a
disadvantage, however: phenomenological theories can be difficult to disprove if
they can always be extended or modified to account for new data. Among the best-
known theories in this group are the free volume theories developed by Flory and
Cohen, the entropic theories due to Adam, Gibbs and Di Marzio and the energy
landscape approach introduced by Stillinger and Weber.

The models we discuss in this review have a character intermediate between these
two extremes. Similarly to the phenomenological approaches, they use effective
variables which are normally of mesoscopic character, e.g. averages of particle
density over suitably small coarse-graining volumes, and are chosen on an intuitive
basis as most directly responsible for glassy dynamics. On the other hand, as in the
microscopic theories, a Hamiltonian (or energy function) and appropriate dynamical
evolution equations are explicitly defined, and one attempts to predict the behaviour
of the model on this basis, without further approximation if possible.

The above category of models is still rather rich. The basic variables can be
discrete or continuous, for example, and the energy function may contain pairwise
potentials or higher-order interactions. The dynamics are normally constrained only
to obey detailed balance with respect to the specified energy function, and this leaves
considerable freedom when defining a model. The energy function may even include
quenched disorder, and it has been shown that e.g. appropriate spin-glass models can
reproduce much of the phenomenology of structural glasses such as window glass.
As expected, the more complicated the energy function, the more complicated also
the static (equilibrium) behaviour of the resulting models; spin-glass models, for
example, exhibit non-trivial ergodicity breaking transitions at low temperature.

The philosophy of the kinetically constrained models (KCMs) which we discuss in
this review is to simplify the modelling approach further by considering models with
essentially trivially equilibrium behaviour; the simplest models of this type in fact
have energy functions without any interactions between the mesoscopic variables
considered. In other words, KCMs ask the question: how much glassy physics can
we understand without relying on non-trivial equilibrium behaviour? Instead, KCMs
attempt to model glassy dynamics by introducing ‘kinetic constraints’ on the allowed
transitions between different configurations of the system, while preserving detailed
balance. (As we will see in detail below, the easiest method of implementing this is to
forbid transitions between certain pairs of configurations.) Since it is now widely
recognized that the glass transition is a dynamical phenomenon, such a focus on
dynamics certainly makes sense. Of course, the simplicity of the energy function of
KCMs means that one would not expect them to reproduce the behaviour of
supercooled liquids and glasses under all conditions; instead, they should capture
those aspects of their behaviour which are predominantly caused by dynamical
slowing-down. One obvious aspect ignored by KCMs is crystallization: real glass-
forming liquids can crystallize if cooled sufficiently slowly through the melting point.
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However, it is widely believed that the existence of a crystalline phase is not crucial
for the behaviour of glasses and supercooled liquids; this view is supported by the
fact that spin-glass models, where the analogue of an ordered crystalline phase is
suppressed through quenched disorder in the energy function, nevertheless display
many features characteristic of glasses. By disregarding crystallization effects, the
KCM approach therefore avoids unnecessary complications in glass modelling and
focuses on the key dynamical mechanisms for glassy behaviour.

It is worth addressing already at this point another possible objection to the
KCM approach. By construction, since all the ‘interesting’ features of KCMs arise
from the dynamical rules, a relatively minor change in these rules can alter the
resulting behaviour quite dramatically; we will see examples of this below in the
difference between models with directed and undirected constraints. This lack of
‘robustness’ may appear undesirable, and contrasts with models with more
complicated energy functions where the location and character of equilibrium phase
transitions is normally unaffected by the precise dynamics chosen. However, as
explained above, KCMs should be regarded as effective mesoscopic models which
encode in their dynamics the complex interactions of an underlying microscopic
model (see section 3.6 for simplified instances of this kind of mapping). In this view,
a change in the dynamical rules corresponds to a non-trivial modification of the
underlying microscopic model, e.g. by adding new interaction terms to the energy
function, and it makes sense that this should have a significant effect on the resulting
behaviour.

Initially introduced in the early 1980s by Fredrickson and Andersen, KCMs have
recently seen a resurgence in interest. Due to their simplicity, many questions can be
answered in detail, either analytically or by numerical simulation, and so KCMs
form a useful testbed for our understanding of the key ingredients of glassy
dynamics. We feel it is time now to gather the existing results, to analyse what we
have learnt from recent work on KCMs, and to assess the successes and drawbacks
of the KCM approach. The topics that we discuss will be inspired both by
experimental issues surrounding the glass transition, and by theoretical questions
that have wider relevance to the field of non-equilibrium statistical mechanics.

The scope of this review is as follows. The core KCMs are the spin-facilitated
Ising models pioneered by Fredrickson and Andersen, and the kinetically con-
strained lattice gases introduced by Kob and Andersen, and Jäckle and coworkers.
We have attempted to be comprehensive in our coverage of the literature on these
and closely related models, up to a cutoff date around the end of 2001. Nevertheless,
omissions will undoubtedly have occurred, and we apologize in advance to any
colleagues whose work we may have overlooked. There is also a range of models
which do not strictly speaking belong in the KCM category but which we felt were
sufficiently closely related to merit inclusion. For these models we have only tried to
give a representative cross-section of publications. Finally, to the vast literature in
the general area of glassy dynamics we can only give a few pointers here. A summary
of early experiments and theories of glasses can be found in e.g. [1–7]. The state of
the art in theory and experiment as of 1995 is reviewed in a series of papers [8–12];
[13–15] give more recent accounts. Moving on to more specific topics, there are a
number of reviews of MCT, e.g. [16–19], while [20] contains a good overview of the
more phenomenological glass theories. For some of the earliest work on ageing [21]
is a good resource; a very recent review of fluctuation–dissipation theorem violations
in ageing systems can be found in [22]. Reference [23] provides an in-depth discussion
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of modern theories of disordered systems and spin glasses and their relation to
‘older’ glass theories, and [24] gives a recent and wide-ranging overview of theoretical
approaches to glassy dynamics. The topic of dynamical heterogeneities in glasses is
reviewed in [25, 26]; and [27] surveys the energy landscape approach to glassy
dynamics. Finally, on KCMs in particular, the reviews [20, 28, 29] provide excellent
guides to work on these models done up to the end of the 1980s. The proceedings of
a recent workshop on KCMs [30] complement this with surveys of current work, and
we will refer below to a number of articles from this volume as useful sources of
further detail.

We wrote this review with two groups of readers in mind: ‘quick’ readers, who
may be new to the field of KCMs and want to get an overview of the most important
models, results and open questions; and ‘experts’ who already work on aspects of
KCMs but are interested in a comprehensive survey of other research in the area.
Accordingly, there are two different routes through this review. Quick readers could
read section 2, where we give some background on glass phenomenology and
important topics in glassy dynamics; section 3, where we define the various KCMs
and related models and summarize the most important results; and section 6, which
contains our conclusions and an outlook towards open questions for future work.
Expert readers, on the other hand, may only need to refer to section 2 to acquaint
themselves with our notation, and to browse section 3 for the definitions of the
models we discuss. For them, the more detailed sections that follow should be of
most interest: in section 4 we review the broad range of numerical and analytical
techniques that have been used to study KCMs, while section 5 provides a
comprehensive survey of the results obtained.

2. Basics of glassy dynamics

In this section we outline some basic issues in glassy dynamics to set the scene for
the questions that have been studied using KCMs. Section 2.1 contains a sketch of
important experimental phenomena, including the all-important pronounced slow-
down in the dynamics as temperature is lowered. In section 2.2 we review how
dynamics in the stationary regime—where a liquid is already supercooled past its
melting point, but still in metastable equilibrium—can be characterized using
correlation and response functions. Section 2.3 generalizes this to the glass regime,
where equilibrium is no longer reached on accessible timescales; correlation and
response then become two-time quantities because of ageing effects, and can be
useful for defining so-called effective temperatures. In section 2.4 we review the
energy landscape approach to understanding glassy dynamics, whose usefulness for
KCMs has recently been investigated in some detail. Section 2.5 introduces the issues
of dynamical lengthscales and heterogeneities, and in section 2.6 we briefly mention
some other systems exhibiting glassy dynamics.

2.1. Some experimental phenomena
The standard experimental procedure for generating a glass is to take a liquid

well above its melting temperature and cool it down quickly enough to avoid
crystallization. On cooling through the melting temperature Tm, the liquid is initially
in a metastable equilibrium state—the true equilibrium state being the crystal—and
therefore referred to as supercooled. On timescales much shorter than those required
for crystallization processes to occur, the properties of the supercooled liquid at a
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given temperature are stationary, i.e. independent of time. They are also smoothly

related to those of the genuine equilibrium liquid above Tm, so that a plot of, e.g. the

energy of a supercooled liquid against temperature would show no unusual

behaviour as Tm is crossed (see figure 1).

As cooling proceeds, the dynamics in the supercooled liquid slows down, often

very rapidly. At some temperature Tg, the longest relaxation timescales of the

supercooled liquid therefore begin to exceed the experimental timescale set by the

inverse 1=r of the cooling rate r. The system then falls out of its (metastable)

equilibrium and becomes a glass proper, whose properties evolve slowly with time

even at constant temperature; the plot of, e.g. energy versus temperature begins to

deviate markedly from the supercooled line at Tg (see figure 1). As defined, it is clear

that the glass transition temperature Tg depends on the cooling rate, being the

temperature where the longest relaxation times � are of order 1=r. In line with the

expectation that the dynamics slow down as temperature is lowered, Tg is observed

to decrease when the cooling rate r is reduced. The actual dependence TgðrÞ is

generally logarithmic, corresponding to an exponential temperature variation of

relaxation timescales; see below.

One of the most striking experimental manifestations of the dynamical slow-

down in supercooled liquids is the temperature dependence of the viscosity �. One

can write � ¼ G� , where G is the shear modulus and � is the relaxation time (more

precisely, the integrated relaxation time for shear stress relaxation; see section 2.2).

Since G is only weakly temperature dependent, � therefore gives a direct measure of a

typical relaxation timescale � in supercooled liquids. The point where � reaches the

value 1013 Poise (¼ 1012 Pa s) is often used to define the glass transition temperature

Tg operationally; given typical values of G, this corresponds to relaxation timescales

� of the order of hundreds of seconds or more. In so-called strong liquids, of which
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Figure 1. Schematic plot of energy E versus temperature T , showing the liquid line
continued into the supercooled regime; no singularities appear at the melting
temperature Tm. Also shown are, for four different cooling rates, the deviations which
occur as the system falls out of equilibrium at a cooling-rate dependent glass
transition temperature Tg. A naive extrapolation of the supercooled liquid line,
shown by the dashed line, could suggest a thermodynamic glass transition at a lower
(Kauzmann) temperature.



silica (SiO2) is an example, � as determined from viscosity measurements increases
according to an Arrhenius law

� � exp
B

T

� �
ð1Þ

which corresponds to thermal activation over a—possibly effective—barrier B; here
and throughout we set kB ¼ 1. In an ‘Angell plot’ of log-viscosities against Tg=T , as
shown in figure 2, this gives a straight line. A more pronounced timescale increase is
referred to as super-Arrhenius or superactivated—we use both terms interchange-
ably—and occurs in the so-called fragile supercooled liquids. They can show a
dramatic growth in � , of up to 15 orders of magnitude, over a temperature interval as
narrow as 10% of Tm. This increase is commonly fitted by the Vogel–Tamman–
Fulcher (VTF) law [31–33]

� � exp
A

T � T0

� �
: ð2Þ

This suggests a divergence of � at some non-zero temperature T0, though it has been
argued that this is difficult to justify from microscopic models [34]. An exponential
inverse temperature square (EITS) law

� � exp
A

T2

� �
ð3Þ

which exhibits no such divergence can provide an equally good fit to data for many
systems [35, 36]. In its most general form, one can write the relaxation time increase
of fragile supercooled liquids as an Arrhenius law with an effective barrier BðTÞ that
increases as T decreases,

Glassy dynamics of kinetically constrained models 225

Figure 2. Angell plot of log-viscosity (essentially log-relaxation time, see right axis) against
Tg=T . In this representation, strong glass-formers such as SiO2 with their Arrhenius
dependence of timescales on temperature give straight lines, while the super-
Arrhenius divergence of timescales in fragile glasses (e.g. glycerol) leads to curved
plots. Reproduced with permission from [13]. Copyright 1996 American Chemical
Society.



� � exp
BðTÞ
T

� �
: ð4Þ

Over the experimental time window, with longest accessible times of the order of

hours or days, BðTÞ then increases by at most a factor of around five while � itself

increases by many orders of magnitude. This limited range of BðTÞ makes it clear

why it is almost impossible to distinguish, on the basis of experimental data, between

the VTF and EITS laws or indeed other possible superactivated fitting forms for

�ðTÞ. Theories have been proposed to link the drastic slowing-down in fragile

supercooled liquids to (near-) singularities in their thermodynamic properties; an

early and still hotly debated example is the proposal by Adam and Gibbs [37] that

the effective activation barrier scales as the inverse of the entropy of the configura-

tional degrees of freedom. We will not dwell on this point here, but return to the

issue of how configurational entropies can be defined in section 2.4.

Within the supercooled regime discussed above one can define a further

characteristic temperature Tc at which relaxation processes begin to take place in

two temporally separated stages, with relaxation functions developing shoulders that

eventually grow into plateaux (see section 2.2). The longest relaxation timescales � in
this regime, of order 10�6 s, are already large compared to their values in the liquid

but still small relative to the timescales at Tg. In this temperature region the growth

of �ðTÞ can often be fitted with an apparent power-law divergence at non-zero

temperature, as suggested by MCT [16–19].

At the transition from the supercooled liquid to the glass, one observes

experimentally a drop in the specific heat over a narrow temperature interval; the

location of this drop defines the so-called calorimetric glass transition temperature.

Intuitively, the change in specific heat corresponds to the effective freezing of those

slow degrees of freedom which fall out of equilibrium at the glass transition. In a plot

of energy versus temperature, it corresponds to a change in slope from a larger value

in the supercooled regime to a rather smaller value for the glass. (Superficially, the

specific heat jump resembles the behaviour at second-order phase transitions with

vanishing specific heat exponent �, but in this latter case the specific heat actually

increases as T is lowered.) Notice that our terminology above is appropriate for

systems at constant volume; we use this since all models discussed below are of this

type. Experiments are normally carried out at constant pressure. Instead of energy,

the relevant thermodynamic potential whose temperature derivative gives the specific

heat is then the enthalpy. For simplicity, we will continue to refer to the constant-

volume situation below.

Further experimental illustration of the non-equilibrium nature of the glass state

is provided by interesting hysteresis effects in heating–cooling cycles. As explained

above, on cooling the energy will initially follow the supercooled line but then depart

from it at Tg, with a concomitant drop in the specific heat. On further cooling, the

energy remains above the supercooled line. If the system is then heated back up

through Tg, however, the energy increases initially very slowly and actually crosses

below the supercooled line, rejoining it by a steep increase at a temperature slightly

above the original Tg (see figure 3). In the specific heat this increase shows up as a

pronounced peak. The crossing of the energy below the supercooled line is a

characteristic non-equilibrium effect which reveals that the glass retains a strong

memory of its temperature history.
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To rationalize the complexities of non-equilibrium behaviour, it is tempting to
look for a description of glasses in terms of a few effective thermodynamic
parameters. For example, the dynamics in a glass at fixed low temperature can be
so slow that quantities such as the energy are effectively constant. One could then
experimentally define a ‘fictive temperature’ [38] as that for which the (extrapolated)
energy of the supercooled liquid has the value measured in the glass. However, the
same procedure applied to a different experimental quantity, such as density, will not
necessarily give the same fictive temperature (see e.g. [7]), so that the physical
meaning of such assignments remains unclear. More recently, it has been argued [39]
that two-time correlation and response functions may be more appropriate for
defining effective temperatures; this proposal is discussed in more detail in section 2.3.

2.2. Stationary dynamics: correlation and response
We next describe some of the correlation and response or relaxation functions

that can be used to probe the stationary (i.e. equilibrium, though metastable)
behaviour of supercooled liquids. Many of these correspond to experimentally
measurable quantities, and are therefore key quantities which one would like to
predict from theoretical models.

Let us denote by �ðtÞ any observable quantity which can evolve in time after
applying a given perturbation hðtÞ. For instance, � could be the polarization of a
supercooled liquid and the corresponding perturbation h the electric field, or � could
be the volume and the perturbation h a change in pressure. Suppose the system is in
equilibrium at t ¼ 0, i.e. �ð0Þ ¼ �eq, from which time a perturbation h is applied and
held constant. For small h, the deviation of �ðtÞ from its equilibrium value then
defines the linear response function to a step perturbation,

�ðtÞ ¼ �ðtÞ � �eq
h

: ð5Þ
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Figure 3. Schematic hysteresis plot for a heating–cooling cycle. On cooling, E remains
above the supercooled line (dashed) as the system falls out of equilibrium; on
reheating, E remains low and crosses underneath the supercooled line before
rejoining it in a steep rise.



The long-time limit �eq ¼ �ðt!1Þ of this then also gives the equilibrium
susceptibility. Thinking of the response as the relaxation from an original perturbed
state to a new equilibrium state, one can also define the relaxation function

 ðtÞ ¼ 1� �ðtÞ
�eq

ð6Þ

which is normalized to one at t ¼ 0 and decays to zero for t!1. Analogues of �
and  also exist for large perturbations which drive the system far from equilibrium.
An extreme example would be a sudden lowering (‘quench’) of temperature from the
supercooled into the glass regime, with the corresponding nonlinear relaxation
function describing the out-of-equilibrium relaxation of the energy.

Equally relevant for experiments are correlation functions of fluctuating quan-
tities; density fluctuations, for example, can be measured by scattering techniques.
The equilibrium autocorrelation function of observable � is defined as

CðtÞ ¼ �ðtÞ�ð0Þh i � �2eq ð7Þ

and obeys CðtÞ ¼ Cð�tÞ from time-translation invariance (TTI). It is related to the
linear response function �ðtÞ by the fluctuation–dissipation theorem (FDT) [40],
which states that for t > 0

@

@t
�ðtÞ ¼ RðtÞ ¼ � 1

T

@

@t
CðtÞ: ð8Þ

Here RðtÞ is the impulse response, i.e. the response of �ðtÞ to a perturbation h�ðtÞ. In
integrated form the FDT reads CðtÞ ¼ T ½�eq � �ðtÞ�. Equation (6) then shows that
CðtÞ ¼ Cð0Þ ðtÞ with Cð0Þ ¼ T�eq, so that the relaxation function also gives the
time evolution of the correlations: in equilibrium, fluctuations decay with the same
time-dependence whether occurring spontaneously or induced by an applied
perturbation.

The FDT can also be expressed in the frequency domain, where it relates the
linear response to oscillatory perturbations to the power spectrum of equilibrium
fluctuations. The time- and frequency-dependent quantities can of course be
expressed in terms of each other; experimentally, the latter are often more easily
accessible, while theoretical work tends to focus on the former. From linearity,
the response to a small oscillatory perturbation hðtÞ ¼ <½h expði!tÞ� is �ðtÞ ¼Ð t
�1 dt0 Rðt� t0Þhðt0Þ with RðtÞ ¼ @�ðtÞ=@t the impulse response as before. After an
integration by parts one then has �ðtÞ ¼ <½�̂�ð!Þh expði!tÞ� with

�̂�ð!Þ ¼ i!

ð1
0

dt �ðtÞe�i!t ¼ �eq � i!�eq

ð1
0

dt  ðtÞe�i!t: ð9Þ

(Formally, an infinitesimal negative imaginary part should be added here to ! to
make all integrals convergent; physically this corresponds to a very slow switching
on of the oscillatory perturbation.) The complex susceptibility �̂�ð!Þ can be written as
�̂�ð!Þ ¼ �̂�0ð!Þ � i�̂�00ð!Þ where �̂�0 is the in-phase or reversible part of the response and
�̂�00 is the out-of-phase or dissipative part. The related fluctuation quantity is the
power spectrum, which gives the amplitude of fluctuations of frequency ! and can be
expressed as the temporal Fourier transform of the correlation function

Sð!Þ ¼
ð1
�1

dt CðtÞe�i!t: ð10Þ
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The FDT (8) together with CðtÞ ¼ Cð�tÞ then relates the power spectrum of
fluctuations to the dissipative part of the response, according to

Sð!Þ ¼ 2T�̂�0ð!Þ=!: ð11Þ

At high temperatures, relaxation functions are often simple (‘Debye’) exponen-
tials,  ðtÞ ¼ expð�t=�Þ, giving a dissipative response �̂�00ð!Þ ¼ �eq!�=ð1þ !2�2Þ with
a single maximum at the peak frequency ! ¼ 1=� , and a power spectrum
Sð!Þ � 1=ð1þ !2�2Þ of Lorentzian shape. It was already observed in 1854 by
Kohlrausch [41], and later by Williams and Watts, that relaxation functions decay
non-exponentially in supercooled liquids at low temperatures, and can often be fitted
by a stretched exponential or Kohlrausch–William–Watts (KWW) function

 ðtÞ ¼ expð�atbÞ ð12Þ

with a stretching parameter b < 1. This can be thought of as a superposition of
exponential relaxations with a broad spectrum of relaxation timescales; in the
frequency domain, the corresponding dissipative response �̂� 00ð!Þ therefore shows a
broad maximum. The value of the stretching exponent b typically decreases with
temperature, reaching values around 0.5 at Tg. The value of a decreases rapidly with
T , corresponding to a large increase in the typical relaxation time. It should be noted
that fits to experimental data, which cover a limited range of timescales where  ðtÞ is
often not yet small compared to unity, cannot exclude a cross-over to simple
exponential behaviour for much longer times. Nevertheless, the ubiquity of stretched
exponential relaxation in supercooled liquids suggests that this is a generic feature of
glassy dynamics which theory needs to be able to predict. An interesting issue is
whether the observed stretching arises from an average over a heterogeneous spatial
structure, with different local regions having very different relaxation times, or
whether the relaxation dynamics is intrinsically non-exponential but homogeneous;
we return to this point in section 2.5.

We have already hinted that one can obtain a relaxation time � from the
relaxation function  ðtÞ. A number of different definitions have been used; broadly
one would hope that they give qualitatively similar values, though we will see
counter-examples below. Common procedures for defining � are:

. The instantaneous relaxation time, defined as the time at which the relaxation
function has decayed to 1=e of its initial value,  ðt ¼ �Þ ¼ 1=e. This time is
simple to measure and therefore favoured by experimentalists.

. The integrated relaxation time, defined as � ¼
Ð1
0 dt ðtÞ. This is mostly used

in theoretical analysis; its use in experiment would require a fit for the long-
time behaviour to carry out the time-integration.

. The fitting time, which is defined as the timescale parameter appearing in an
appropriate fit of the relaxation function. For a KWW fit (12), for example,
one can write  ðtÞ ¼ exp½�ðt=�Þb� with � ¼ a�ð1=bÞ.

Notice that all definitions coincide for an exponential relaxation function,
 ðtÞ ¼ expð�t=�Þ.

Many relaxation functions in supercooled liquids actually display behaviour
more complicated than described above, requiring the definition of several relaxation
times. For example, the relaxation of density fluctuations (as defined further below)
proceeds in two stages in supercooled liquids. The initial decay of  ðtÞ is to a non-
zero plateau value. Physically, this �-relaxation process is thought to correspond to
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the localized motion of particles in the structural ‘cages’ formed by their neighbours;
the corresponding relaxation time �� normally increases in an Arrhenius fashion as T
is decreased. On a much longer timescale ��, the relaxation function then decays
from the plateau to zero, and only the long-time part of this �-relaxation is well
described by a stretched exponential. The �-relaxation dominates the integralÐ1
0 dt ðtÞ of the relaxation time, so that the integrated relaxation time � is of the
same order as ��. It is this timescale that increases strongly as temperature is
lowered, with the temperature dependence discussed in section 2.1. (MCT in fact
predicts that �� genuinely diverges at some non-zero temperature [16–19].) In the
frequency domain, the presence of two relaxation processes with widely separated
timescales means that the dissipative response �̂� 00ð!Þ has two maxima around the
inverses of the �- and �-relaxation times.

We finish this section by mentioning two important examples of correlation
functions. In a system consisting of a number of particles with position vectors ra,
the Fourier component with wavevector k of the local density is �k ¼

P
a expðik � raÞ,

up to a constant prefactor which we ignore. As long as the system remains ergodic,
particles are equally likely to be anywhere inside the system volume at equilibrium,
so that �eq

k ¼ 0 for non-zero k. The correlation function of �k is therefore, using the
obvious generalization of (7) to complex observables,

Cðk; tÞ ¼ �kðtÞ���kð0Þ
� �

¼
X
ab

heik�½raðtÞ�rbð0Þ�i: ð13Þ

This ‘coherent’ correlation function (also known as the dynamic structure factor or
intermediate scattering function) can be measured using dynamic light scat-
tering experiments, for example. On large lengthscales, i.e. for small k, and for
long times, density fluctuations should relax diffusively and so one expects
Cðk; tÞ � expð�Dk2tÞ. This relation can be used to deduce from knowledge of
Cðk; tÞ for small k and large t the value of the collective diffusion constant D
controlling the relaxation of long-wavelength density fluctuations. A self-correlation
analogue of Cðk; tÞ can also be defined, as the sum of correlation functions for the
single-particle observables expðik � raÞ,

Csðk; tÞ ¼
X
a

heik�½raðtÞ�rað0Þ�i: ð14Þ

For small k and long t this correlation function, referred to as the intermediate self-
scattering function, should again behave as Csðk; tÞ � expð�Dsk

2tÞ. Since Csðk; tÞ
only measures correlations of each particle with itself, however, the diffusion
constant Ds entering here is the one for self-diffusion, and determines the long-time
mean-square displacement of individual particles according to h½raðtÞ � rað0Þ�2i ¼
6Dst. Notice that Csðk; tÞ is the Fourier transform of the so-called self-part of the van
Hove correlation function,

Gsðr; tÞ ¼
X
a

�ðraðtÞ � rað0Þ � rÞh i: ð15Þ

The latter is conventionally normalized by dividing by the total number of particles,
so that Gsðr; t ¼ 0Þ ¼ �ðrÞ; the second moment

Ð
dr r2Gsðr; tÞ then gives the mean-

square particle displacement as a function of time t.

F. Ritort and P. Sollich230



2.3. Out-of-equilibrium dynamics: two-time quantities and effective temperatures
When supercooled liquids are cooled to sufficiently low temperatures, their

longest relaxation times will become comparable and eventually exceed experimental
timescales. The system is then referred to as a glass. It no longer reaches (metastable)
equilibrium on accessible timescales and instead ages: its properties depend on the
waiting time tw elapsed since the glass was prepared, e.g. by a temperature quench.
We review in this section how correlation and response functions are generalized to
two-time quantities in the ageing regime. We also discuss how out-of equilibrium
correlation and response can be used for defining effective temperatures. This
suggestion first appeared in the context of mean-field spin-glass models but has
since found much wider application; see e.g. [23] for a review.

The two-time autocorrelation function of an observable � is defined, in a natural
generalization of (7), as

Cðt; twÞ ¼ �ðtÞ�ðtwÞh i � �ðtÞh i �ðtwÞh i: ð16Þ

Similarly, one can define a two-time impulse response function

Rðt; twÞ ¼
� �ðtÞh i
�hðtwÞ

				
h¼0

which gives the linear response of �ðtÞ to a small impulse hðtÞ ¼ h�ðt� twÞ in the
conjugate perturbation at time tw. The step response is then given by

�ðt; twÞ ¼
ðt
tw

dt0 Rðt; t0Þ ð17Þ

and tells us how � responds to a small constant field switched on at time tw.
Now, in equilibrium, Cðt; twÞ ¼ Cðt� twÞ by time-translation invariance (TTI);

the same will be true of R and � and FDT (8) holds. A parametric ‘FDT plot’ of �
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Figure 4. Typical shape of a two-time correlation function, plotted as a function of t� tw
(in log-scale) with system age tw increasing from left to right. Notice the two separate
relaxation processes: the short-time part of the relaxation is independent of tw and
obeys time-translation invariance while the long-time decay from the plateau takes
place on a timescale growing with tw.



versus C is thus a straight line of slope �1=T . In an ageing system such as a glass, on
the other hand, correlation and response functions will be non-trivial functions of
both their arguments. A generic scenario for the behaviour of the correlation
function is depicted in figure 4: the initial (�-) part of the relaxation takes place
on a timescale which—for large enough tw—is independent of the age tw. In this
regime Cðt; twÞ is a function of t� tw only and thus obeys TTI. The long-time
(�-)relaxation, on the other hand, takes part on ‘ageing timescales’ growing with tw;
the most straightforward case where �� � tw is often referred to as simple ageing.

The out-of-equilibrium, two-time correlation and response functions are not
expected to obey FDT; to quantify this one can define an FDT violation factor
Xðt; twÞ through [42, 43]

� @

@tw
�ðt; twÞ ¼ Rðt; twÞ ¼

Xðt; twÞ
T

@

@tw
Cðt; twÞ: ð18Þ

One may wonder why derivatives with respect to tw are used here rather than t; in
equilibrium the two choices are equivalent since all functions depend only on t� tw.
However, derivatives with respect to t would make rather less sense in the out-of-
equilibrium regime, since only the tw-derivative of �ðt; twÞ is directly related to the
impulse response Rðt; twÞ; physically, this corresponds to causality of the response.
Adopting therefore the definition (18), one sees that values of X different from unity
mark a violation of FDT. In glasses, these can persist even in the limit of long times,
indicating strongly non-equilibrium behaviour even though one-time observables of
the system—such as energy and entropy—may be evolving only extremely slowly.

Remarkably, the FDT violation factor for several mean field models [42, 43]
assumes a special form at long times: taking tw !1 and t!1 at constant
C ¼ Cðt; twÞ, Xðt; twÞ ! XðCÞ becomes a (non-trivial) function of the single argu-
ment C. If the equal-time correlator Cðt; tÞ also approaches a constant C0 for t!1,
it follows that

�ðt; twÞ ¼
1

T

ðC0

Cðt;twÞ
dCXðCÞ: ð19Þ

Graphically, this limiting non-equilibrium FDT relation is obtained by plotting �
versus C for increasingly large times; from the slope �XðCÞ=T of the limit plot, an
effective temperature [39] can be defined as TeffðCÞ ¼ T=XðCÞ. Typical FDT plots
are shown in figure 5.

In the most general ageing scenario, a system displays dynamics on several
characteristic timescales, one of which may remain finite as tw !1, while the others
diverge with tw; the case with one finite timescale and one growing with tw is
illustrated in figure 4. If these different timescales become infinitely separated as
tw !1, they form a set of distinct ‘time sectors’; in mean field, TeffðCÞ can then be
shown to be constant within each such sector [43]. In the short time sector
(t� tw ¼ Oð1Þ), where Cðt; twÞ decays from C0 to some plateau value, one generically
has quasi-equilibrium with Teff ¼ T , giving an initial straight line with slope �1=T in
the FDT plot. The further decay of C (on ageing timescales t� tw that grow with tw)
gives rise to one of three characteristic shapes: (i) In models which statically show
one step replica symmetry breaking (RSB), e.g. the spherical p-spin model [42], there
is only one ageing time sector and the FDT plot exhibits a second straight line, with
Teff > T (see figure 5). (ii) In models of coarsening and domain growth, e.g. the OðnÞ
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model at large n, this second straight line is flat, and hence Teff ¼ 1 [44]. (iii) In

models with an infinite hierarchy of time sectors (and infinite step RSB in the statics,

e.g. the SK model) the FDT plot is instead a continuous curve [43].

Teff has been interpreted as a timescale-dependent non-equilibrium temperature,

and within mean field has been shown to display many of the properties associated

with a thermodynamic temperature [39]. For example (within a given time sector), it

is the reading which would be shown by a thermometer tuned to respond on that

timescale. Furthermore—and of crucial importance to its interpretation as a

temperature—it is independent of the observable � used to construct the FDT

plot [39]. While this picture is theoretically well established only in mean-field

models, non-trivial FDT plots have recently also been found in many non-mean-

field systems including KCMs. A number of open questions remain, however, over

whether these FDT relations can be used to define meaningful effective temperatures

(see section 5.4.3 for details). A unique Teff may not result for arbitrary observables

�, for example, and one may have to restrict attention to a suitable class of ‘neutral’

observables. Also, in some cases the slope of the FDT plot is not constant in a given

time sector but changes when t� tw is changed by a factor of order one, while a

meaningful Teff should be insensitive to such changes.

We finish this section with a brief discussion of the most appropriate representa-

tion of FDT plots in non-mean-field systems, which can be somewhat subtle [45]. For

mean field systems the existence of a limiting relation (19) between response � and
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Figure 5. Schematic FDT plots of step response � versus correlation C in glassy systems.
The dotted line shows the equilibrium slope of �1=T . The FDT plot first follows this
line as the correlation function decays from its initial value, but then crosses over to a
non-equilibrium part, as shown by the dashed lines for a series of increasing waiting
times tw (bottom to top). The (negative inverse) slope of this part of the plot can be
used to define an effective temperature Teff , which in this example is greater than T
and decreases as the system ages. In some exactly solvable mean-field models a non-
trivial limiting plot is approached for long times (solid line).



correlation C ensures that parametric plots of � versus C converge, for long times, to
a limiting FDT plot whose negative slope directly gives XðCÞ=T . Equation (19)
implies that the plots can be produced either with t as the curve parameter, holding
the earlier time tw fixed, or vice versa. The first version is more convenient and
therefore normally preferred [42, 43]. In general, however, the definition (18) ensures
a slope of �Xðt; twÞ=T for a parametric �-C plot only if tw is used as the parameter,
with t being fixed. If the equal-time correlator Cðt; tÞ varies with t, then ‘raw’ FDT
plots at increasing t may also grow or shrink in scale, indefinitely if Cðt; tÞ ! 0 or
!1. It is therefore helpful to ‘attach’ the plots to a specific point, either by showing
�ðt; twÞ versus �Cðt; twÞ ¼ Cðt; tÞ � Cðt; twÞ [46] to get a plot through the origin,
or by plotting the normalized values ~��ðt; twÞ ¼ �ðt; twÞ=Cðt; tÞ and ~CCðt; twÞ ¼
Cðt; twÞ=Cðt; tÞ to get curves passing through ð ~CC ¼ 1; ~�� ¼ 0Þ [45]. If a limiting plot
exists for t!1, this then means that X becomes a function of only �C or ~CC in the
limit. Either t or tw can be used as the curve parameter in such a situation, but the
reference value of the correlator must still be Cðt; tÞ rather than Cðtw; twÞ to maintain
the link between Xðt; twÞ and the slope of the FDT plot.

2.4. Energy landscape paradigms
An interesting take on glassy behaviour is provided by viewing the dynamics

‘topographically’, as an evolution in a very rugged 3N-dimensional (if there are N
particles) potential energy landscape [47]. This point of view was taken up in the
early 1980s by Stillinger and Weber (SW) [48] and has since been further
developed [12, 27, 49]; for a selection of references on successful applications of
the framework to Lennard-Jones glasses see also [50]. The basic idea of SW was to
split configuration space into the basins (or valleys, or inherent structures (IS)) of the
energy landscape. Each basin can be defined as the set of configurations that map
onto the same configuration in a steepest descent (zero-temperature) dynamics on
the energy; because this mapping is deterministic, it splits configuration space into
non-overlapping basins. Each one can be labelled by a representative configuration,
taken as the one of minimum energy eIS (per particle, say) within the basin. The
number density of basins as a function of eIS will be exponential in system size,
NðeISÞ ¼ exp½NscðeISÞ�, and by doing the sum over configurations C basin by basin
the partition function can be written as (� ¼ 1=T)

Z ¼
X
IS

X
C2IS

e��EðCÞ ¼
ð
deIS expfN½scðeISÞ � �eIS � ��f ð�; eISÞ�g: ð20Þ

Here the term

�f ð�; eISÞ ¼ �
T

N
ln
X
C2IS

e��½EðCÞ�NeIS� ð21Þ

effectively measures the width of a given basin, being a within-basin free energy
relative to the bottom eIS of the basin. We have assumed that �f ð�; eISÞ is the same
for all basins with the same eIS; otherwise a more general definition would be needed
in place of (21). We have also written discrete sums over configurations C, rather
than integrals as would be appropriate for classical particle systems, in anticipation
of the discrete configuration spaces of most KCMs. The above description naturally
introduces the concept of configurational entropy or complexity of inherent
structures, scðeISÞ, and this has been argued to be more relevant to glassy dynamics
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than the standard thermodynamic entropy over all configurations originally con-
templated by Adam, Gibbs and Di Marzio [37, 51]. The reason is that sc as defined
above excludes all ‘trivial’ contributions to the entropy arising from local excitations
within a given basin. In a supercooled liquid these would correspond to small
vibrations of the particles around their average positions. Assuming that these
vibrations are similar in the supercooled liquid and the crystal, one can alternatively
view sc as the difference between the entropies of a supercooled liquid and of a
crystal at the same temperature.

Looking ahead, we note that in models for glassy dynamics where configuration
space is discrete (which includes most KCMs) the dynamics remains stochastic even
at zero-temperature: there can be many equivalent directions in configuration space
that lead to the same energy decrease. The boundaries between basins in configura-
tion space determined by the T ¼ 0 dynamics then become ‘soft’, and would need to
be specified in terms of the probability of a given configuration being assigned to a
specific basin. This complicates the calculation of the within-basin free energies �f .
However, the ‘bottom’ of each basin remains unambiguous and corresponds to a
configuration which will not evolve at T ¼ 0, so that the configurational entropy
scðeISÞ can be defined and calculated as before.

A promising recent refinement of the SW approach is to define the configura-
tional entropy by counting basins with the same free energy f ¼ eIS þ�f rather than
the same eIS [52]. This makes sense because the equilibrium weight of each basin is
expð��f Þ rather than expð��eISÞ; the additional factor expð���f Þ correctly
accounts for the different weight of narrow and wide basins. (In mean-field spin
glasses, equal weight is similarly assigned to basins of equal free energy [53]. In this
case the division of configuration space is more clear cut, however, since the different
basins are separated by energy barriers that diverge in the thermodynamic limit and
thus correspond to genuine thermodynamic states. See [54, 55] for further discus-
sion.) Since the effective width �f of a basin depends on temperature, so does the
configurational entropy scðf ; �Þ defined in this way.

Developing the SW approach in a different direction, one may wonder about the
rationale for splitting configuration space according to basins defined by steepest-
descent dynamics. For example, if two adjacent basins are separated by a low-energy
barrier then at non-zero temperature it will make more sense to regard them as a
single basin which the system will explore on short timescales. Biroli and
Kurchan [56] proposed that one should therefore replace the notion of basins with
metastable states, i.e. collections of configurations within which the system equili-
brates on a given timescale t� (and at a given temperature T). This leads to a
timescale-dependent definition of the configurational entropy, which is physically
very plausible: e.g. on infinite timescales t� the system must equilibrate over the
whole of configuration space and so the configurational entropy must vanish. To get
a meaningful result for the configurational entropy, the timescales for equilibration
inside metastable states and for transitions between such states must be well
separated, with t� chosen to lie between them. (As explained above, in mean-field
systems the metastable states are normally genuine thermodynamic states with
transition times between them that diverge in the thermodynamic limit; a non-trivial
configurational entropy is thus obtained even for t� ! 1. For further discussion of
these and related issues see [22, 57, 58].)

Closely related to inherent structures are ideas that have arisen out of attempts to
describe the dynamics of granular media under external tapping or vibration (see
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section 2.6) by an effective equilibrium statistical mechanics. Edwards (see e.g. [59])
proposed that an appropriate statistical ensemble would be a flat (microcanonical)
distribution over all blocked (or ‘jammed’) configurations of a granular system with
given volume or energy, etc. The logarithm of the number of such configurations
then defines an ‘Edwards entropy’, from which analogues of, e.g. temperature and
pressure can be derived [59]. The connection to IS follows from the fact that after a
tap on its container, a granular material relaxes to some blocked configuration where
no particle can move further; since thermal energies are irrelevant in granular
materials (see section 2.6), this corresponds to the steepest-descent or T ¼ 0
dynamics used to define IS. Biroli and Kurchan [56] proposed that the notion of
an Edwards measure could be extended to generic glassy systems, where e.g. non-
zero temperature will play a role, by generalizing it to a flat distribution over
metastable states of a given lifetime t�. One intriguing, and largely open, question is
under what circumstances the effective temperatures derived from Edwards measures
(or analogously from configurational entropies) match those used to rationalize out-
of-equilibrium fluctuation–dissipation violations (see section 2.3).

2.5. Dynamical lengthscales, cooperativity and heterogeneities
An obvious question to ask about glassy dynamics is whether the dramatic slow-

down of the dynamics is correlated with a corresponding increase in an appropriately
defined lengthscale. Critical slowing-down around second-order phase transitions,
for example, is correlated with the divergence of a static correlation length. In
supercooled liquids, the consensus is that there is no growing static lengthscale, since
e.g. the static structure—as measured by the amplitude of density fluctuations—
changes only negligibly while relaxation timescales grow by orders of magnitude.
(KCMs take this insight to extremes, by assuming that static correlations are entirely
absent.) Any growing lengthscale in glassy dynamics must therefore be of dynamic
origin, and as such rather more difficult to define unambiguously.

One route to the definition of a dynamical lengthscale is via the idea of
cooperative motion, which goes back to at least Adam and Gibbs [37]. In a system
of densely packed (spherical, say) particles, for example, motion of one particle over
a distance comparable to its diameter should require many of its neighbours to move
in concert in order to create a space big enough for the particle to move into. There is
support for this theoretically appealing idea. In simulations of particles interacting
via Lennard-Jones potentials [60, 61], for example, the most mobile particles were
found to ‘follow each other around’ along string-like clusters. Limitations on
computer time mean that such simulations only probe the temperature regime where
relaxation timescales are still relatively short compared to those at Tg. Experiments,
however, allow longer timescales to be accessed. For example, recent work [62] on
colloidal glasses (dense suspensions of spherical colloid particles) found that the
most mobile particles—defined as having moved furthest on an appropriately chosen
timescale—form extended clusters, with neighbouring fast particles moving pre-
dominantly in parallel directions, i.e. cooperatively. The cluster size distribution was
observed to be broad, so that a precise definition of a cooperativity lengthscale
would have been difficult, but typical clusters sizes were found to be on the order of
tens of particles. (There was also some evidence that the structure of the largest
clusters was fractal, with fractal dimension � 2.)

The above results show that the idea of cooperativity is closely linked to the
appearance of dynamical heterogeneities, i.e. the existence of local regions in a

F. Ritort and P. Sollich236



material with very different relaxation timescales. The existence of such heterogene-
ities is also suggested by the non-exponential character of relaxation functions in
supercooled liquids and glasses, though the alternative of intrinsically non-exponen-
tial but homogeneous dynamics is equally possible (see section 2.2). Standard
experimental quantities such as the intermediate scattering function (13) measure
spatial averages and so do not directly reveal heterogeneities. However, more refined
experimental techniques such as multidimensional nuclear magnetic resonance [63,
64], photobleaching [65, 66] and dielectric measurements [67] do give access to local
quantities and provide support for the existence of dynamical heterogeneities; for a
recent review see [25]. The size of the heterogeneities, i.e. of local regions with a well-
defined relaxation timescale, provides an alternative definition of a dynamical
lengthscale. How this is related to the cooperativity length is not obvious, however;
Ediger [25] argues that the latter must be smaller than the size of the heterogeneous
regions, on the grounds that cooperativity makes sense only among particles relaxing
on comparable timescales. In addition to a lengthscale, heterogeneities also define a
timescale: in an ergodic system, every local region must eventually sample the whole
ensemble of local relaxation times. Thus, heterogeneities must have a certain finite
lifetime, over which the local relaxation time remains approximately constant before
switching to a new value. Of particular interest is the ratio Q [68] of this lifetime to
the typical relaxation timescales within a local region. In order for the local
relaxation time to be well defined, one expects Q � 1. Some experiments (see,
e.g. [25] for review) do indeed give Q of order unity, suggesting that the time in
which slow local structures lose memory of their relaxation time is of the order of the
relaxation time itself. More recently, values of Q orders of magnitude larger have
also been found, however. Experimental results on the rotation of probe molecules in
supercooled polymer melts [69], for example, show heterogeneities persisting for
times much longer than typical relaxation times. The switching of local relaxation
times was interpreted as due to rare, large-scale, cooperative rearrangements of
heterogeneities; interestingly, this suggests that the associated cooperativity length is
actually larger than the size of heterogeneities, contrary to Ediger’s argument [25].

It is clear even from the brief sketch above that the existence of heterogeneities
and dynamical lengthscales induced by, e.g. cooperativity remains an intriguing open
problem in glassy dynamics. We will see in section 5.5 that KCMs can provide
considerable insight in this area, allowing different definitions of dynamical
lengthscales to be compared and cooperativity effects to be investigated in detail.

2.6. Glassy dynamics in other systems
So far in this overview of glassy dynamics we have focused on glasses which are

produced by the conventional route of cooling appropriate ‘glass-forming’ liquids;
essentially all liquids fall into this category though the poorer glass-formers may
require very high cooling rates [20]. Glassy dynamics is a much more widespread
phenomenon, however; we have already mentioned polymer melts, which become
glassy at sufficiently low temperatures, and suspensions of colloid particles, where
glassy effects are induced by compression to sufficiently large densities. The glass
transition has indeed been viewed as a special case of a more general ‘jamming
transition’ (see, e.g. [70]) which occurs in a variety of systems including, e.g. dense
granular materials such as sand. We highlight the latter case here because KCMs
have recently also been used as models of such granular materials. As reviewed in,
e.g. [71, 72], these materials display a number of ‘glassy’ features. An interesting
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difference to conventional glasses is that thermal excitation effects are negligible since
kBT at room temperature is negligible compared to the energy required to lift a grain
of sand by its own diameter. Effectively, one therefore has T ¼ 0 and the dynamics is
driven by external excitations such as vibrations or vertical tapping of the container.
Increasing or decreasing the tapping intensity then corresponds to changing
temperature, and hysteresis effects appear in the density of the material when the
tapping intensity is modified cyclically. The temporal increase of density at constant
tapping intensity has also received much attention, and is experimentally observed to
have a very slow, logarithmic dependence on time that is referred to as logarithmic
compaction.

3. Overview of models

In this section we collect all KCMs and related models that are covered in this
review. The ‘core’ KCMs are the spin-facilitated models (section 3.1), which have
inspired a number of variations (section 3.2), and the constrained lattice gases
discussed in section 3.3. Closely related are some models defined on hierarchical
structures (section 3.4); inspired by cellular structures such as froths (section 3.5); or
obtained via mappings from models with unconstrained dynamics (section 3.6). All
models covered in these subsections have stochastic, Markovian dynamics obeying
detailed balance with respect to a trivial energy function, and as their key ingredient
explicit constraints forbidding some local transitions between configurations. In the
final section 3.7, we gather other models which are not strictly speaking KCMs
according to this classification, but merit inclusion because they share a number of
features with KCMs.

3.1. Spin-facilitated Ising models
Spin-facilitated Ising models (SFM) were introduced in the early 1980s in the

seminal work of Fredrickson and Andersen [73, 74]. They can be formulated in terms
of N ¼ Ld two-state variables ni ¼ 0; 1 on a d-dimensional lattice, normally chosen
as cubic with side length L. Physically, an up-spin ni ¼ 1 represents a mobile, low-
density region of a supercooled liquid or glass, while ni ¼ 0 models a less mobile
region of higher density. A generic energy function with nearest-neighbour (n.n.)
interactions is then the Ising Hamiltonian,

E ¼ �J
X
ði; jÞ
ð2ni � 1Þð2nj � 1Þ þ

X
i

ni: ð22Þ

The coefficient of the linear (‘magnetic field’) term has been set to unity and fixes the
temperature scale, and its sign is chosen in line with the intuition that at low
temperatures most regions should be of high density, ni ¼ 0. The sum in the
interaction term runs over all distinct n.n. pairs. For J > 0 this term favours
neighbouring regions to be in the same state, but we will see shortly that this effect
is unimportant, with most work on the model focusing on the case J ¼ 0. The model
with the energy function (22) has no equilibrium phase transition due to the presence
of the non-zero field term, and at low temperatures the concentration c ¼ nih i of up-
spins or mobile regions tends to zero.

The key idea of Fredrickson and Andersen was that rearrangements in any given
region of the material should be possible only if there are enough mobile low-density
regions in the neighbourhood that can facilitate the rearrangement. In the language
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of spins, a rearrangement from low to high density or vice versa corresponds to a
spin-flip, and the facilitation constraint is formalized by requiring that a spin can flip
only if at least f � 1 of its n.n.s are in the mobile state ni ¼ 1. In line with much—
though unfortunately not all—notation in the literature we will call the resulting
model the f ; d-SFM: the spin-facilitated (Ising) model on a d-dimensional cubic
lattice, with f facilitating up-spins required for spin-flips. Mathematically, its
dynamical evolution is governed by a master equation for the time-dependent
probability pðn; tÞ of being in a given configuration n ¼ ðn1 . . . nNÞ,

@

@t
pðn; tÞ ¼

X
n0
wðn0 ! nÞpðn0; tÞ �

X
n0
wðn! n0Þpðn; tÞ: ð23Þ

Here wðn! n0Þ is the rate for a transition from n to n0 ( 6¼ n), defined such that in a
small time interval dt the probability for this transition is wðn! n0Þ dt. The only
allowed transitions in the f ; d-SFM are spin-flips. Without the kinetic constraint, the
rates for these would be given by

wðni ! 1� niÞ ¼ w0ð�EÞ: ð24Þ

Here �E is the change of the energy (22) in the transition from ni to 1� ni,
and w0ð�EÞ is a transition rate that obeys detailed balance with respect to E.
The Metropolis rule w0ð�EÞ ¼ minð1; expð���EÞÞ and Glauber dynamics
w0ð�EÞ ¼ 1=½1þ expð��EÞ� are the most common choices; we set � ¼ 1=T
throughout. We also adopt the convention that rates for any transitions that are
not explicitly listed are zero. The full set of transition rates defined by (24) is
therefore

wðn! n0Þ ¼
X
i

�n0;Finwðni ! 1� niÞ ð25Þ

with Fi the operator that flips spin i, Fin ¼ ðn1 . . . 1� ni . . . nNÞ. Finally, in (23) we
have used a continuous-time formulation which is convenient for theoretical work. A
discrete-time version would be as follows. Advance time in discrete steps 1=N. At
each step, randomly select one of the N spins, ni say, for a possible spin-flip. Accept
this proposed ‘move’ with probability proportional to wðni ! 1� niÞ, otherwise
reject it. In the thermodynamic limit N !1, this discrete-time algorithm leads to
the same results as its continuous-time counterpart, i.e. it gives the same evolution of
pðn; tÞ up to possibly a trivial rescaling of time (see section 4.2).

Having set up the general framework for the dynamics, we now need to
incorporate the kinetic constraints. Define fi to be the number of up-spin neighbours
of spin ni; Fredrickson and Anderson then proposed to implement the kinetic
constraint by modifying the transition rates from (24) to

wðni ! 1� niÞ ¼ fiðfi � 1Þ � � � ðfi � f þ 1Þw0ð�EÞ: ð26Þ

The new factor forces the rate to be zero whenever fi < f . For f ¼ 1, for example,
this factor is simply fi, which is zero for fi ¼ 0 but non-zero for fi � 1; for f ¼ 2 the
kinetic constraint factor fiðfi � 1Þ vanishes for fi ¼ 0 or fi ¼ 1 but is non-zero for
fi � 2. Importantly, the fact that some rates are zero due to the kinetic constraint
does not break detailed balance, since a transition and its reverse transition are
always forbidden together. It is also clear that the main effect of the kinetic
constraint factor fiðfi � 1Þ � � � ðfi � f þ 1Þ is to set some rates to zero and thus rule
out the corresponding transitions. Its precise value for allowed transitions should not

Glassy dynamics of kinetically constrained models 239



affect the results qualitatively, and one could equally define it so that it always equals
unity for allowed transitions [75–78]. An advantage for theoretical treatment of the
form (26) is that the constraint factor can be written relatively simply in terms of the
neighbouring spin variables,

wðni ! 1� niÞ ¼
X

j1 6¼���6¼jf
nj1 � � � njf w0ð�EÞ ð27Þ

where the site indices j1; . . . ; jf are summed over the n.n. sites of spin i.
The origin of glassy dynamics in the f ; d-SFM is easy to understand intuitively.

From the energy function (22) we see that at low temperatures the equilibrium
concentration ceq ¼ nih i of up-spins, i.e. mobile regions, becomes small; for T ! 0,
ceq ! 0 since the field-term in the energy function forces all spins to point down.
Only a very small number of spins will then have f or more up-spin neighbours,
while all other spins will be effectively frozen until enough of their neighbours flip up.
The kinetic constraint thus creates a dynamical bottleneck, which becomes more
pronounced as the number f of facilitating spins is increased.

We should stress that the variables ni ¼ 0; 1 in SFMs do not correspond to
particles, but merely to high and low values of an appropriately coarse-grained
density. This will be different in the lattice gas models discussed in section 3.3, where
ni ¼ 0 and ni ¼ 1 correspond to a particle and a hole, respectively, and

P
i ni

represents the total particle number, a conserved quantity. Notice also that in the
lattice gases the glassy ‘jammed’ regime of high density corresponds to c ¼ nih i close
to one, whereas for SFMs c represents the concentration of mobile regions and
glassy features occur when c becomes small. Finally, it is worth pointing out that
SFMs have often been formulated in terms of spin variables taking the values �1
and þ1 rather than 0 and 1. We find the latter more convenient, especially since in
SFMs the up- and down-states do not represent equivalent physical states related by
symmetry.

It is clear from the above discussion that glassy dynamics in SFMs will occur
whenever the concentration of up-spins is small. As anticipated above, the
interaction term in the energy function (22) is not necessary for this effect to occur,
and therefore most studies of the f ; d-SFM have focused on the case of the non-
interacting energy function

E ¼
X
i

ni: ð28Þ

Compared to (22) this produces completely trivial thermodynamics, corresponding
to free spins in a field. The equilibrium concentration of up-spins is therefore

ceq ¼ 1=ð1þ e�Þ ð29Þ

and, as expected, becomes very small in the low-temperature limit of large �. The
energy change �E entering the unconstrained transition rates w0ð�EÞ then also
simplifies to �E ¼ 1� 2ni, and Glauber transition rates take the simple form

w0ð�EÞ ¼ ð1� ceqÞni þ ceqð1� niÞ: ð30Þ

Unless J 6¼ 0 is specified explicitly, we will always mean the non-interacting case
J ¼ 0 when referring to the f ; d-SFM in the following. From (29), either temperature
or the up-spin concentration ceq can then be used to specify the equilibrium state of
the system.
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More recently, versions of SFMs with directed constraints (sometimes also called
asymmetric constraints) have been introduced, mainly by Jäckle and coworkers, and
have proved to be very useful in adding to our understanding of the original SFMs.
The new feature of models with directed constraints is that only n.n. spins in specific
lattice directions can act as facilitators. Two such models have been considered in
some detail. The simplest is the East model, first proposed in [79] and later
rediscovered [80]. The model is defined in dimension d ¼ 1, with a spin allowed to
flip only if the nearest neighbour on the left is up. (The name ‘East model’ derives
from the fact that in the original formulation of the model [79] the opposite
convention was chosen for the direction of the constraint, with facilitating
neighbours assumed to be on the right, i.e. to the East.) The transition rates for
spin-flips in the East model are wðni ! 1� niÞ ¼ ni�1w0ð�EÞ, which for the trivial
energy function (28) and Glauber dynamics (30) becomes

wðni ! 1� niÞ ¼ ni�1½ð1� ceqÞni þ ceqð1� niÞ�: ð31Þ

The model is the directed version of the 1; 1-SFM; in the latter, an up-spin neighbour
either to the left or right can facilitate a spin-flip, while in the East model a spin can
never flip if its left neighbour is down, whatever the state of its right neighbour. This
seemingly innocent modification actually has profound effects on the dynamics; see
the summary of results in section 3.1.2. On a square lattice one can similarly define
the directed analogue of the 2; 2-SFM, called the North-East model, by requiring
that a spin can flip only if both its neighbours to the North and East are up [81]. A
weaker directionality constraint had earlier been proposed by Reiter [82], who
considered a model where a spin can flip if at least two neighbours in orthogonal
directions—e.g. North and West, or South and West—are up.

For the East model and the 1; 1-SFM, a model which interpolates between the
two extreme cases of fully directed and undirected constraints has also been con-
sidered very recently [55, 83, 84]. The transition rates can be chosen as, for example

wðni ! 1� niÞ ¼ ðni�1 þ aniþ1Þ½ð1� ceqÞni þ ceqð1� niÞ�: ð32Þ

For a ¼ 0 and 1 this gives the East model and the 1; 1-SFM, respectively; for
intermediate values of the parameter a one has an ‘asymmetric 1; 1-SFM’ where
spins with an up-spin neighbour on the right are able to flip but only with a rate
reduced by the factor a.

Finally, models with directed constraints have also been defined on more abstract
structures, e.g. Cayley trees [81]. Starting from a root node, at each node the tree
branches into a� 1 nodes on the next level down, so that each node is connected to a
others, one above and a� 1 below. Figure 16 below shows an example with three
levels and a ¼ 4. The directed ða; f Þ-Cayley tree model is then defined by the
constraint that spins can only flip if f of the a� 1 spins below them are up. An
undirected version of this model could also be contemplated, by allowing spins to flip
whenever any f of their a neighbours, whether above or below, are up. To make sure
that the root node also has a neighbours, it is then sensible to consider a Bethe
lattice, i.e. a set of a Cayley trees linked together at a common root node. It has been
argued [81], however, that this undirected variant has features very similar to the
directed Cayley tree model—with e.g. blocking transitions, where a finite fraction of
spins are permanently frozen, occurring at the same up-spin concentration—so we
do not consider it further in the following.
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3.1.1. Interlude: reducibility and ergodicity
So far, we have naively assumed that the equilibrium behaviour of KCMs—such

as SFMs and their directed analogues—is described by the usual Boltzmann
distribution. In the presence of kinetic constraints, this is not completely trivial,
and one has to consider the possibility that the dynamics might be reducible. We
pause in our overview of KCMs to discuss this issue, contrasting it with the closely
related though distinct question of ergodicity.

Recall that the Boltzmann distribution peqðnÞ � exp½��EðnÞ� is guaranteed to
describe the unique equilibrium state, i.e. the long-time limit of pðn; tÞ for a finite
system, under two conditions: that the dynamics obeys detailed balance with respect
to the energy function E, and that the dynamics is irreducible. Irreducibility means
that the system can pass from any configuration to any other by some finite number
of ‘allowed’ transitions, i.e. transitions with non-zero rates. Pictorially, there must be
a path in configuration space from any one configuration to any other. Notice that
the definition of irreducibility refers to a finite system, and only addresses the
existence of paths and not the (possibly very long) time it would take the system to
traverse a given path.

In systems without kinetic constraints and at non-zero temperature, irreducibility
is normally trivial. For example, in Ising models with the unconstrained spin-flip
rates (24), any spin-flip is an allowed transition, and one can get from any
configuration to any other with at most N spin-flips. In KCMs, on the other hand,
the presence of the kinetic constraints can cause the dynamics to be reducible, with
configuration space splitting into mutually inaccessible partitions. A partition can be
constructed by starting from some configuration n, adding all configurations that are
accessible from n via allowed transitions, and iterating until no new configurations
are found. All configurations in the partition are then mutually accessible: detailed
balance ensures that if there are paths from n to n1 and n2, then the reverse path from
n1 back to n also exists and can be followed from there to n2. On the other hand, no
paths exist that connect configurations in different partitions. Thus, if the system is
started off in a configuration in a given partition, it will equilibrate to the Boltzmann
distribution in that partition only, while the probability of being in states in other
partition remains zero for all time.

A simple example of reducibility, with only two partitions, is provided by the
1; d-SFM. Clearly, the configuration with all spins down, ni ¼ 0, allows no
transitions at all to other configurations since no facilitating up-spins exist; it forms
a partition on its own. On the other hand, starting in any other configuration, one
can flip up the n.n.s of all up-spins and continue this process until all spins are up.
All these configurations are therefore connected to the all-up configuration and form
a single partition which—since it contains the all-up state—is normally referred to as
the high-temperature partition in the context of SFM. (This is somewhat of a
misnomer, since for the energy function (28) the equilibrium state with ceq ¼ nih i ¼ 1
corresponds formally to � ¼ �1, rather than � ¼ 0.) The reducibility in this case is
thus of a rather trivial nature: the dominant high-temperature partition contains all
configurations except for a fraction 2�N which vanishes for N !1. One can thus
proceed to calculate equilibrium properties as if the Boltzmann distribution extended
over all configurations, and we can call the system effectively irreducible.

To formulate the requirement for effective irreducibility more generally, consider
again SFMs with the trivial energy function (28). The partition function for the high-
temperature partition can then be written down as [85]
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Z ¼
XN
E¼0

N!

E!ðN � EÞ! pðE=N;NÞe
��E ð33Þ

with pðc;NÞ the fraction of configurations with up-spin concentration c ¼ E=N that
are in the high-temperature partition. The naive partition function calculated over all
states has the same form but with pðE=N;NÞ replaced by 1. The two procedures for
calculating Z will give the same answers in the thermodynamic limit if pðc;NÞ ! 1
for N !1 at the naive equilibrium up-spin concentration c ¼ 1=ð1þ e�Þ (see (29)).
For effective irreducibility we would like this to hold at any non-zero temperature,
and will therefore define a system to be effectively irreducible if pðc;NÞ ! 1 for
N !1 at any fixed c > 0. Two comments are in order here. First, effective
irreducibility does not say anything about the total number of configuration space
partitions, which in fact generically grows exponentially with system size; it merely
requires that the fraction of total configuration space volume taken up by partitions
other than the dominant (high-temperature) partition must shrink to zero in the
thermodynamic limit. Second, the function pðc;NÞ can exhibit strong finite-size
effects. As explained in more detail in section 4.1, if one defines a threshold up-spin
concentration c�ðNÞ above which a finite system is effectively irreducible because
pðc;NÞ � 1, then this will often converge to zero only very slowly, e.g. logarith-
mically in N. One then has to be careful not to assume naive equilibrium results to
hold for arbitrarily low c and finite N; the results for pðc;NÞ for the 2; 2-SFM shown
in figure 6 illustrate this.

We stress once more that (effective) irreducibility, and the existence of the
corresponding (effectively) unique Boltzmann equilibrium distribution, are static

Glassy dynamics of kinetically constrained models 243

c

p(c,N) L=

Figure 6. Probability pðc;NÞ for states with up-spin concentration c to belong to the high-
temperature partition in the 2; 2-SFM, for different values of L ¼ N1=2 as indicated.
Notice that the value c�ðNÞ above which pðc;NÞ is close to one and the system
thus effectively irreducible decreases to zero only very slowly with N (in fact
logarithmically; see section 5.1). From [85]. Copyright American Institute of Physics.



notions that tell us nothing about the timescales involved. Since they relate only to

the existence of paths in configuration space, but not to the time it would take the

system to traverse these paths, time is effectively always taken to infinity for finite N,

i.e. before the thermodynamic limit is invoked. This contrasts with ergodicity: we will

call a system ergodic if any two configurations—with the exception of possibly a

vanishingly small fraction of configuration space—remain mutually accessible on

timescales that remain finite in the limit N !1. Of course, reducibility implies non-

ergodicity, but the reverse is not true. Another way of putting this is to say that

irreducibility is concerned with the existence of configuration space paths, whereas

ergodicity focuses on whether these paths retain sufficient statistical weight in the

thermodynamic limit [86]. A simple example is the Ising ferromagnet in zero field and

with unconstrained Glauber dynamics. As explained above, the dynamics is then

irreducible for any T > 0, but ergodicity is broken below the critical temperature Tc,

with states of positive and negative magnetization mutually inaccessible on finite

timescales. The ergodicity breaking occurs here (as it does in general, though not for

KCMs; see below) at an equilibrium phase transition; at Tc, a singular change in the

equilibrium properties of the system occurs, and the two ergodic components into

which configuration space splits have genuine meaning as different physical phases of

the system. This should be contrasted with the concept of reducibility, for which

temperature is irrelevant—the value of T never changes an allowed transition into a

forbidden one, as long as T > 0—and where the different mutually inaccessible

partitions of configuration space have no interpretation as thermodynamic phases.

As reviewed in section 5.1 below, most of the KCMs we will consider in this

review are effectively irreducible; the exceptions are the Cayley tree and the North-

East models, which become strongly reducible below a critical value c� of the up-spin
concentration. For the effectively irreducible models, equilibrium properties can be

calculated in the naive way, and the trivial energy functions used ensure that there

are no equilibrium phase transitions. An intriguing question then poses itself: can

these models nevertheless show dynamical transitions where ergodicity is broken even

though there is no underlying thermodynamic transition? Such a transition could be

caused by a divergence of a relaxation time at non-zero temperature, for example;

see [87] for a detailed discussion. This effect occurs in some mean-field spin glasses

(see, e.g. the review [23]) and is also predicted by approximations for supercooled

liquids such as MCT [16–19]. For most KCMs the evidence points towards the

absence of a true dynamical transition; we defer a detailed discussion of this point to

section 5.2 below.

We end this section with a suggestion advanced in [88] that reducibility in KCMs

may not be as important as it seems: one could consider a weaker form of kinetic

constraints where the notionally forbidden transitions take place with a very small

rate 1=�0. As long as �0 is finite, the connectivity of configuration space is the same as

that for an unconstrained model and so the dynamics is trivially irreducible. On the

other hand, the dynamical evolution of the system should be independent of �0 for

times t� �0, so that the weakening of the constraint is irrelevant for the behaviour

on finite timescales.

3.1.2. Some results for spin-facilitated models

Having clarified the issue of reducibility, we now return to our discussion of spin-

facilitated models (SFMs). In this section we give an illustrative overview of some of
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the key ideas and results for SFMs, primarily for ‘quick’ readers who do not wish to
delve too deeply into the details; ‘expert’ readers can find the latter in section 5.

To start with, it is important to note that SFMs can be classified into two broad
families. In models with undirected constraints and f ¼ 1 (one-spin facilitated
models), relaxation occurs primarily by the diffusion of defects, which in this case
are isolated up-spins, and there are close links to other defect-diffusion models,
e.g. [89–92]. All other models—i.e. the f ; d-SFMs with f > 1 and the models with
directed constraints—require cooperative processes for relaxation to occur. This
distinction is important because the dynamical effects of the kinetic constraints are
very different in the two model families: we will see that the models with diffusing
defects show strong glass behaviour, i.e. an Arrhenius temperature dependence of
relaxation times, while the cooperative models exhibit much more pronounced
relaxation time increases resembling those in fragile glasses. To understand the
origin of this difference, consider an f ; 2-SFM in equilibrium at low up-spin
concentration c ¼ 1=ð1þ e�Þ � e��; we write c instead of ceq here for brevity. We
can then think of the up-spins as defects in the ground state configuration with all
spins down. Because c is small, a typical defect is surrounded by down-spins as
illustrated in figure 7. Let us focus on the relaxation of the central defect, which
proceeds by different mechanisms depending on whether f ¼ 1 or f � 2.

If f ¼ 1, the central defect can facilitate an up-flip of any of its neighbouring
down-spins. From (26) and (30), the rate for this is w0ð�EÞ ¼ c, with a correspond-
ing Arrhenius timescale 1=c � e�. Once a neighbouring spin points up, two different
transitions can happen, both with rate w0ð�EÞ ¼ 1� c � 1: either the new up-spin
flips back down, or the original up-spin flips down. In the latter case, the defect has
effectively moved to the neighbouring site, and the effective rate for this process is
c=2 for small c. (The down-flips do not contribute to this because they only take time
of order one, while the factor 1=2 arises because the original defect will only move if
it flips down before the newly created up-spin does.) By a repetition of this process,
the defect can then move diffusively through the whole lattice, with effective diffusion
constant Deff ¼ c=2 if the lattice constant is fixed to one; the same argument applies
to 1; d-SFMs in any dimension d. The longest relaxation time in these models can be
estimated as the timescale on which diffusing defects encounter each other. With
typical distances between defects of order l � c�1=d this gives

� � l2=Deff � c�1�2=d � exp½ð1þ 2=dÞ�� ð34Þ
demonstrating the Arrhenius temperature dependence of relaxation times antici-
pated above. Depending on the precise definition of the relaxation time, Arrhenius
behaviour with different effective activation energies may result; see section 5.3 for
details. The integrated relaxation time, for example, is estimated to scale as
� expð2�Þ in d ¼ 1, diverging less slowly than the longest relaxation time (34);
figure 8 shows results for the former quantity in the 1; 1-SFM. Notice that the
diffusive character of the dynamics in the SFMs with diffusing defects is also visible
in the out-of-equilibrium dynamics. After a quench from equilibrium at high
temperature, for example, the average distance between up-spins increases with
the characteristic power law lðtÞ � t1=2; see figure 21 below.

Now contrast the above analysis for f ¼ 1 with the cooperative case f > 1. Due
to the stronger kinetic constraint, the central defect in figure 7 cannot now on its own
facilitate up-flips of its neighbouring down-spins. It therefore remains itself unable to
move until a region of up-spins further away manages to flip up spins in its
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neighbourhood and to propagate this up-spin ‘wave’ until it reaches the central up-

spin. The example in figure 7 shows that this can be a highly cooperative process,

requiring a significant number of spin-flips to take place in the right order. While no

simple scaling argument for the relaxation time � exists in this case, it is clear that �

cannot scale as a fixed inverse power of c, since the number of up-flips involved in the

cooperative process grows as c decreases and the distance between defects increases.

Correspondingly, as a function of temperature one has a superactivated timescale

increase. Exemplary results from [77, 78] are shown in figure 9; the curvature in the

plot of log-relaxation time versus 1=T clearly demonstrates the non-Arrhenius

behaviour (and should be contrasted with figure 8). Beyond the general recognition
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Figure 7. An example configuration of a small region of an f ; 2-SFM. The spin in the
centre, labelled by 0, is in the up-state (n ¼ 1) and can flip to n ¼ 0 in different ways
depending on the value of f . If f ¼ 1, all four n.n.s of spin 0 are mobile and spin 0
itself can flip down after any one of these has flipped up. If f ¼ 2, on the other hand,
spin 0 can only be flipped down in a more cooperative process, with the sequence of
spin-flips 3! 2! 1! 0 or 3! 1! 2! 0.

1 1.5 2 2.5 3
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100

τ

Figure 8. Integrated relaxation time � as a function of � ¼ 1=T in the 1; 1-SFM. The
straight line fit is given by � ¼ 1:43 expð1:93�Þ, close to the theoretically expected
behaviour � � expð2�Þ for low T (see section 5.3). From [55]. Copyright American
Institute of Physics.



that the cooperative SFMs behave like fragile glasses, very little is known about the
precise form of the timescale increase at low temperature; some studies have

suggested that it might in fact be doubly exponential, � � exp½A expð1=TÞ� (see
section 5.5).

One example of a cooperative model where relaxation times can be deduced by

relatively simple arguments is the East model. A typical equilibrium configuration at
low c is shown in figure 10. The defect on the left can progressively flip up its
neighbours to the right, and thus eventually relax the defect on the right. One may

suspect that this process requires all intermediate spins to be flipped up, suggesting a
relaxation rate � � ð1=cÞl�1 � exp½ðl � 1Þ�� for defects a distance l apart; the factor
l � 1 in the exponent just gives the energy barrier arising from the additional up-

spins that need to be created. In fact, one can show that the relaxation process can be
made more efficient if some spins are flipped back down once ‘anchoring’ spins
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Figure 9. Relaxation times in cooperative f ; d-SFMs as a function of 1=T . Three cases are
shown from left to right: ð f ¼ d ¼ 3Þ, ð f ¼ d ¼ 2Þ, ðf ¼ 2; d ¼ 3Þ. From [78].
Copyright American Physical Society.

4321

0 defect

Figure 10. Typical configuration of the East model at low temperatures, where up-spins are
separated by large domains of down-spins. The up-spin labelled 0 can progressively
activate (flip up) spins 1, 2, 3 and 4 until the defect on the right can be relaxed, i.e.
flipped down. At low T , the relaxation proceeds via the route with the smallest
activation energy, i.e. the smallest number of spins that are simultaneously up. This is
achieved by creating ‘anchor’ spins (see text for details): in this example, spin 1 can
be flipped down once spin 2 has been flipped up, and the relaxation can proceed from
there with spin 2 as the anchor.



between the two defects have been flipped up. This process proceeds in a hierarchical
fashion, with anchors created successively at distances 1, 2, 4, . . . to the right of
the original defect, and requires a maximum number of k � ln l= ln 2 up-spins at
any one time; see section 4.6 for details. With typical distances between defects of
order l � 1=c � expð�Þ, this gives a relaxation time � � expðk�Þ � expð�2= ln 2Þ ¼
exp½1=ðT2 ln 2Þ�. This is an EITS law (3) and gives the very strong increase of � at low
temperatures that is typical of fragile glasses.

Due to the cooperative nature of the dynamics, f ; d-SFMs with f � 2 also show
rather complex relaxation functions in their equilibrium dynamics. Stretched ex-
ponential behaviour has been found in spin autocorrelation functions, for example;
in the East model there is evidence that the stretching may become extreme at low
temperatures, with the stretching exponent tending to 0 for T ! 0 (see section 5.3).
The out-of-equilibrium dynamics is also rather more intricate than in the models
with diffusing defects (f ¼ 1); the East model again provides a simple example, with
the up-spin concentration after a quench decaying as an anomalous power law
� t�T ln 2 with a temperature-dependent exponent (see section 5.4.1).

Work on out-of-equilibrium correlation and response functions of SFMs and their
variants is rather more recent, and we do not yet have a coherent picture of
fluctuation–dissipation theorem (FDT) violations in these models and the corre-
sponding effective temperatures; see section 5.4 for details. One complication is that
response functions in these models can be non-monotonic. In the 1; 1-SFM, for
example, only spins that are next to an up-spin are mobile and can contribute to the
response to an applied field; after a quench the number of such spins decreases in
time with the total up-spin concentration. The response for any given spin increases
with time after the field has been switched on, but the decrease in the number of spins
that can respond makes the overall response non-monotonic. In an appropriate
representation, FDT plots for some observables can nevertheless be well-behaved; a
recent study for the 1; 1-SFM found, surprisingly, that even trivial equilibrium FDT
plots can result [46] (though subtleties remain; see section 5.4.3). Whether FDT
relations can be used to define physically meaningful effective temperatures in these
models remains largely an open questions; static definitions of an effective
temperature (e.g. via configurational entropies, see section 5.6) do not appear to
be useful.

SFMs have also yielded insights into the cooperative nature of glassy dynamics,
and the existence of dynamical heterogeneities, with most work having been done on
the 2, 2-SFM (see section 5.5). Simulations have confirmed [93, 94] the intuitive
scenario described above, showing regions of inactive sites which remain frozen until
‘mobility is propagated’ to them via a cooperative sequence of spin flips from active
sites, i.e. mobile spins, elsewhere in the lattice. See figure 27 below. A number of
definitions for dynamical lengthscales have also been investigated, one of them being
the typical distance between the (only vaguely defined) active sites referred to above.
Relaxation timescales were found to increase as a power law with this lengthscale to
good approximation, with a large exponent, giving very long timescales even for
modest dynamical lengths. Future work on SFMs should help to identify more
precise definitions of dynamical lengthscales and shed more light on the role of
dynamical heterogeneities in glassy dynamics.

We mention finally that a number of recent studies have considered SFMs as
abstract models for granular dynamics, studying the behaviour under a sequence of
‘taps’ (modelled by evolution at T > 0, for example, followed by relaxation at
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T ¼ 0). This approach has yielded insights into logarithmic compaction (see
section 5.7). In some circumstances the resulting non-equilibrium stationary states
can also be described in terms of effective equilibrium using Edwards measures, but
much remains to be done to rationalize when and why this approach works.

3.2. Variations on spin-facilitated models
SFMs have inspired a number of variations, which we review in the present

section.
A variation of the SFMs with added ‘mean-field’ facilitation was introduced

in [95]: spins can flip if either at least f of their neighbours are up, or if the overall
concentration of up-spins in the system is greater than some threshold cth. If the
model without the added facilitation is reducible, such as in the case of the 2, 1-SFM,
then the extended model has a sharp dynamical transition when the concentration of
up-spins reaches cth; for lower concentrations (i.e. lower T) the chain splits into
segments consisting of frozen and mobile spins, respectively. A more detailed
analysis of the dynamics has not been performed, however; the model also goes
somewhat against the philosophy of KCMs by introducing a global restriction
instead of a local one. (Global constraints arise in some other models related to
KCMs, but are then motivated by global conservation laws; see section 3.7.)

Variations on SFMs involving quenched disorder have also been considered.
Schulz and Donth [96], for example, considered a 2; 2-SFM with locally varying
quenched couplings Jij and fields hi. This gives corresponding locally varying
timescales for spin flips, thus broadening out the spectrum of the faster �-processes
which involve only a few spin flips. For the slow �-processes, on the other hand,
which rely on cooperative flips of a large number of spins, the local timescale
variations tend to average out and so a single dominant �-timescale is retained.
Willart et al. considered an SFM in d ¼ 2 with f ¼ 1:5, defined by assigning f ¼ 1 to
a randomly chosen set of half the lattice sites, and f ¼ 2 to the remaining sites [97];
again, these assignments are quenched, i.e. fixed during the course of a simulation.

Schulz, Schulz and Trimper considered a model with two species coupled
together, spins and ‘ion concentrations’ [98]. The motivation comes from the so-
called mixed mobile ion effect, a strong nonlinear dependence of the conductivity in
strong covalently bonded glasses (such as SiO2) on the composition ratio of two
different species of alkali ions included. In this model there are two two-state
variables at each lattice site, ni ¼ 0; 1 for immobile and mobile regions as before
and ri for the two types of cations. Introducing a kinetic constraint for the ri similar
to that for the ni, which forbids diffusion of ions in a locally homogeneous
environment, the authors indeed found the expected strong variation of the
diffusivity with the composition ratio of cations.

Schulz and Reineker [99] considered a variation on 2; 2-SFMs that allows,
beyond ni ¼ 0; 1, a third state at each lattice site to model local ‘vacancies’. These
vacancies are introduced to allow fast local relaxation processes, and so are
postulated to lift the kinetic constraint on all their neighbours; vacancies are also
allowed to diffuse through the lattice at some constant rate by changing place with
neighbouring up-spins. At low temperatures the unconstrained relaxation near
vacancies, with its almost temperature-independent timescale, is faster than the
highly cooperative dynamics that does not rely on vacancies. This fast process—
whose existence can also be deduced from simple mean-field approximations [100]—
produces a plateau in correlation functions and can be likened to the �-relaxation
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observed in structural glasses [99]. A disadvantage is that also the long-time (‘�’)

behaviour loses its cooperative aspects and becomes dominated by the diffusion of

vacancies through the lattice, with relaxation times exhibiting simple Arrhenius

behaviour [99].

For ferromagnetic spin systems, many different kinds of kinetic constraints have

been considered, mainly for the Ising chain in zero field with energy function

E ¼ �J
P

i �i�iþ1 in terms of conventional spins �i ¼ �1. In fact, already Kawasaki

dynamics, where the only allowed transitions are the exchange of neighbouring spins

with opposite orientation and the up-spin concentration is therefore conserved, can

be thought of as a kind of kinetic constraint. It does give rise to some glassy features,

e.g. freezing into non-equilibrium domain structures when the system is cooled

sufficiently rapidly [101]. Skinner [102], in the context of an abstract model for

polymer dynamics, considered Glauber dynamics with the constraint that spins can

flip only if they have exactly one up and one down neighbour. This is equivalent to

evolution at constant energy, leading to a random walk of a fixed number of domain

walls that can neither cross nor annihilate. Because of the fixed energy restriction, the

model cannot be used to study out-of-equilibrium relaxation, but Skinner [102]

predicted using an approximate calculation that the spin–spin autocorrelation

function in equilibrium at low temperatures should have a stretched exponential

decay �expð�tbÞ with exponent b ¼ 1=2. The value of the exponent, which was later

obtained rigorously as the true asymptotic behaviour [103], is related to the diffusive

motion of the domain walls and also appears in similar defect-diffusion models [89,

90]. (Intuitively, the exponent b ¼ 1=2 arises since a given spin relaxes within time t if

there are initially domain walls present within the diffusion distance d � t1=2, and the

probability for this to be the case decays exponentially with d.) The model can be

extended by relaxing the constraint; spins with two identical neighbours can then flip

but at a reduced rate. Numerical results again show a stretched exponential decay,

but with stretching exponent b > 1=2 [104].

In Skinner’s [102] model, spins are constrained to be immobile if their two

neighbours are either both up or both down. Recently, Majumdar et al. [105]

considered a weaker constraint where only spins with two up-spin neighbours are

prevented from flipping. While the energy function is still that of an Ising chain in

zero field, the kinetic constraint breaks the symmetry between up- and down-spins

and this has interesting consequences for the coarsening behaviour at low tempera-

tures which are described in section 5.4.1.

An approach opposite to that of Skinner has also been taken, by considering an

Ising chain where spin flips which do not change the energy are forbidden; only spins

with two equal neighbours can flip. In the T ¼ 0 limit the only allowed transitions

are then those which lower the energy, i.e. flips of up-spins sandwiched between two

down-spins or vice versa [106–109]. This ‘falling’ dynamics has also been considered

on more complicated structures such as ferromagnets on random graphs where each

spin is linked to a fixed number of randomly chosen neighbours [107]. Even at T > 0,

the constraint that the energy must change in a move is strong enough to make the

dynamics reducible; a domain of an even number of up-spins surrounded by all

down-spins, for example, can never be eliminated. The main interest in these models

therefore arises when the falling dynamics is coupled with periodic excitations (e.g.

‘tapping’ by random spin flips) that restore an element of ergodicity; see section 5.7.
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3.3. Lattice gas models
The spin-facilitated models discussed so far do not conserve the number of up-

spins, which model mobile low-density regions in the material. But in structural
glasses the overall particle number and hence density is conserved. To model this
situation more directly, lattice gases with kinetic constraints have been defined. Here
particles occupy the sites of a finite-dimensional lattice and can move to nearest
neighbour sites according to some dynamical rules; each site can be occupied by at
most one particle. In some sense these are the simplest KCMs because all allowed
configurations have the same energy and the same Boltzmann weight so the energy
landscape is trivial. Kob and Andersen (KA) [88] introduced the simplest of these
models, originally for particles on a cubic lattice. Particles move to empty nearest
neighbour sites with unit rates, subject to the condition that the particle has fewer
than m occupied neighbour sites both before and after the move. (The parameter m as
defined here is larger by one than that of [88]; our choice has the advantage that the
same m appears in the bootstrap percolation problem closely related to the
irreducibility of the KA model.) The restriction on the number of neighbours after
the move is necessary to ensure detailed balance. The choice of m determines the
strength of the kinetic constraint. For m ¼ 6, the model is unconstrained while for
m ¼ 3 it would clearly be strongly reducible: any set of eight particles occupying the
sites of a 2� 2� 2 cube could never move, all particles having at least three
neighbours whether or not sites around the cube are occupied. KA chose the
smallest value, m ¼ 4, which does not produce such obvious reducibility effects,
and this defines the standard KA model. The intuition behind the kind of kinetic
constraint imposed is that if particles are ‘caged in’ by having too many neighbours,
they will not be able to move. KA originally proposed the model to test the MCT for
supercooled liquids [16–19], which is based mainly on this caging effect, but found
surprisingly poor agreement. The model has nevertheless been intensively studied,
with several variants proposed recently as reviewed below.

It is worth pointing out that if we let ni ¼ 1 for sites i that are occupied by a
particle and ni ¼ 0 for those that are not, then the KA model with m ¼ 4 is actually
very similar to a 3, 3-SFM with Kawasaki dynamics; the exchange of neighbouring
up- and down-spins is equivalent to moving a particle. Notice however that the
facilitating states are now the ‘holes’ ni ¼ 0, corresponding to down-spins rather
than up-spins. (A second distinction is that in order to preserve detailed balance,
motion is allowed if the up-spin of the pair to be exchanged has at least
6�mþ 1 ¼ 3 down-spin neighbours and if the down-spin has at least two down-
spin neighbours.) Due to the facilitation by holes, the glassy regime in the KA model
occurs at high particle density c ¼ nih i � 1, while in the SFMs it corresponds to
c � 0. Finally, if a configuration in the KA model is described using the ni, it is clear
that the particles are treated as indistinguishable; this is appropriate for studying the
behaviour of density fluctuations, for example. However, for observables related to
self-diffusion, concerning e.g. the average displacement of a given particle over some
time interval, particles need to be distinguished one from the other and a
configuration is then specified by giving the position vector (or site number) for
each particle.

In the KA model as described above the total number of particles is conserved,
and since we have a lattice model so is therefore the particle density. This makes it
difficult to study ageing effects where the density evolves with time. One might wish
to study, for example, the behaviour following an instantaneous quench (or better
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crunch) to a higher density of particles. An extension of the KA model for this
purpose was introduced in [110]. (See also [111] for a related model with a global
kinetic constraint.) Here particle exchange with a reservoir is allowed in one
designated plane of the lattice. This can be thought of as the ‘surface’, although
periodic boundaries are maintained so that one effectively has a slab of material
between two parallel surfaces in contact with the reservoir. The rates for eliminating
and introducing a particle in this layer are e�� and 1, respectively, corresponding to a
reservoir at chemical potential � (with the inverse temperature fixed to � ¼ 1). The
dynamics obeys detailed balance with respect to the energy function E ¼ ��

P
i ni,

and the equilibrium particle density is

ceq ¼ 1=ð1þ e��Þ: ð35Þ

A crunch can be obtained by increasing �; to have meaningful results for a bulk
system one then needs to check, however, that the density does not exhibit strong
inhomogeneities. This grand canonical version of the KA-model can alternatively be
thought of as canonical [112], with 1=� and 1=c respectively corresponding roughly
to temperature T and energy E in a system that is brought into the glassy region by
lowering temperature. A recent overview of relevant results for the grand canonical
KA model can be found in [112]. An attractive feature of allowing particle exchange
with a reservoir is that many more configurations become mutually accessible, if
necessary by first removing particles one by one and then reinserting them; this
significantly weakens reducibility effects (see section 5.1).

A model similar to the KA lattice gas, on a two-dimensional triangular lattice,
was considered by [113]; reviews of the main results for this model, as well as the
hard-square lattice gas (see section 3.7) can be found in [86, 114]. The constraint here
is that the two sites which are nearest neighbours of both the departure and the
arrival site—in other words, the sites adjoining the ‘hop path’—are empty; see
figure 11. This two-vacancy assisted hopping model, called a triangular lattice gas
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Figure 11. Hop path in the triangular (two-vacancy-assisted) lattice gas. The particle
indicated by the full-line circle can hop to the neighbouring site along the path
indicated by the arrow only if the three sites surrounded by the dashed circles are
free. From [86]. Copyright Institute of Physics Publishing.



below for short, was found to display typical glassy features. However, if the
constraint is relaxed from two vacancies to one, these largely disappear [113]: pairs
of vacancies can then diffuse freely even in an otherwise fully occupied lattice, since
each vacancy in a pair can rotate around the other one. A generalization of two-
vacancy assisted hopping to a three-dimensional face-centred cubic lattice has also
been suggested [113]; hopping is again between nearest neighbour sites and vacancies
are required on all four sites adjoining the hop path. Since the hop path and two of
the vacancies are within a triangular lattice plane, in crystallographic (111)
orientation, the constraint includes the one for the two-dimensional model and so
would be expected to lead to even more pronounced glassy effects. Finally, for the
two-dimensional two-vacancy assisted model an extension to particles with orienta-
tional degrees of freedom has been proposed [115]. The rules for translational
motion are as before. The kinetic restriction on rotational motion can best be
visualized if one thinks of the particles as ‘lemons’, i.e. hard discs with small noses on
opposite sides; a rotation of one such lemon by �=3 is allowed only if the two
neighbouring sites located along the direction between the old and the new
orientation are empty (otherwise the noses would get stuck). Orientations are
randomly distributed in equilibrium, but the kinetic constraint couples orientational
fluctuations to the translational motion.

A model similar to one-vacancy assisted hopping, but on a d-dimensional
hypercubic lattice, was studied in [116]. There, the hopping rate was taken to be
proportional to the number of vacancies on the n.n. sites surrounding the hop path;
hops are therefore allowed only if at least one such vacancy is present. Unfortunately
the analysis of this model given in [116] was flawed since it involved an approxima-
tion which violates conservation of particle number.

Finally, the KA model has recently been generalized to include the effects of
gravity [117]. Here the energy of a configuration is (setting particle mass and
gravitational acceleration to unity)

E ¼
X
i

hini ð36Þ

with hi the height of site i. The kinetic constraints are of the same kind as in the KA
model—in [117], for example, a b.c.c. (body-centred cubic) lattice with m ¼ 5 was
used—but the non-zero transition rates now take energy changes into account when
particles move up or down. Such models are particularly useful for studying glassy
effects in granular materials, where gravity is important in driving phenomena such
as compaction. As explained in section 2.6, the temperature T used in this context is
not the thermodynamic one but should rather be regarded as representing some
external excitation of the material, e.g. by vibration or vertical tapping.

3.3.1. Some results for lattice gas models
This section is again intended for quick readers and summarizes important

results for the constrained lattice gas models. Details can be found in section 5.
The KA model has been studied mainly on cubic lattices in d ¼ 3, with the

constraint parameter set to m ¼ 4 (so that particles with four or more neighbours are
unable to move). As in the case of spin-facilitated models (see section 3.1.1), one has
to be careful with reducibility effects in finite-sized systems. The analogue of a
configuration belonging to the high-temperature partition is, in a lattice gas, that all
particles should be able to move throughout the whole lattice eventually, i.e. that no
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particles are permanently blocked. KA [88] suggested that one could define a

‘backbone’ of frozen particles by iteratively removing particles from the system

until all remaining particles are frozen; this in principle only gives a lower bound on

the number of frozen particles in the system but in fact turns out to be an accurate

approximation (see section 5.1). An example of a backbone would be a 2� 2 tube of

particles that stretches across a finite system and, due to periodic boundary

conditions, connects back onto itself; there could also be several such tubes with

‘bridges’ between them, etc. Figure 12 shows the probability p ¼ pðc;LÞ for a

random configuration of density c on a lattice of linear size L to contain a backbone.

One sees that linear sizes of L � 20 are sufficient to have negligible reducibility effects

up to c ¼ 0:86, but that even for slightly larger densities (e.g. c ¼ 0:89) much larger

systems are needed. This is consistent with theoretical estimates. These are based on

the close link between the iterative process that defines the backbone and so-called

bootstrap percolation (see section 4.1) and predict that the threshold density c�ðLÞ
for which pðc;LÞ ¼ 1=2 converges to one only as 1� c�ðLÞ � 1= lnðlnLÞ or even

more slowly; conversely, the system size L required for effective irreducibility

diverges as a double exponential of 1=ð1� cÞ for c! 1.

To investigate the slowing down of the (equilibrium) dynamics with increasing

density, KA calculated the self-diffusion constant Ds from the measured mean-

squared displacement of particles as a function of time; see after (14). The results are

shown in figure 13 and suggest that Ds vanishes at cdyn ’ 0:881 according to a power

law Ds � ðcdyn � cÞ� with � ’ 3:1. Data for Ds in the triangular lattice gas could also

be fitted with the same functional form [113], though there an alternative form

Ds � exp½�A=ð1� cÞ� which predicts no dynamical transition at any c < 1 also

provided a good fit; see section 5.2.

Equilibrium relaxation functions have also been studied for constrained lattice

gases. KA [88] considered an analogue of the intermediate self-scattering function

Cs (14), modified suitably to take into account the lattice symmetry. The modifica-

tion consists in replacing expðik ��rÞ in (14) (where �r � raðtÞ � rað0Þ for short) by
ð1=3Þ½expðik�xÞ þ expðik�yÞ þ expðik�zÞ�; in the corresponding van Hove correla-

tion function (15) this means that particle displacements are measured in terms of the

number of lattice planes traversed in the x-, y- or z-direction. Typical results for the
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Figure 12. Plot of the probability that a randomly chosen configuration of the KA model
has a backbone of frozen particles, against particle density c for a range of linear
lattice sizes L as shown. From [88]. Copyright American Physical Society.



shortest ‘wavevector’ k ¼ 2�=L are shown in figure 14 for a range of densities; KA
found that for the higher densities the long-time decay is well described by a
stretched exponential. At shorter times, the absence of an intermediate plateau,
and thus of a clear separation into �- and �-relaxation, is notable; KA argued that
the � relaxation was either absent or very weak (giving a plateau too close to the
initial value to be visible) because in the KA model particles either diffuse or are
completely stuck, rather than initially ‘rattling’ in cages formed by their neighbours.
(Intriguingly, the triangular lattice gas does exhibit two-step relaxations [118]; see
section 5.3.) The density dependence of the relaxation time � extracted from the self-
intermediate scattering function depends on the wavevector k. KA [88] found that
for the largest k ¼ �, corresponding to distances of the order of the lattice spacing, �
diverged as a power law � � ðcdyn � cÞ��

0
, with a value of cdyn ’ 0:88 compatible
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Figure 13. Self-diffusion constant Ds in the KA model as a function of cdyn � c, for system
sizes L as shown. From [88]. Copyright American Physical Society.
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C (k,t)

Figure 14. Self-intermediate scattering function in the KA model plotted against time, for
the smallest possible ‘wavevector’ k ¼ 2�=L and a range of densities c. Notice the
absence of a two-step relaxation with intermediate plateau even at high density.
From [88]. Copyright American Physical Society.



with that estimated from the self-diffusion constant but with a different exponent

�0 ’ 5.
More recently, out-of-equilibrium effects in constrained lattice gases have also

been investigated (see section 5.4 for details), using the versions of the KA model
where either particle exchange with a reservoir is allowed or the particle density can
change under the influence of gravity. Typical glassy features are observed. For

example, the analogue of cooling rate effects have been investigated in the grand
canonical model by gradually increasing the reservoir chemical potential [110].

Typical results are shown in figure 15; as the system becomes more compressed,
the density appears to get stuck around cdyn even though the chemical potential is

increased further, demonstrating that the system falls out of equilibrium. Cyclical
compression and decompression then also lead to hysteresis effects. Sudden

‘crunches’, i.e. increases in chemical potential, have been studied as well and result
in slow power-law relaxation of the density. If during this relaxation mean-square

particle displacements and the conjugate two-time response function are measured,
one finds the remarkable result that the FDT plot has a simple ‘mean field’ form,

consisting of two straight line segments; and the slope of the out-of-equilibrium part
can be understood on the basis of an appropriate flat Edwards measure over frozen
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Figure 15. Density as a function of chemical potential in the grand canonical KA model.
(Plotted is the inverse density, i.e. the specific volume, versus the inverse chemical
potential, to emphasize the analogy with plots of E versus T .) The analogue of a
cooling run is shown, where the chemical potential of the particle reservoir is
increased gradually over time; the curves from top to bottom correspond to
decreasing ‘cooling’ rates. Notice that the system falls out of equilibrium when the
inverse density approaches 1=cdyn � 1=0:881 � 1:135 (dashed line). From [110].



configurations (see section 5.6). These exciting results are only a beginning, however,
and much remains to be done to understand the origin of such apparent mean-field
behaviour.

3.4. Constrained models on hierarchical structures
Almost simultaneously with the first proposal of SFMs by Fredrickson and

Andersen, Palmer et al. introduced the idea of a whole hierarchy of kinetic
constraints, in a paper [119] that has been instrumental in establishing the conceptual
basis of the field of KCMs.

In the model of [119] the microscopic degrees of freedom are represented by spins
that live on a hierarchical tree (figure 16) containing Nl spins at levels numbered by
l ¼ 0; 1; . . .; Nl decreases as one moves up in the hierarchy with increasing l.
Although initially devoid of any microscopic interpretation the spins can be thought
of as representing cooperative regions in a glass of lengthscales increasing with l,
with the bottom level 0 corresponding to the dynamics of single spins or particles.
The relaxation time of large regions should depend on that of smaller ones, and this
is modelled by assuming that a spin in level l þ 1 can relax only if a given set of �l
facilitating spins in level l are in one particular configuration out of the 2�l possible
ones. If the spins are assumed to be up or down with equal probability, the typical
relaxation time for the spins in level l þ 1 is

�lþ1 ¼ 2�l�l ð37Þ
which gives

�l ¼ �0 exp ðln 2Þ
Xl�1
k¼0

�k

" #
: ð38Þ

If N is the total number of spins and wl ¼ Nl=N is the fraction at level l, then the
equilibrium correlation function can be estimated by averaging the autocorrelation
over all spins, i.e. over all levels, giving
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Figure 16. A hierarchical tree with three levels n ¼ 0; 1; 2 containing N0 ¼ 9, N1 ¼ 3 and
N2 ¼ 1 spins respectively. The spins on level 0 have a short relaxation time �0. Spins
on level 1 relax more slowly because each is constrained by the configuration of
�0 ¼ 3 specific spins in the level below, as indicated by the solid lines. The top spin
on level 2 is similarly constrained by the �1 ¼ 3 spins in level 1. The connectivity
shown here is that of a Cayley tree; Palmer et al. [119] also allowed for more general
cases where a given spin can act as facilitator for more than one spin in the next level
above.



CðtÞ ¼
X1
l¼0

wl expð�t=�lÞ ð39Þ

for a hierarchy with infinitely many levels. (A formally similar solution was also

found by Ogielski and Stein in a model of particle hopping on hierarchical

structures [120].) Palmer et al. [121] argued that since realistic systems are not

expected to have the assumed sharp partitioning into discrete levels, one could

equally or better regard l as a continuous variable and replace the sum in (39) by an

integral; see also [122]. They investigated the asymptotic behaviour of the correlation

function for different choices of wl and �l [119]. In particular, assuming �l ¼ �0=l
p

and wl ¼ w0=�
l (with � > 1) they found stretched exponential behaviour for the

correlation function. The maximum relaxation time, obtained from (38) for l !1,

is �max ¼ �0 exp½ð�0 ln 2Þ=ðp� 1Þ� which is reminiscent of the VTF law (2) if p

depends on temperature and vanishes linearly with T in the vicinity of T0. If one

instead assumes that �l / wl at all levels, then the correlation function shows a slow

logarithmic decay in an intermediate time regime, independently of the precise l-

dependence of wl [123]. The effects of heating and cooling cycles have also recently

been investigated in an appropriate generalization [124] of the hierarchical model.

The models discussed above have been very influential conceptually, in emphasiz-

ing that glassy dynamics could be caused by kinetic constraints linking a hierarchy of

degrees of freedom. However, the large number of parameters �l and wl, which are

difficult to assign on physical grounds, is a drawback if one wants to make

quantitative statements about the behaviour of these models. We will therefore omit

them from further discussion. One interesting special case that we will cover,

however, is the ða; a� 1Þ Cayley tree model discussed in section 3.1. This can be

regarded as a concrete realization of the hierarchical scenario discussed above: in the

Cayley tree there is a finite number of levels l ¼ 0 . . .L, with Nl ¼ ða� 1ÞL�l,
�l ¼ a� 1, and the sets of spins in each level that facilitate the relaxation of different

spins in the level above are chosen so that they do not overlap each other. Notice

however that the approach by Palmer et al. effectively fixes the up-spin concentration

to ceq ¼ 1=2 (corresponding to infinite temperature), while this is normally regarded

as an important tunable parameter in the Cayley tree models.

3.5. Models inspired by cellular structures

Kinetically constrained models have also been inspired by the study of soap

froths and other cellular patterns. These models incorporate topological constraints

as kinetic restrictions in the transition rules. (They also have some similarities with

tiling models, see section 3.7.5 but, especially in the lattice versions discussed below,

are more amenable to analytical investigation.) The simplest cellular pattern in the

plane is a hexagonal tiling, comprising only six-sided cells that have six neighbours

each. However, most cellular structures in nature, such as froths and biological

tissue, are disordered. Aste and Sherrington [125] proposed a model which only

keeps track of the topology of the cellular structure, i.e. of which cells are neighbours

to each other; see figure 17(a). If cell i has ni sides, then the average value of ni is six

from the Euler theorem; in the perfect hexagonal arrangement, one even has ni ¼ 6

for each individual cell. The deviation from this arrangement can be characterized by

an energy function
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E ¼
X
i

ðni � 6Þ2 ð40Þ

which contains no interactions. The kinetic constraint arises from the fact that the
only allowed transitions are so-called T1 moves, where four cells exchange
neighbours; see figure 17(b). Two cells thus gain an edge, while the other two lose
an edge, and a proposed move is accepted with the usual Glauber probability
1=½1þ expð��EÞ�. For high temperatures, the equilibrium structure of the cellular
pattern is disordered, with many cells with ni 6¼ 6. As T ! 0, on the other hand, only
a small number of pentagonal (ni ¼ 5) and heptagonal (ni ¼ 7) cells, effectively
defects in a hexagonal structure, are present. There are then very few moves which
do not increase the energy, and the dynamics becomes dominated by activated
processes. The only freely diffusing defect structures are in fact 5-7 pairs of cells [126],
which can annihilate when they meet or be absorbed by isolated pentagons or
heptagons.

The topological froth model discussed above has the complication that its
equilibrium behaviour is non-trivial to work out, requiring a sum over all possible
topological arrangements of cells. The situation is clearer in a lattice analogue which
has genuinely trivial equilibrium behaviour. In this lattice model, three-state spins
�i 2 f�1; 0; 1g occupy the cells of a hexagonal lattice [127, 128]. The �i correspond to
the local deviations ni � 6 from the optimal hexagonal structure in the off-lattice
model. The energy is therefore defined as
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Figure 17. (a) A topological froth. (b) A T1 or neighbour-switching move, in which two
cells gain one edge and two others lose one edge. From [125]. Copyright Institute of
Physics Publishing.



E ¼
X
i

�2i : ð41Þ

The initial configuration is chosen so that
P

i �i ¼ 0 (in analogy with nih i ¼ 6). The
kinetic constraint is modelled on that of the off-lattice model: the only allowed
transitions are those in which the spins in two neighbouring cells are increased by
one and the spins in their two common neighbours decreased by one, or vice versa.
Moves that would produce spins outside the range �1; 0; 1 are of course forbidden.
At low temperatures in this model, ‘dimers’ composed of a þ1-spin and a �1-spin
can diffuse (in a zig-zag motion) across a background of largely 0-spins. These are
the analogues of the 5-7 pairs of the topological model. They come in six different
possible orientations, and can annihilate with an ‘anti-dimer’ of the opposite
orientation when they meet, or be absorbed by isolated defects, i.e. �1-spins. Dimer
diffusion dominates the fast dynamics of the model. On longer, activated timescales,
isolated defects themselves can diffuse by creating freely diffusing dimers at an
energy cost of �E ¼ 2. Overall, the model produces glassy phenomena similar to the
original off-lattice version. A variant with E ¼ �

P
i �

2
i has also been considered; this

is still non-interacting but has a highly degenerate ground state, leading to subtle
modifications of the low-temperature behaviour detailed in [127]. Finally, the model
can be further simplified by using a square rather than hexagonal lattice, without
qualitatively changing the behaviour [128].

It is clear from this overview that the above models inspired by cellular structures
can all be understood by mappings to defects which can diffuse and ‘react’ with each
other; this reaction–diffusion behaviour gives rise to characteristic power-laws in the
relaxation functions. The timescales involved are activated, so that these KCMs are
appropriate for modelling strong glasses. As explained for the model (41), two
separate timescales can be involved and give two-step relaxations, as well as ageing
effects when the longest timescale exceeds the experimental or simulation time
window.

3.6. Models with effective kinetic constraints
Recently it has been realized that there exists a class of models which are

conventionally formulated in terms of non-trivial energy functions and uncon-
strained dynamics, but which can be mapped to non-interacting defects with
constrained dynamics; see [129] for a review. The simplest example is a Glauber
Ising chain, with energy function

E ¼ �J
X
i

�i�iþ1 ð42Þ

in terms of conventional spins �i ¼ �1. One can introduce defect variables
ni ¼ ð1� �i�iþ1Þ=2, with ni ¼ 0 and ni ¼ 1 corresponding to the absence and
presence of a domain wall, respectively. Importantly, the mapping from the �i to
the ni is one-to-one—subject to appropriate boundary conditions, e.g. an open chain
with the left spin fixed—so that either set of variables can be used to specify a
configuration. The mapping to defect variables has two consequences. On the one
hand, the energy becomes E ¼ 2J

P
i ni up to a constant, so that the defects are non-

interacting. On the other hand, while the dynamics is simple in terms of spin flips, it
is effectively constrained in terms of the ni since only simultaneous changes of pairs
of neighbouring ni’s are allowed.
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More interesting than the trivial Ising chain example are higher-dimensional
models. In d ¼ 2, there are two cases where a one-to-one mapping to defects is
possible, subject again to appropriate boundary conditions [129]. The ‘triangle
model’ has spins on a triangular lattice with triplet interactions in the downward
pointing triangles only [130, 131]

E ¼ �J
X
ijk25

�i�j�k: ð43Þ

The defect variables ni ¼ ð1� �i�j�kÞ=2 live on the centres of the downward
triangles, which themselves form a dual triangular lattice that is isomorphic to the
original one; the energy is again E ¼ 2J

P
i ni up to a constant. Spin flip dynamics in

the original model implies that the only allowed transitions between defect
configurations are the inversions of three ni at the corners of any upward pointing
elementary triangle of the dual lattice. At low temperatures, where most defects
(ni ¼ 1) are isolated, this constraint slows the dynamics: flipping any triangle of
defect variables then leads to a state with an additional defect, and requires an
activation over the energy barrier 2J. In fact, one can show that there is a whole
hierarchy of energy barriers, and an associated hierarchy of slow timescales, arising
from the relaxation of defects arranged in the corners of equilateral triangles with
side length a power of two. As discussed in detail in section 5.4.1, the situation is in
fact very similar to that in the East model, and the longest relaxation timescale
exhibits an EITS divergence characteristic of fragile glasses.

A second model in d ¼ 2 has plaquette interactions on a square lattice [132, 133]

E ¼ �J
X
ijkl2&

�i�j�k�l ð44Þ

with defect variables ni ¼ ð1� �i�j�k�lÞ=2 sitting on the dual square lattice, and
elementary moves being the simultaneous flipping of four defects around a plaquette
of the dual lattice. The seemingly innocent change of lattice structure from the
triangle model has a profound effect on the dynamics: two neighbouring defects
along one of the lattice directions can now diffuse freely along the orthogonal
direction, and the diffusion of these defect-pairs gives the model strong glass
characteristics, with timescales growing only in an Arrhenius fashion as temperature
is lowered.

In three dimensions, models similar to those above could be constructed on, e.g.
an f.c.c. (face-centred cubic) lattice with four-spin interactions on downward-
pointing tetrahedra, or a cubic lattice with eight-spin interactions between spins
around the elementary cubes [129]. We note in passing that closely related to the
d ¼ 2 plaquette model are the so-called gonihedric spin models, which normally
include additional two-spin interactions and exhibit some glassy features as well as
interesting metastability effects [134–137].

In terms of the defect variables, the static equilibrium behaviour of the above
models is of course trivial. In the following, we always assume that the coupling J in
the original model is chosen so that E ¼

P
i ni in terms of the defect variables, giving

again c ¼ nih i ¼ 1=ð1þ e�Þ. The equilibrium properties of the underlying spin
system can be worked out from that of the ni. In particular, one finds that
�ih i ¼ 0 and that spin correlation functions are non-vanishing only if they can be
expressed as a product of a finite number of defects (or, more precisely, of the
variables 2ni � 1 2 f�1;þ1g). In the triangle model, for example, the simplest non-
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vanishing correlation function is that of the three spins at the corners of an
elementary downward triangle [131].

It is clear that, in the description in terms of defect variables, the triangle and
plaquette models are quite similar to the lattice versions of the topological froth
described in the previous section: only certain groups of the elementary variables are
allowed to flip together. An advantage is that these kinetic constraints are not
imposed ad hoc, but result naturally from the dynamics of the underlying spin
system. For uniformity of terminology, we will normally refer to the defect variables
ni as spins when no confusion with the variables �i of the underlying unconstrained
spin system is possible.

3.7. Related models without explicit kinetic constraints
This section gives an overview of some models which do not strictly have kinetic

constraints but which in many cases share some features of KCMs. In some cases the
thermodynamics of these models may not be trivial, in other cases it is very simple
although the system may present a critical point, for instance at zero-temperature. A
simplifying feature of the models discussed in this section is that the dynamics is
normally trivially irreducible.

3.7.1. Ordinary Ising models
Ordinary Ising models with ferromagnetic nearest-neighbour interactions and

Glauber dynamics are the ‘baseline’ models for SFMs. In spite of the absence of
kinetic constraints, they display some features associated with glassy dynamics,
especially when quenched to low temperatures near or below their critical points; see,
e.g. [138] for a recent overview. The simplest example is the one-dimensional Glauber
chain, for which many exact results were already found by Glauber himself [139]; in
fact a fully exact diagonalization of the master equation can be obtained via a
mapping to free fermions [140]. The critical point is at Tc ¼ 0, where the model
coarsens by diffusion and annihilation of domains walls, with the typical domain size
growing as lðtÞ � t1=2. Two-time correlation and response functions obey simple
scaling with tw=t, or equivalently with lðtwÞ=lðtÞ (see, e.g. [141–143]) as expected from
general arguments for coarsening models [144]. A non-trivial FDT plot is obtained in
the limit of long times [142, 143] but is non-trivially dependent on the observable
considered [45, 145]. In equilibrium at low but non-zero temperatures, relaxation
functions also show stretched exponential behaviour at intermediate times [146];
hysteresis effects are found when the system is heated and cooled cyclically (see
section 5.4.2). In higher dimensions, finally, coarsening at T ¼ Tc > 0 and below Tc

need to be distinguished and give different scaling relations for two-time
quantities [138, 147].

3.7.2. Urn models
This category of models has recently received considerable attention. Urn models

do not contain local kinetic constraints; instead a conservation law acts as a global
constraint leading to cooperative behaviour. Their equilibrium properties are very
simple and usually independent of the dimensionality. Like KCMs—and in contrast
to other models with standard second-order phase transitions, such as the Ising
models discussed above—they do not have a large equilibrium correlation length at
low temperatures. Instead, they show a condensation transition, at either zero or
non-zero T .
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Urn models generally are comprised of a number M of urns or boxes and N
particles distributed among these boxes. A configuration is specified through the
occupancies nr in the boxes r ¼ 1; . . . ;M. Each set of such occupation numbers has
assigned to it a degeneracy factor which encodes whether the particles are regarded
as distinguishable or indistinguishable. The original urn model, introduced by
Ehrenfest [148] at the beginning of the twentieth century to prove that thermal
equilibrium in the microcanonical ensemble corresponds to the maximum entropy
state, has M ¼ 2 urns and a large number N of particles. The Backgammon
model [149], which stimulated renewed interest in urn models, instead considers
the limit N;M !1 with N=M ¼ � held constant; cooperative glassy behaviour
then appears if the energy function is defined appropriately. Many other aspects of
the model and a number of variations have since been studied [150–164].

In the most general formulation, the energy function of urn models is written as

E ¼
XM
r¼1

FðnrÞ ð45Þ

where FðxÞ is an arbitrary function subject only to the condition that it must yield a
well-defined thermodynamics. To show the type of global constraint present in this
type of model it is useful to work out the partition function in the canonical
ensemble,

ZcðN;MÞ ¼
X
fnrg

DðfnrgÞ exp ��
XM
r¼1

FðnrÞ
" #

�
XM
r¼1

nr �N
 !

ð46Þ

where DðfnrgÞ is the degeneracy factor D ¼
QM

r¼1 dðnrÞ, with dðnrÞ ¼ 1=nr! for
distinguishable particles and dðnrÞ ¼ 1 for indistinguishable ones. The interesting
aspect of (46) is the fact that, although the energy function (45) is non-interacting,
particle conservation as expressed through the (discrete) delta function makes the
thermodynamics non-trivial and allows phase transitions to occur. To actually work
out the partition function, one switches to the grand canonical ensemble to eliminate
the global constraint, which yields

Zgc ¼
X1
N¼0

zNZcðN;MÞ ¼ eMGð�;zÞ ð47Þ

with z ¼ expð��Þ the fugacity and Gð�; zÞ given by

Gð�; zÞ ¼ ln
X1
n¼0

zndðnÞ exp½��FðnÞ�: ð48Þ

The equation of state in this type of model relates the three variables T , z, and the
density � ¼ N=M by

� ¼ Nh i
M
¼ @Gð�; zÞ

@ ln z
: ð49Þ

The equilibrium properties discussed up to now are the same in the canonical and
grand canonical ensembles. Non-equilibrium properties differ substantially, on the
other hand, and we are interested only in the canonical case where the global
constraint induces cooperativity.
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The allowed transitions in the dynamics of urn models are moves of individual
particles from a ‘departure’ to an ‘arrival’ box; move proposals are accepted
according to the conventional Metropolis rule which depends on the energy change
�E in the move. (We discuss the dynamics here in the framework of a discrete-time
Monte Carlo simulation.) To fully define the dynamics one still needs to specify how
departure and arrival boxes are chosen. For the case of distinguishable particles, a
departure box is picked with probability proportional to its occupation number nr;
this is equivalent to choosing a particle to move at random. For indistinguishable
particles, each box has the same probability of being chosen as the departure box.
Godrèche and Luck [162, 163] called these two types of dynamics ‘Ehrenfest class’
and ‘Monkey class’, respectively. The arrival box is always picked at random from
all boxes connected to the departure box; which boxes are connected defines the
geometry of the model. Simplest is the mean-field geometry, where all boxes are
connected to each other. It can yield exactly solvable models and has been the focus
of most recent work. More complicated is the short-range case, where boxes are
located on a finite-dimensional lattice and particles can be moved between
neighbouring boxes only.

In summary, urn models are defined by specifying (a) the energy function F , (b)
whether particles are distinguishable or not, corresponding to Ehrenfest class and
Monkey class dynamics respectively, and (c) the geometry of connections between
boxes. The resulting behaviour is very rich, and even a change in only one of the
features (a)–(c) can change the dynamics completely. Two specific urn models which
lead to interesting glassy dynamics are as follows.

1. The Backgammon model has mean-field geometry, particles are distinguish-
able and FðnÞ ¼ ��n;0 so that the local energy is either �1 or 0 depending on
whether the box is empty or not. This model shows a T ¼ 0 condensation
transition—where all particles gather in one box—and typical relaxation
timescales increasing in Arrhenius fashion as T is lowered. The interesting
feature of this model is that the system can evolve without having to surmount
energy barriers: relaxation can always proceed by moves (those which move
particles into boxes that are already occupied) which do not increase the
energy. Instead there are entropy barriers, created by a bottleneck in the
number of such escape ‘directions’ from a given configuration. This bottleneck
appears because at low T only a few boxes are occupied; moves where a
particle lands in an occupied box are then very rare.

2. Zeta-urn models also have mean-field geometry, but particles are
indistinguishable (Monkey class dynamics) and FðnÞ ¼ lnðnþ 1Þ. This model
shows a T > 0 condensation transition with a T � � phase diagram where a
critical line separates regions of different dynamical behaviour. Much effort
has gone into the analytical description of the dynamics along this critical line.

Urn models are schematic approaches which allow a number of general questions
about non-equilibrium dynamics to be investigated explicitly. In particular, the
Backgammon model and its variants are cases where slow dynamics is determined by
the presence of entropy barriers that slow down the dynamics (see above): the system
has to attempt many moves before finding a downhill direction in energy. The main
difference to models dominated by energy barriers is that the latter arrest completely
at T ¼ 0 after short-time relaxations are complete, whereas models with entropy
barriers relax even at T ¼ 0; this relaxation dominates also the dynamics at T > 0
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until a cross-over at long times where activation effects come into play. Interestingly,
the configurational bottleneck created by the entropy barriers induces a typical
relaxation time [149] of activated (Arrhenius) character. Much work remains to be
done on urn models with non-trivial spatial structure, to understand for example
whether they might display cooperative effects reminiscent of those found in real
glasses (resulting in, e.g. fragile behaviour of relaxation timescales).

3.7.3. Oscillator models
Another family of models which share some similarities with kinetically con-

strained models are oscillator models. These are mean-field models comprising an
ensemble of uncoupled linear oscillators with Monte Carlo dynamics. These models
have neither local nor global kinetic constraints. Nevertheless, they share some
similarities with KCMs in that there is no interaction among oscillators—making the
thermodynamics trivial, with no phase transition even at zero-temperature—while
the dynamics is glassy due to the dynamical rules. In this respect they are simpler
than the urn models discussed above where, in some cases, a condensation transition
may take place due to the effective interaction induced by particle conservation. The
slow-down in the dynamics at low temperatures and long times is caused by the low
rate at which proposed Monte Carlo moves are accepted; this low acceptance rate
could loosely be viewed as a kinetic ‘constraint’ generated by the dynamics itself.

Originally, oscillator models were introduced indirectly in the analysis of the
Monte Carlo dynamics of the spherical Sherrington–Kirkpatrick model, which can
be mapped to a set of disordered harmonic oscillators [165, 166]. The ‘oscillator
model’ proper is obtained by simplifying this to an ensemble of identical harmonic
oscillators [167]. It is defined by the energy function

E ¼ K

2

X
i

x2i ð50Þ

where the xi are the real-valued displacement variables of the N oscillators and
K > 0 is a Hooke constant. The equilibrium properties are trivial due to the absence
of interactions, but the Monte Carlo dynamics couples the oscillators in a non-trivial
way. Moves are proposed according to

xi ! x0i ¼ xi þ
riffiffiffiffi
N

p ð51Þ

where the ri are Gaussian random variables with zero mean and variance�2, and are
accepted according to the usual Metropolis rule. Each move is a parallel update of
the whole set of oscillators. Both the energy function (50) and the dynamics as
defined by (51) are invariant under rotations in the N-dimensional space of the xi.
This symmetry makes the dynamics exactly solvable, so that questions about, e.g.
ageing, effective temperatures and FDT violations can be answered analytically.

At low temperatures the oscillator model displays slow dynamics, as can be easily
understood from the following argument. For small T the equilibrium energy, which
from equipartition is E ¼ NT=2, is very small. Correspondingly, equilibrium
configurations are located in a small sphere around the point xi ¼ 0, with radius
of order R ¼ ðNT=KÞ1=2. This sphere shrinks to zero as T ! 0, so that the vast
majority of new configurations proposed according to (51) fall outside, producing
very small Metropolis acceptance probabilities expð���EÞ. In fact, at T ¼ 0 the
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system never reaches equilibrium, and the radius of the configuration space sphere
explored by the system shrinks to zero logarithmically in time.

Some of the main known results for the oscillator model (see, e.g. [168]) are as
follows. The relaxation time shows Arrhenius behaviour at low temperatures; as in
KCMs, this occurs even though there are no static interactions. At low temperatures
ageing effects occur, with correlation functions and responses showing simple ageing
scaling with ðt� twÞ=tw up to subdominant logarithmic corrections. The effective
temperature defined via the fluctuation–dissipation ratio (section 2.3) can be
computed analytically. Surprisingly, even in the out-of-equilibrium dynamics at
T ¼ 0 it is linked to the time-dependent value of the energy by the equipartition
relation EðtwÞ ¼ NTeffðtwÞ=2.

A number of variants of the oscillator model have been considered, all sharing
the feature that oscillators do not interact. For example, Nieuwenhuizen and
coworkers [169–171] studied a model with (spherical) spin variables in addition to
oscillators. The new variables are used to mimic fast relaxation processes not
contained in the original formulation; this imposed separation into slow and fast
degrees of freedom mimics the �- and �-relaxation processes in supercooled liquids.
We will not detail results for this model below, but refer to [172] for a recent
overview.

3.7.4. Lattice gases without kinetic constraints
We discussed in section 3.3 the KA model, a lattice gas with a trivial energy

function but glassy dynamics produced by local kinetic constraints. The converse
approach, where glassy behaviour results from unconstrained dynamics but non-
trivial interactions between the particles, has of course also been explored. A simple
example is the so-called hard-square lattice gas, where particles moving on a square
lattice are not allowed to occupy n.n. sites. This interaction results naturally if
the particles are visualized as hard squares oriented at 45o to the lattice axes and
with side length

ffiffiffi
2

p
a, a being the lattice constant. This model has a non-trivial

equilibrium phase transition at particle density � 0:37, above which particles are
located preferably on one of two sublattices. As the maximum density of 1=2 is
approached, the dynamics becomes very slow and shows glassy features. Since we
focus in this review on models with essentially trivial thermodynamics, we will only
touch on results for the hard-square lattice gas occasionally and refer the interested
reader to [173] and the recent review [86] for details.

The unconstrained baseline version of the KA model, a lattice gas without
interactions—except for the standard hard-core repulsion that allows at most one
particle per site—and without kinetic constraints has been studied under the name of
‘sliding block model’. The name arises from the children’s puzzle, where blocks can
be slid around only by moving them into a neighbouring hole. The interesting limit is
normally that of very low vacancy concentration; the vacancies then just perform
random walks. The movement of the particles, however, is non-trivial, and the
typical displacement of a given particle shows a stretched exponential increase with
time at short times. We refer to [174] for simulations and references to earlier
theoretical work on this type of model.

3.7.5. Tiling models
For completeness we now discuss tiling models. This is a slight departure from

our overall philosophy since in these models the energy function chosen leads to non-
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trivial equilibrium behaviour. Nevertheless, the following attractive features make
them worthy of a brief mention: (a) crystalline phases can be included in addition to
amorphous ones, (b) irreducibility is trivial to establish and (c) the idea of a
cooperative lengthscale is included right from the beginning. We focus on the
j-tiling model introduced by Stillinger and Weber [175] and developed in detail by
Weber, Fredrickson and Stillinger [176].

Tiling models are systems made up of non-overlapping square tiles, which can
fragment into smaller tiles or, conversely, be joined together into a larger one.
Consider a square lattice with N ¼ L2 sites and periodic boundary conditions,
covered without gaps by non-overlapping square tiles of all possible side lengths
j ¼ 1; . . . ;L. Let nj denote the number of squares of size j � j; these numbers satisfy
the global constraint

XL
j¼1

j2nj ¼ N: ð52Þ

The ideal amorphous packing of particles is represented by a single tile of size L,
while between smaller tiles it is assumed that there is a strain energy cost
proportional to the contact length, arising from a mismatch in the particle packing
in neighbouring tiles. This gives the energy function

E ¼ 2�
XL
j¼1

jnj : ð53Þ

A crystal phase can be added by designating tiles of a certain size j0 � j0 as crystalline
and adding a term ��nj0 to E. The equilibrium behaviour of this model cannot be
solved exactly even at infinite temperature, but a perturbation expansion around
�� ¼ �1 gives a first-order phase transition to the configuration with a single
macroscopic tile around ��c ¼ 0:27� 0:1. This is confirmed by series expansions and
mean-field Flory approximations [175] and transfer matrix calculations and upper
bound estimates [177].

The dynamics of tiling models is made interesting by kinetic constraints on the
possible fragmentation and aggregation processes. One possibility (‘minimal aggre-
gation’) is to allow tiles of side length pq to divide into p2 tiles of side length q if and
only if p is the smallest prime factor (larger than 1) of pq. The corresponding rule
applies to the reverse aggregation process. Aggregation and fragmentation rates are
given by the standard Metropolis rule; in addition, however, a slowing down of the
dynamics for large tiles is implemented by including an additional factor of �2pqðp�1Þ

in the rates, with � ! 1. In an alternative version of the dynamics (‘boundary shift’),
tiles of side length ðpþ 1Þ fragment into a tile of side length p and an L-shaped band
of ð2pþ 1Þ unit tiles [178]. Both types of dynamics are trivially irreducible since all
configurations can be transformed into the one with all unit tiles. It is not clear,
however, which dynamical rules are most appropriate for modelling glasses, and this
may be one reason why tiling models have received much less attention than SFMs.
Some generic glassy features have nevertheless been found [176, 178]. Energy–energy
autocorrelation functions in equilibrium, for example, can be fitted to stretched
exponentials (but progressively cross over to power-law decays at long times as the
glassy regime is approached). Typical relaxation times derived from these correlation
functions show superactivated temperature dependences; cooling rate effects on the
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energy have also been observed. Beyond this brief overview, we do not consider tiling

models further in this review; nonetheless, as explained at the beginning of this

section, they have some attractive features which may make them worth revisiting in

future work.

There are a number of extensions of the j-tiling models in the literature. For

example, Bhattacharjee [179] (see also [180]) considered the equilibrium behaviour of

a model with an additional term of the form
P

j j
�nj in the energy function. Random

tiling models [181–185] or Wang tiles for quasi-crystals have also been studied,

though again with a focus on equilibrium; an exception for the latter case is the

analysis of the dynamics without kinetic constraints in [186].

3.7.6. Needle models

Models of thin needle-shaped particles interacting only via hard (excluded-

volume) interactions and subject to Newtonian or diffusive Brownian dynamics

may not appear related to KCMs at first sight. They do have interesting glassy

dynamics accompanied by trivial equilibrium behaviour, however, and are therefore

included here.

Frenkel and Maguire [187, 188] investigated the Newtonian dynamics of a gas of

infinitely thin, hard rods of length L at number densities � 1=L3. Since the average

excluded volume for rods of zero diameter is zero, all static properties of the system

are those of an ideal gas. The equilibrium dynamics are non-trivial, but diffusion

constants and autocorrelation functions vary smoothly with density even at large

normalized densities L3�, so that the model does not present pronounced glassy

features. Edwards, Evans and Vilgis [189, 190] considered the same model at

finite but still small needle diameter D� L, and larger densities � of order

1=ðDL2Þ " 1=L3. They argued that in this regime the rotational diffusion of needles

is so strongly suppressed that they can effectively only translate along their axis.

Because of the non-zero D, other needles will impede this one-dimensional diffusive

motion, however; each needle can only move if enough of its neighbours move out of

the way. A self-consistency argument then suggests that the diffusion constant

decreases to zero at some finite value of DL2�, and that on approaching this value

relaxation times should diverge [189]; a more sophisticated version of the theory can

also reproduce a VTF-like divergence of the inverse diffusion constant. Unfortu-

nately, in roughly the same density regime an equilibrium phase transition occurs to

a state of nematic ordering [191], where the needles align with each other rather than

being randomly oriented as assumed in the calculation. The glassy phenomena

predicted by Edwards et al. would therefore be observable only after a sufficiently

fast density increase which avoids this transition.

To eliminate the possibility of equilibrium phase transitions, other models

postulate that the needles are fixed to a crystal lattice so that only rotational motion

is allowed. A number of variants have been considered, including attaching the

midpoints of the needles to an f.c.c. [192] or b.c.c. [193] lattice, or their endpoints to a

cubic or square lattice [194]; in the last case the motion of the needles was assumed to

take place in the (three-dimensional) half-space to one side of the lattice plane. In the

limit of vanishing needle diameter, assumed throughout, equilibrium properties are

again trivial. The dynamics can become glassy, however, for ratios L=a of needle

length and lattice constant above order one: the motion of each needle is then

restricted by those around it, leading to ‘orientational caging’.
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3.7.7. Models without detailed balance
Since our main concern is with models with trivial equilibrium behaviour but

interesting dynamics, we will not discuss models without detailed balance, for which
the nature of any stationary state can be highly non-trivial. A recent review of some
models of this type can be found in [195]. Here we only give a few examples that are
closely related to KCMs. In SFMs for example, detailed balance will be broken if the
kinetic constraint only operates on spin flips in one direction, e.g. for flipping an up-
spin down, while the reverse transition is unconstrained. Stationary states are then
determined by the competition between the constraints and the structure of the
energy function [196]. Halpern [197, 198] introduced a ‘cluster-facilitated’ variant of
SFMs, where the kinetic constraint is that the cluster containing the spin to be
flipped and its nearest neighbours must contain at least f up-spins. This means that
up-spins require only f � 1 facilitating up-spin neighbours, while down-spins need f .
Again, this asymmetry destroys detailed balance; for f ¼ 1, for example, the only
stationary distribution is the one which assigns probability one to the configuration
with all spins down. However, at sufficiently high temperatures long-lived metastable
states with non-zero up-spins concentrations can exist.

Schulz and Reineker also considered a model for the irreversible growth of a
crystalline phase into a glass [199]. With ni ¼ 0; 1 to represent immobile and mobile
regions as before, the model of [199] effectively introduces a third spin state ni ¼ �1
into the 2; 2-SFM, to model regions with local crystalline ordering. The kinetic
constraint remains as before (at least two up-spin neighbours are required for a spin
to flip, ni ¼ 0$ ni ¼ 1) but an additional irreversible process ni ¼ 1! ni ¼ �1
subject to the same constraint is postulated to model crystallization. Crystal
formation from immobile regions, ni ¼ 0, is not allowed. One can now consider
an equilibrium configuration of the 2; 2-SFM at some up-spin concentration ceq, on a
lattice with periodic boundary conditions in the x-direction (say). If this configura-
tion is ‘seeded’ with a crystalline surface by setting all spins with vertical coordinate
y ¼ 0 to ni ¼ �1, then this crystalline phase will grow irreversibly into the ‘glass’
phase at y > 0. At long times the average height of the interface will grow linearly
with time; the crystal phase behind the interface is not homogeneous but contains
inclusions of liquid- and solid-like regions. The fluctuations of the interface height
across the sample also define a roughness, whose scaling behaviour can be used to
define a characteristic lengthscale of cooperative behaviour. The results agree
broadly with those found for the conventional 2; 2-SFM using other definitions;
see section 5.5.

Finally, many non-detailed balance variations of Glauber dynamics in the one-
dimensional ferromagnetic Ising chain have been studied. A recent example is [200],
where detailed balance is broken by imposing transition rates that only depend on
the left neighbour of the spin to the flipped.

4. Techniques

In this section we review the various techniques that have been used to study
KCMs. Effective irreducibility is important for KCMs to ensure that equilibrium
properties can be predicted from the naive Boltzmann distribution over all
configurations; we sketch some techniques for proving this in section 4.1. As far
as the dynamics of KCMs is concerned, numerical simulations (section 4.2) are often
a convenient starting point, and sometimes the only possible method of attack. Some
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properties are, however, amenable to exact analytical solution (section 4.3). Where
this is not the case, a number of approximation techniques can be used, ranging from
mean-field-like decoupling schemes and adiabatic approximations to special
techniques for one-dimensional models; see sections 4.4–4.6. Mode-coupling
approximations derived within the projection formalism (section 4.7) and closely
related diagrammatic techniques (section 4.8) have also been employed, and
mappings to quantum systems offer scope for further analytical work (section 4.9).
Finally, mappings to effective models can be helpful to understand the low-
temperature dynamics of KCMs as outlined in section 4.10.

4.1. Irreducibility proofs
The problem of the reducibility of the Markov chains that formally define KCMs

has been tackled by many authors. In general, different types of models require
different kinds of analytical or numerical techniques to check whether reducibility
effects are significant; in this section, we sketch some of the more common
approaches.

Much effort has gone into establishing the irreducibility or otherwise of the f ; d-
SFMs. One starts by defining what is called the high-temperature partition (see
section 3.1.1). This partition comprises the configuration with all spins pointing up
and all other configurations that can be reached from there; the latter are also called
nucleating configurations [74, 82]. Clearly, the configuration with all spins down
ni ¼ 0 can never belong to the high-temperature partition. This trivial reducibility is
not necessarily significant, however; as explained in section 3.1.1 we only require for
‘effective irreducibility’ that a typical configuration with given energy (or equiva-
lently up-spin concentration, if we consider the standard SFMs without ferromag-
netic interactions) belongs to the high-temperature partition with probability one in
the limit of infinite system size.

Now consider a random configuration of the f ; d-SFM at up-spin configuration
c. To find out whether this configuration belongs to the high-temperature partition,
one first flips up all mobile down-spins. This may mobilize further down-spins, so
one iterates the procedure until a configuration with no mobile down-spins is
reached. If this final configuration has all spins up, the original configuration
belongs to the high-temperature partition. This cellular automaton-style rule of
flipping down-spins recursively has been studied under the name of diffusion
percolation [201], although there one normally asks whether the final configuration
contains a spanning cluster of up-spins, rather than only up-spins. Diffusion
percolation in turn is closely related to bootstrap percolation (BP) [202]; for a
review see [203]. The relation is via a simple mapping that exchanges the roles of up-
and down-spins. From the original configuration with a fraction c of up-spins,
reverse all spins to get a configuration with up-spin concentration 1� c. Interpreting
sites with the new up-spins (i.e. ni ¼ 1) as occupied by particles, m-BP is defined by
recursively removing all particles which have fewer than m occupied neighbouring
sites. In spin language, this means flipping down all up-spins that have fewer than m
up-spin neighbours, i.e. on a cubic lattice in d dimensions at least 2d �mþ 1 down-
spin neighbours. Reversing all spin directions again, this is just the diffusion
percolation algorithm for the f ; d-SFM, with f ¼ 2d �mþ 1. Thus, a configuration
with up-spin concentration c belongs to the high-temperature partition of the f ; d-
SFM exactly when m-BP with m ¼ 2d þ 1� f gives an empty lattice when started
with the corresponding reversed configuration that has a fraction 1� c of sites
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occupied. As an aside, we note that if instead of the probability of reaching an empty
lattice one considers the probability for an infinite spanning cluster of particles in the
final configuration, then m-BP clearly becomes a generalization of ordinary
percolation, which is included as the special case m ¼ 0. For m ¼ 1 only isolated
particles are removed compared to ordinary percolation, while for m ¼ 2 isolated
particles plus dangling ends of clusters of particles are removed.

Consider now a configuration of an f ; d-SFM on a d-dimensional (hyper-)cubic
lattice of size L, with each of the N ¼ Ld spins chosen as up with probability c. Let
pðc;LÞ be the probability that such a configuration belongs to the high-temperature
partition, i.e. that the inverted configuration leads to an empty lattice in BP with
m ¼ 2d þ 1� f . (In section 3.1.1 we had written the size-dependence of pðc;LÞ in
terms of N ¼ Ld rather than L, but this should not cause confusion.) Some trivial
cases are easily understood. For the 1; d-SFM, all spins can be flipped up as long as
there is a single up-spin in the original configuration, so pðc;LÞ ¼ 1� ð1� cÞL and
for any c > 0 the model is effectively irreducible since pðc;L!1Þ ¼ 1. On the other
hand, for f > d it is easy to see that pðc;L!1Þ ¼ 0 for any c < 1 and thus these
models have significant reducibility effects. The 3; 2-SFM is a simple example: any
2� 2 square of down-spins can never be flipped up whatever the state of the
neighbouring spins, and for c < 1 the probability that such squares exist tends to
one for L!1. In the regime 2 ! f ! d, it turns out that the models are effectively
irreducible. The proofs rely on the existence of what are called, in the corresponding
BP problem, large void instabilities [204]; in our context they are large clusters of up-
spins starting from which the whole system can eventually be covered with up-spins.
Taking the 2; 2-SFM as an example, we paraphrase here an analogous argument for
hard-square lattice gases by Jäckle et al. [205, 206]. Consider an l � l square of all up-
spins. A little thought shows that this can be grown outwards—by flipping up mobile
down-spins—into an ðl þ 2Þ � ðl þ 2Þ square at least if there is one up-spin in each
of the four rows of length l bordering the square. The probability for this is
pl ¼ ½1� ð1� cÞl�4. With increasing l this converges to one so quickly that the
probability

pl!1 ¼
Y
k�0

plþ2k ¼ exp 4
X
k�0

ln½1� ð1� cÞlþ2k�
( )

ð54Þ

for the process to continue to infinity is non-zero. Once a sufficiently large cluster (or
‘critical droplet’ [207]) of up-spins has been established, this probability is in fact
very close to one, since for large l one can approximate

pl!1 � exp �4
X
k�0
ð1� cÞlþ2k

" #
¼ exp½�4ð1� cÞl=ð2c� c2Þ� ð55Þ

so that clusters of size above l ¼ lnð2c� c2Þ= lnð1� cÞ, i.e. l � ð� ln cÞ=c for small c,
are unstable in the sense that they will continue to grow to infinity with high
probability. Returning now to (54), the probability of reaching the all up-spin
configuration from a single up-spin ‘nucleation site’, p1!1, can be estimated by
replacing the sum over k by an integral [207], giving

p1!1 � exp 2

ð1
0

du ln 1� ð1� cÞu½ �
� �

¼ exp � 2

lnð1� cÞ

ð1
0

dv ln 1� e�v½ �
� �

ð56Þ
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which scales as p1!1 � expð�const=cÞ for small c. The fact that p1!1 > 0 is
sufficient to guarantee that in an infinite system at least one such nucleation site
will exist; hence the original configuration belongs to the high-temperature partitions
with probability pðc;L!1Þ ¼ 1.

An important proviso regarding such proofs of effective irreducibility is whether
the thermodynamic limit behaviour is reached in systems of realistic size. To quantify
finite-size effects, one can consider pðc;LÞ as a function of c. For sufficiently large L
this increases steeply from zero to one in a narrow region around some value c�ðLÞ—
see figure 6 above—which one could define, e.g. by the condition pðc�ðLÞ;LÞ ¼ 1=2.
If a system is effectively irreducible then necessarily c�ðL!1Þ ¼ 0, but the rate of
this approach can be very slow. In the example of the 2; 2-SFM above one can
estimate how large L needs to be to have pðc;LÞ ¼ Oð1Þ, using the condition
cL2p1!1 � 1 that there is of order one nucleation site in the system. Using (56) this
gives L � expðconst=cÞ to leading order, and inverting one has an up-spin con-
centration c�ðLÞ � 1= lnL above which a finite system will be essentially irreducible.
For the 3; 3-SFM, one finds an even slower convergence, c�ðLÞ � 1= lnðlnLÞ [208]. In
this case it is clear that even for a macroscopic L ¼ 1010 (say) the thermodynamic
limit is not yet reached and the system will show strong reducibility effects below
some non-zero c�ðLÞ.

Spin models with directed kinetic constraints can have non-zero thresholds
c� � c�ðL!1Þ > 0 even for an infinite system and are then effectively irreducible
only for up-spin concentrations c > c�. This is most easily seen for models on Cayley
trees, where these thresholds can be calculated by a simple recursion. Take the ð3; 2Þ-
Cayley tree, where a spin is mobile if both of its neighbours on the level below in the
tree are up. We follow the arguments of [81]; see also [202] for closely similar
reasoning regarding bootstrap percolation on Bethe lattices. Start with a tree of
Lþ 1 levels, with up-spins assigned randomly with probability c. Beginning with the
bottom layer, where the spins are frozen since they have no facilitating neighbours,
move upwards through the tree and flip up all down-spins that are mobile. Call
pðc;LÞ the probability that the spin at the top node is up at the end of this procedure.
This can happen either because the spin was originally up (probability c) or, if it was
originally down, because the two spins below have ended up in the up state. Since
these two spins have independent trees of depth L below them, one has the recursion

pðc;LÞ ¼ cþ ð1� cÞp2ðc;L� 1Þ: ð57Þ
For large tree depth L, pðc;LÞ thus tends to a stable fixed point pðc;L!1Þ of this
recursion; which one is determined by the starting value pðc; 0Þ ¼ c. This gives
pðc;L!1Þ ¼ 1 for c � c� ¼ 1=2 and pðc;L!1Þ ¼ c=ð1� cÞ for c < c�. The
fraction of permanently frozen spins near the top of the tree, 1� p2ðc;L!1Þ,
thus increases smoothly from zero as c decreases below c�. Above c�, on the other
hand, one has pðc; lÞ � 1 in all layers l of the tree except for a finite number at the
bottom. This means that the configuration with all up-spins can be reached with
probability close to one and (this part of) the system is effectively irreducible.

For kinetically constrained lattice gas models (section 3.3), the question of
irreducibility is normally cast somewhat differently: one asks whether there are
any particles that remain permanently blocked in their initial positions in all
configurations that are accessible via any sequence of allowed transitions, i.e. in
all configurations within the relevant partition of configuration space. The dynamics
can then be defined as effectively irreducible if the fraction of typical configurations
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that contain blocked particles vanishes in the thermodynamic limit. The triangular
lattice gas [113] and the hard-square lattice gas [173, 205, 206] have in fact been
proved to be effectively irreducible in this sense, by techniques similar to the ones
outlined above.

A subtlety in determining which particles in a lattice gas are permanently blocked
is that a particle may be blocked by a sufficiently large number of neighbouring
particles which themselves are not permanently blocked. One therefore often focuses
on a subset of blocked particles, the so-called ‘backbone’ [88]. This contains all
particles which are permanently frozen by other frozen particles. Particles in the
backbone remain frozen even when all mobile particles are removed; the backbone
can therefore be determined simply by iteratively removing all mobile particles from
the system. For the KA model this procedure is closely related to bootstrap
percolation; see section 5.1 for further details. One may of course be concerned
that the backbone ‘misses’ a significant number of permanently blocked particles,
but simulations for the triangular lattice gas [113] suggest that this is not so: the
number of particles in the backbone was found to be a very good approximation to
the number of particles that remained blocked in long simulations of the actual
dynamics.

4.2. Numerical simulations
As defined in section 3.1, the dynamics of most KCMs can be described by a

Markovian dynamics in continuous time as expressed by the master equation (23).
While it is possible to simulate this directly (see below), for a ‘quick and dirty’
simulation it is often convenient to have an equivalent discrete-time formulation. We
start by outlining how the two are related. To be concrete, consider f ; d-SFMs where
the only possible transitions between configurations are spin flips. The transition
rates can then be written in the general form wðn! n0Þ ¼

P
i wiðnÞ�n0;Fin where

wiðnÞ � wðn! FinÞ and Fi is the operator that flips spin i, Fin ¼ ðn1; . . . ;
1� ni; . . . ; nNÞ. The master equation (23) then reads

@

@t
pðn; tÞ ¼

X
i

½wiðFinÞpðFin; tÞ � wiðnÞpðn; tÞ�: ð58Þ

If any of the spin-flip rates wiðnÞ are greater than one, let � be the inverse of the
largest rate, otherwise set � ¼ 1; the rescaled rates then obey 0 ! �wiðnÞ ! 1. Now
consider the following discrete-time Monte Carlo dynamics where time is advanced
in steps of �=N. At each step one of the N possible transitions out of the current
configuration n is chosen randomly; since we are dealing with spin-flips, this just
means picking a random spin to flip, ni say. The proposed transition is accepted with
probability �wiðnÞ, while with probability 1� �wiðnÞ it is rejected and the system
remains in its current configuration n. The Markov equation for this process is

pðn; tþ �=NÞ ¼ 1

N

X
i

�wiðFinÞpðFin; tÞ þ ½1� �wiðnÞ�pðn; tÞf g

or

N

�
pðn; tþ �=NÞ � pðn; tÞ½ � ¼

X
i

wiðFinÞpðFin; tÞ � wiðnÞpðn; tÞ½ �: ð59Þ
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For N !1 this becomes equivalent to (58), so that the discrete and continuous time
descriptions can be used interchangeably. In general, the discrete time dynamics is
obtained by randomly selecting, at each step, one of the possible transitions—spin
flips, or moves of a particle to a neighbouring site in the lattice gas models of
section 3.3—and accepting the proposed move with probability proportional to the
continuous time rate for the transition.

A standard Monte Carlo simulation in discrete time is very simple to set up, and
often useful for initial exploration of the dynamics of KCMs. At low temperatures,
where relaxation timescales can become very large, such an approach quickly runs
into problems and more sophisticated approaches are necessary [209–211]. The key
difficulty is that in KCMs many of the transitions that are possible in principle are
forbidden by the kinetic constraints, so that a standard Monte Carlo simulation
would reject almost all proposed moves. One way around this problem is a technique
known variously as rejection-free, continuous-time, faster-than-the-clock or Bortz–
Kalos–Lebowitz [212] simulation. In a continuous-time description, let wi � wiðnÞ be
the rates for all possible transitions out of the current configuration n. It is then easy
to show that the time interval �t to the next transition is exponentially distributed
with a rate equal to the sum wtot ¼

P
i wi of all rates, i.e. Pð�tÞ ¼ wtot expð�wtot�tÞ.

Values of �t from this distribution can easily be sampled, so that one can go directly
to the next ‘successful’ transition. It then remains to be determined which transition
actually occurs; one easily derives that the probability for the first transition to be the
one with rate wi is wi=wtot. Sampling from this distribution can be the rate-limiting
step in the algorithm, and so it is often useful to devise efficient methods for this. An
example is provided by recent simulations of the East model [213]: here the positions
of all mobile spins in the chain were stored in a binary tree which can be quickly
searched to determine which particular spin should be flipped in any given transition.

4.3. Exact solutions
In this section we give examples of techniques that have been used to solve

aspects of the dynamics of KCMs exactly. In the cases discussed, the simplifying
feature that makes such exact solutions possible is either a restriction to dynamics at
T ¼ 0, or the mean-field character of the dynamics as in the Backgammon and
oscillator models.

One of the models whose zero-temperature dynamics can be solved exactly is the
1; 1-SFM [214, 215]. If the system is quenched at t ¼ 0 from some initial state to one
with equilibrium up-spin concentration ceq ¼ 1=ð1þ e�Þ, the Glauber dynamics
transition rates for t > 0 are, from (27) and (30)

wðni ! 1� niÞ ¼ ðni�1 þ niþ1Þ½ð1� ceqÞni þ ceqð1� niÞ�: ð60Þ

Now, from the master equation (23), one easily deduces that the average of a general
observable �ðnÞ evolves in time according to

@

@t
�ðnÞh i ¼

X
i

wðni ! 1� niÞ½�ðFinÞ � �ðnÞ�h i ð61Þ

where Fin is the configuration n with spin ni flipped to 1� ni. Applying this to the
ðkþ 1Þ-spin correlation functions Dk ¼ ð1=NÞ

P
j nj � � � njþk
� �

one finds, in the zero-
temperature limit where ceq ! 0, the closed hierarchy
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@

@t
Dk ¼ �2ðkDk þDkþ1Þ ð62Þ

which can be solved by introducing the generating function GðxÞ ¼
P1

k¼0Dkx
k=k!.

Not surprisingly, since the T ¼ 0 dynamics is strongly reducible—up-spins that are

isolated at t ¼ 0 can never flip, for example—the results for t!1 depend strongly

on the initial conditions. For a given initial up-spin concentration c0 one finds, for

example, that cðtÞ � D0ðtÞ converges to c0 expð�c0Þ for t!1, rather than to the

equilibrium value ceq ¼ 0. It was later shown [55] that exactly the same solution

applies to the asymmetric 1; 1-SFM with transition rates (32), except that the factor 2

in (62) is replaced by 1þ a. This has also been confirmed [109] via a mapping to

equivalent models of (random or cooperative) sequential adsorption [216]. Looking

back at (60), one sees that the T ! 0 limit corresponds to neglecting processes

occurring with rates ceq; the above solution for the dynamics will therefore also

give the correct results for non-zero temperatures on timescales shorter than

1=ceq � expð�Þ.
A hierarchy very similar to (62) has been used to solve exactly [108] the T ¼ 0

dynamics of a Glauber Ising chain in zero field, when spin flips that leave the energy

unchanged are forbidden [106]. The only possible flips are then those causing two

neighbouring domain walls to annihilate. After a mapping to domain wall variables

via ni ¼ ð1� �i�iþ1Þ=2, such moves correspond to two neighbouring up-spins

(ni ¼ 1) flipping down simultaneously, and the correlation functions Dk as defined

above obey closed equations that differ only by numerical factors from (62). In

particular, the domain wall concentration c ¼ nih i converges to c0 expð�2c0Þ from an

initial equilibrium state with c ¼ c0. This result can also be obtained from a mean-

field approach which becomes exact in one dimension [107].

The exact solution of the T ¼ 0 dynamics of the asymmetric 1; 1-SFM, described

above, can actually be pushed further to calculate exactly the probability Pðc;TÞ that
the system will end up in a metastable configuration with up-spin concentration c if

quenched to zero-temperature from an equilibrium state at some non-zero T . From

this an appropriately defined entropy of metastable configurations can be obtained

since for large systems Pðc;TÞ will be exponential, Pðc;TÞ � exp½N�ðc;TÞ�. In [55]

the quadratic expansion of �ðc;TÞ around its maximum with respect to c was

obtained, corresponding to a Gaussian approximation to Pðc;TÞ; more recently the

full form of �ðc;TÞ has also been found [109]. As before, the analysis also applies to

the extreme limits of the asymmetric 1; 1-SFM, the East model and the conventional

1; 1-SFM.

Another example where dynamical equations can be exactly solved is the

Backgammon model [150–153] introduced in section 3.7.2. Most calculations have

focused on the case where the number of boxes is equal to the number of particles,

M ¼ N. One defines PkðtÞ as the probability that a randomly selected box contains k

particles. For models such as Backgammon which are in the Ehrenfest class, this

probability depends on time through a dynamical equation of the form

@PkðtÞ
@t

¼ f ðPk;Pkþ1;Pk�1;P0Þ ð63Þ

where f is a linear function of its arguments with coefficients depending on P0. This

set of equations constitutes a closed hierarchy of nonlinear equations, the non-
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linearity appearing only through the time-dependent coefficient P0ðtÞ. For instance,
the equation for the energy E=M ¼ �P0 is given by

@P0ðtÞ
@t

¼ P1ð1� P0Þ � e��P0ð1� P0Þ: ð64Þ

The full hierarchy can be solved by defining a generating function Gðx; tÞ ¼P1
k¼0 x

kPkðtÞ and solving the resulting partial differential equation [152]. At T ¼ 0
one finds [153]

�P0ðtÞ ¼
EðtÞ
M

¼ �1þ 1

ln tþ lnðln tÞ ð65Þ

up to subdominant corrections; this solution can also be obtained using an adiabatic
approximation [150] (see section 4.5) which becomes exact for long times and at
T ¼ 0. At small but non-zero temperature, the energy relaxation crosses over to
exponential behaviour on a timescale whose dominant dependence on T is an
Arrhenius (activated) law. Similar generating function techniques have generally
been very useful for urn models, e.g. in the calculation of correlation and response
functions [152–155, 160]. A hierarchy similar to (63) has also been derived in a
simplified version of the Backgammon model [158].

Closed hierarchies of dynamical equations can also be derived for oscillator
models. For the spherical Sherrington–Kirkpatrick model [165, 166] the technique is
very similar to that for the Backgammon model; for what we called the oscillator
model proper in section 3.7.3 the situation is even simpler since it is possible to show
that the hierarchy closes already at the lowest level, yielding an exact autonomous
equation for the energy E [167]. This is similar in form to the result of an adiabatic
approximation for the Backgammon model (see section 4.5)—which would be exact
for the oscillator model—and reads

@E

@t
¼ �E3=2 expð�C=EÞ ð66Þ

where C is a constant. As a result, the energy EðtÞ again decays to its ground state
value E ¼ 0 with an asymptotically logarithmic dependence on time.

4.4. Mean-field approximations
In this section we collect some mean-field approaches to the dynamics of KCMs;

these are normally based on deriving closed dynamical equations by an appropriate
decoupling of correlations.

As an example of naive mean-field theory, which neglects all correlations, we
paraphrase here the analysis of [217] for the relaxation of the up-spin concentration
in the f ; d-SFM. As usual, we restrict ourselves to the non-interacting case J ¼ 0; a
non-zero value of J has negligible effects in the interesting regime of low up-spin
concentrations. For Glauber dynamics (30), the spin-flip rates (27) are

wðni ! 1� niÞ ¼
X

j1 6¼���6¼jf
nj1 � � � njf ½ð1� ceqÞni þ ceqð1� niÞ�: ð67Þ

Equation (61) then gives for the evolution of the local up-spin concentrations
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@

@t
nih i ¼ wðni ! 1� niÞð1� 2niÞh i ¼

X
j1 6¼���6¼jf

nj1 � � � njf ½�ð1� ceqÞni þ ceqð1� niÞ�
� �

:

ð68Þ

A naive mean-field approximation decouples the average of the spin-product on the
right-hand side into single-spin averages. If the system is started in equilibrium, with
nih i uniform across the system, then this will remain the case for all times and one
obtains a simple evolution equation for c ¼ nih i

@c

@t
/ c f ðceq � cÞ: ð69Þ

(The proportionality factor is the number of terms in the sum (68), namely
ð2dÞ!=ð2d � f Þ!:) Linearizing (69) around equilibrium c ¼ ceq then gives an estimate
of the relaxation time, � � c�feq � expðf�Þ. It is clear, however, that this approxima-
tion only takes cooperativity between spins into account very crudely. Accordingly,
it fails to predict the superactivated relaxation time increase that occurs in f ; d-SFMs
for f � 2; see section 3.1.2. The mean-field treatment can be extended to analyse the
relaxation of spatial fluctuations of nih i [217] but correlation effects due to the kinetic
constraints are then still neglected.

More sophisticated mean-field approximations result if some non-trivial correla-
tions are kept. Consider the relaxation of a local up-spin concentration nih i in the
East model, for example. (In equilibrium this relaxation, for a spin that is in the up-
state at t ¼ 0, also determines the spin autocorrelation function; see the discussion
after (114) below.) From the transition rates (31) and the general result (61) one sees
that the time evolution of nih i is coupled to a hierarchy of correlations nini�1h i,
nini�2h i, nini�1ni�2h i, etc. [79]. If one truncates by neglecting all correlation functions
from a given order onwards, approximations to the autocorrelation function can be
obtained by solving the resulting system of linear equations. As explored in other
contexts, e.g. the triangular lattice gas [113, 118], such approximations can also be
viewed as applications of the projection technique to a space of observables spanned
by spin products of a given order, with the memory terms neglected; see section 4.7.
Careful selection of the relevant set of observables can significantly improve the
results. For example, to calculate the relaxation of a given spin ni in the East model,
Eisinger and Jäckle considered the ‘cluster probabilities’ of having to the left of ni a
domain of k� 1 down-spins followed by an up-spin and m� 1 further spins in
arbitrarily specified states. Retaining these probabilities for some fixed cluster length,
e.g. m ¼ 6, and all integer values k ¼ 1; 2; . . ., they found good fits to simulated
relaxation functions down to ceq ¼ 0:2. This approximation also revealed an
interesting relation to defect-diffusion models, with the clusters obeying an effective
diffusion equation with drift towards the spin ni.

One can try to improve further on such truncation approximations by taking
neglected correlations into account through an ‘effective field’ or ‘effective medium’.
Taking again the East model as an example, Jäckle and Eisinger [79, 218] proposed
the following procedure for approximating the spin autocorrelation function:
Suppose the state of spin n0 was known as a function of time t, and let p be the
vector of probabilities for the 2l configurations of the l spins to the right.
Anticipating the notation of section 4.7, the master equation for p can be written
as @tpðtÞ ¼ LT

1 pðtÞ þ n0ðtÞLT
2 pðtÞ with constant matrices LT

1 and LT
2 ; the second

term here describes transitions of spin n1, which are possible only if its left neighbour
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is up, i.e. n0 ¼ 1. If one Laplace transforms and approximates the effect of
n0ðtÞ by a frequency-dependent mobility �ðzÞ, this becomes zpðzÞ � pðt ¼ 0Þ ¼
LT
1 pðzÞ þ �ðzÞLT

2 pðzÞ. Solving this for an appropriate initial distribution pð0Þ the
autocorrelation function of spin nl can be determined; the value of �ðzÞ can then be
deduced from the self-consistency requirement that the same correlation function is
obtained for l ¼ 1 and l ¼ 2. Somewhat surprisingly, the resulting approximation is
similar in form to a mode coupling approximation; see (108). The same approach has
also been applied to the North-East and ð3; 2Þ-Cayley tree models.

4.5. Adiabatic approximations
In this section we outline some applications of adiabatic approximations to

KCMs. These approximations are based on the assumption that a separation of
timescales occurs in the dynamics, allowing a description in terms of separate fast
and slow modes. (More generally, a whole hierarchy of sets of modes could occur, all
evolving on well-separated timescales.) The key idea is then to assume that the slow
modes evolve so gradually that the fast modes can always equilibrate relative to the
instantaneous configuration of the slow modes. Even if a timescale separation does
exist, the model-dependent choice of slow and fast modes is not always obvious. It
requires some intuition about the physical mechanisms underlying the occurrence of
well-separated timescales; in this sense, a more complete understanding of the
validity of adiabatic approximations should ultimately be helpful in clarifying which
features of glassy dynamics are universal and which are system-dependent.

We illustrate adiabatic approximations in this section for two models, the East
model and the Backgammon model. In the East model, the nature of slow and fast
modes is relatively easy to determine [219]. Transitions out of any configuration that
contains at least one mobile up-spin will take place with a ‘fast’ rate of order unity,
while transitions out of all other configurations only happen with rates of OðceqÞ.
For small ceq, i.e. low temperatures T , this gives a natural separation into fast and
slow modes. Mathematically, the latter are the occupation probabilities pðn; tÞ of all
configurations with no mobile up-spins, i.e. with all up-spins surrounded by down-
spins, while the fast modes are the remaining pðn; tÞ. To eliminate the fast modes, one
sets their time derivatives in the master equation (23) to zero. This is the adiabatic
approximation: fast modes equilibrate in the ‘environment’ fixed by the instan-
taneous values of the slow modes. One obtains in this way an effective master
equation for the slow degrees of freedom. This should in principle give a description
of the dynamics which becomes exact for low temperatures, but because of the large
number of fast modes involved it has been explicitly worked out only for very small
system sizes [219]. An interesting refinement of this method would be to classify
all slow configurations according to the number k (say) of down-spins that need to
be flipped up before any of the original up-spins can flip. Since such relaxation
processes have an energy barrier of k and so require times of order expðk=TÞ � c�keq
(see also sections 3.1.2 and 5.4.1), configurations with k ¼ 1 relax much more quickly
than those with k � 2; within the set of slow modes they are much faster than all
others and can therefore again be adiabatically eliminated. This process could in
principle be iterated for larger k to give an effective master equation for the dynamics
on a hierarchy of increasingly long timescales.

As an aside, we mention briefly a recent analysis of KCMs on hierarchical
structures [123, 124] which is similar in spirit. As explained in section 3.4, in these
models flips of spins in any given level l are facilitated by spins in level l � 1 below.
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The simplest adiabatic approximation is that the typical relaxation timescales on the
different levels, which increase as one moves up in the hierarchy, are widely
separated; for the analysis of level l one can then assume equilibrium in level
l � 1. The resulting equations can model some non-equilibrium effects typical of
glassy systems, especially with regards to the effect of cyclic heating and cooling, but
are too simple to describe strongly cooperative behaviour.

As a second example application of the adiabatic approximation, we consider the
Backgammon model [150, 151]; see section 3.7.2. Here a timescale separation occurs
because the probabilities Pk for a randomly chosen box to contain k particles evolve
very differently for k ¼ 0 and k > 0. P0 ¼ �E=M is the density of empty boxes and
increases only very slowly with time. On the other hand, the different configurations
in the non-empty boxes are explored rapidly, so that the probabilities Pk (k > 0)
quickly reach an equilibrium state compatible with the given value of P0. Consider
now the evolution equation (64) for P0 (see section 4.3), which for T ¼ 0 reads
@P0=@t ¼ P1ð1� P0Þ. The adiabatic approximation replaces P1 on the right-hand
side by the value P1 ¼ P1ðP0Þ that it would have in equilibrium at the given P0; in
other words, P1ðP0Þ is the value of P1 in a microcanonical ensemble with energy
E ¼ �MP0. Solving the resulting closed equation @P0=@t ¼ P1ðP0Þð1� P0Þ then
gives the exact [153] long-time evolution of P0ðtÞ, as given earlier in (65). The
adiabatic approximation thus actually provides an exact description of the asymp-
totic dynamics for the Backgammon model at T ¼ 0. Notice that associated with the
effective constant-energy (microcanonical) equilibrium ensemble assumed by the
adiabatic approximation is a corresponding effective temperature. This illustrates the
close connection between adiabatic dynamics and the existence of out-of-equilibrium
FDT violations (see sections 2.3 and 5.4.3); a theoretical framework for this
connection is described in detail in [22]. Finally, let us note briefly that adiabatic
methods have also been applied to oscillator models. We already mentioned in
section 3.7.3 that for the oscillator model proper the adiabatic approximation is
exact; its disordered analogue, the spherical Sherrington–Kirkpatrick model [165,
166], requires a more sophisticated analysis involving two slow modes.

4.6. Methods for one-dimensional models
In one dimension, additional techniques are available for analysing kinetically

constrained models. As an example, we describe here an application to the East
model [220, 221] of what is variously known as the method of interparticle
distribution functions [222], the bag model [223] or the independent interval
approximation [224].

Consider a quench at t ¼ 0 from an equilibrium state at high temperature,
with up-spin concentration � 1=2, to a low temperature T corresponding to
ceq � expð��Þ � 1. The up-spin concentration cðtÞ will gradually decrease towards
ceq, with individual up-spins becoming increasingly widely separated. It therefore
makes sense to describe the system in terms of domains. As shown by the vertical
lines in . . . 1j0001j1j1j01j001j1j1j01j0 . . ., it is useful to define a domain as consisting
of an up-spin and all the down-spins that separate it from the nearest up-spin to the
left. The length l of a domain then also gives the distance between the up-spin at its
right edge and the nearest up-spin to the left. In equilibrium, the distribution of
domain lengths and its average are

PeqðlÞ ¼ ceqð1� ceqÞl�1; �lleq ¼ 1=ceq: ð70Þ
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Now for small ceq, the equilibrium probability of finding an up-spin within a chain
segment of finite length l is OðlceqÞ and tends to zero for ceq ! 0 at fixed l. In this
limit the flipping down of up-spins therefore becomes irreversible to leading order.
The dynamics of the system becomes one of coarsening by coalescence of domains:
an up-spin that flips down merges two neighbouring domains into one large domain.
During such an irreversible coarsening process, no correlations between the lengths
of neighbouring domains can build up if there are none in the initial state. For the
present model the equilibrated initial state consists of domains independently
distributed according to (70). Therefore an independent interval approximation
for the dynamics, defined as neglecting correlations between domains, becomes exact
in the low-temperature limit. Even when not exact, the independent interval
approximation can give very accurate results, e.g. recently for a ‘driven’ version of
the East model [225].

The coarsening dynamics of the East model is unusual in that it involves a
hierarchy of timescales. Consider the typical rate �ðlÞ at which domains of length l
disappear by coalescing with their right neighbours. Because domain coalescence
corresponds to the flipping down of up-spins, �ðlÞ can also be defined as follows.
Take an open spin chain of length l, with a ‘clamped’ up-spin (n0 ¼ 1) added on the
left. Starting from the configuration 10 . . . 01, ��1ðlÞ is the typical time needed to
reach the empty configuration 10 . . . 00 where spin nl has ‘relaxed’; the relaxation
process can be thought of as a path connecting the two configurations. Call the
maximum number of excited spins (up-spins except n0) encountered along a path its
height h. One might think that the relaxation of spin nl needs to proceed via the
configuration 11. . . 1, giving a path of height l. In fact, the minimal path height hðlÞ
is much lower and given by [220]

hðlÞ ¼ kþ 1 for 2k�1 < l ! 2k ð71Þ
where k ¼ 0; 1; . . . This result is easily understood for l ¼ 2k [218, 219]: to relax the
2k-th spin n2k , one can first flip up n2k�1 and use it as an anchor for relaxing n2k . The
corresponding path is (with n2k�1 and n2k underlined) 1 . . . 0 . . . 1 ! 1 . . . 1 . . . 1 !
1 . . . 1 . . . 0 ! 1 . . . 0 . . . 0 and reaches height hð2kÞ ¼ hð2k�1Þ þ 1; the þ1 arises
because the anchor stays up while the spin at a distance 2k�1 to its right is relaxed.
Continuing recursively, one arrives at hð2kÞ ¼ hð1Þ þ k; but hð1Þ ¼ 1 because the
only path for the relaxation of n1 is 11! 10. A general proof [220] of (71) can be
constructed by showing that the ‘longest’ configurations that can be reached by
flipping up no more than h spins have an up-spin at site i ¼ 2k � 1; see also [226]
where bounds on the number of configurations reachable at or below height h are
derived.

The result (71) implies that coarsening in the East model proceeds in a
hierarchical fashion. The energy barrier for the relaxation of spin nl is hðlÞ � 1;
the �1 comes from the one excited spin (nl) in the initial configuration. The rate for
this relaxation process is �ðlÞ ¼ Oðexp½�ðhðlÞ � 1Þ=T �Þ ¼ OðchðlÞ�1eq Þ. For ceq ! 0 the
dynamics thus divides into stages distinguished by k ¼ hðlÞ � 1 ¼ 0; 1; . . . During
stage k, the ‘active’ domains with lengths 2k�1 < l ! 2k disappear, on a timescale
Oð��1ðlÞÞ ¼ Oðc�keq Þ; different stages can be treated separately because the relevant
timescales differ by factors of 1=ceq. The distribution of inactive domains (l > 2k)
changes only because such domains can be created when smaller domains coalesce.
Combining this with the (exact) independent interval approximation discussed
above, one finds for l > 2k
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@

@t
Pðl; tÞ ¼

X
2k�1<l0!2k

Pðl � l0; tÞ � @Pðl
0; tÞ

@t

� �
: ð72Þ

The term in square brackets is the rate at which active domains disappear; l0 ! 2k

because inactive domains do not disappear. This equation can be integrated from the
beginning to the end of each stage k, by introducing generating functions and using
the fact that all active domains have disappeared at the end of the stage. The end
result [220] is an exact expression for the domain length distribution Pðl; t!1Þ at
the end of stage k, which we write as Pkþ1ðlÞ, in terms of the distribution PkðlÞ at the
end of the previous stage. Figure 18 shows the results for the case where P0ðlÞ is the
equilibrium distribution (70) for up-spin concentration 1=2. Not unexpectedly, a
scaling limit is approached for large k: the rescaled distributions ~PPkðxÞ ¼ 2k�1PkðlÞ,
with scaled domain size x ¼ l=2k�1, converge to a limiting distribution ~PPðxÞ which is
independent of the initial condition and can be calculated explicitly. The average
domain length in the scaling limit is given by �llk ¼ 2k�1�xx, with �xx ¼ expð�Þ ¼ 1:78 . . .
where � is Euler’s constant [220]. In the time domain this leads to anomalous
coarsening with a temperature-dependent exponent, since stage k is completed on a
timescale t � c�keq � expð�k=TÞ � exp½� ln �ll=ðT ln 2Þ� and thus �ll � tT ln 2. (Such
anomalous coarsening has also been found in other models of non-equilibrium
dynamics, often without detailed balance; see [221] for examples.) By extrapolating
the coarsening law to the equilibrium domain length �lleq � expð1=TÞ, one then also
finds that for T ! 0 the dominant divergence of the equilibration time for the East
model is � � exp½1=ðT2 ln 2Þ�, i.e. an EITS law (3).
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Figure 18. Coarsening in the East model after a quench from the equilibrium state with
up-spin concentration 1=2. Shown are the domain length distributions PkðlÞ at the
end of the various stages of the low-T coarsening dynamics. Open symbols and
lines: theoretical results, for k ¼ 0 (&; initial condition), 1 (&), 2 ('), 3 (4). Full
symbols: simulation results for a chain of length N ¼ 215 and ceq ¼ 10�4 (k ¼ 1; 2)
and ceq ¼ 10�3 (k ¼ 3). Inset: scaled predictions 2k�1Pkðl ¼ 2k�1xÞ versus. x for
k ¼ 1; . . . ; 8. Bold line: predicted scaling function. From [220]. Copyright American
Physical Society.



4.7. Projection and mode-coupling techniques
Much of the work on the stationary dynamics of KCMs makes use of so-called

projection techniques (section 4.7.1), which attempt to isolate relevant slow degrees
of freedom from the less relevant fast variables. The latter end up contributing via
‘memory functions’ and in section 4.7.2 we review the definition of one particular
memory function which is regarded as most suitable for the analysis of systems with
stochastic dynamics. The mode-coupling approximation itself is discussed in
section 4.7.3.

4.7.1. Projection approach
The basic ideas of the projection approach are due to Mori [227]; for a modern

textbook exposition see, e.g. [228]. The key aim of the formalism is to derive exact
dynamical equations for a selected set of ‘relevant’ variables, with the contributions
from the remaining ‘irrelevant’ variables isolated in a form suitable for further,
approximate treatment.

Consider a system governed by Markovian dynamics in continuous time, with a
set of S configurations n. All models that we discuss in this review are of this form;
for the case of an SFM, for example, n would be the vector formed of all the spin
variables ni and range over S ¼ 2N configurations. The basic equation governing the
dynamical evolution is thus the master equation (23)

@

@t
pðn; tÞ ¼

X
n0
wðn0 ! nÞpðn0; tÞ �

X
n00
wðn! n00Þpðn; tÞ ¼

X
n0
LTðn; n0Þpðn0; tÞ ð73Þ

if one defines the S � S matrix L (the Liouvillian operator) with elements

Lðn0; nÞ ¼ LTðn; n0Þ ¼ wðn0 ! nÞ � �n0;n
X
n00
wðn! n00Þ: ð74Þ

If pðn; tÞ is viewed as a time-dependent vector pðtÞ with S entries, then
@pðtÞ=@t ¼ LTpðtÞ with the formal solution

pðtÞ ¼ eL
Ttpð0Þ: ð75Þ

An observable of the system is just a function aðnÞ, which can again be regarded as a
vector. It makes sense to define a scalar or inner product on this space of vectors
which is not Euclidean but instead reflects the equilibrium correlations between
observables,

ða; bÞ � abh i ¼
X

n

aðnÞbðnÞpeqðnÞ ð76Þ

where peqðnÞ is the equilibrium distribution over configurations. Strictly speaking (76)
is a disconnected correlation, and we should subtract ah i bh i (compare (7)), but for
simplicity one assumes that any non-zero equilibrium averages have been subtracted
off from all observables, such that ah i ¼ 0 etc. In terms of the scalar product (76),
time-dependent correlation functions take the simple form

CabðtÞ ¼
X
n0
bðn0Þpðn0; tjn; 0ÞaðnÞpeqðnÞ

¼
X
n0

eLt
� �

ðn; n0Þbðn0ÞaðnÞpeqðnÞ ¼ ða; eLtbÞ: ð77Þ
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Here pðn0; tjn; 0Þ is the probability that the system is in configuration n0 at time t if it
was in configuration n at time 0; from (75) this is the ðn0; nÞ-element of the matrix
expðLTtÞ, hence the ðn; n0Þ-element of the matrix expðLtÞ. From (77), if one defines
for any observable b its value at time t as

bðtÞ ¼ eLtb ð78Þ
then simply CabðtÞ ¼ ða; bðtÞÞ. Intuitively, the element bðn; tÞ of the vector bðtÞ can be
interpreted as the average value of b at time t if the system started off in
configuration n at time t ¼ 0.

Now consider a set of ‘relevant’ observables ai. For simplicity, assume that they
all have unit variance and are uncorrelated in equilibrium, i.e. ðai; ajÞ ¼ �ij; the
generalization to the case of arbitrarily correlated observables will be given below.
Each aiðtÞ obeys the equation of motion (78); if we Laplace transform to
aiðzÞ ¼

Ð1
0

dt aiðtÞ expð�ztÞ this can be written as

zaiðzÞ � ai ¼ LaiðzÞ ¼ Lðz� LÞ�1ai ¼ ðz� LÞ�1Lai: ð79Þ
The same symbol for aiðtÞ and its Laplace transform aiðzÞ is used here since the
argument makes clear which one is meant; ai continues to denote the value of the
observable at time t ¼ 0. The key idea is now to project the equations of motion (79)
on to the subspace of observables spanned by the ai; since the ai are orthonormal, the
appropriate projector acts as

Pb ¼
X
i

aiðai; bÞ: ð80Þ

The orthogonal projector is defined as Q ¼ 1� P. P and Q obey the usual relations
for projectors, e.g. P2 ¼ P, Q2 ¼ Q, PQ ¼ QP ¼ 0. They are also self-adjoint with
respect to the inner product, e.g. ða;PbÞ ¼ ðPa; bÞ since both expressions giveP

iða; aiÞðai; bÞ.
To bring the projected equations into a convenient form, one now writes

ðz� LÞ�1 ¼ ðz� PL�QLÞ�1 in (79) and applies the matrix equality

ðA� BÞ�1 ¼ ðA� BÞ�1BA�1 þ A�1 ð81Þ
to A ¼ z�QL, B ¼ PL to get

zaiðzÞ � ai ¼ ðz� LÞ�1PLai þ ðz� LÞ�1PLðz�QLÞ�1QLai þ ðz�QLÞ�1QLai:
ð82Þ

Carrying out the projections implied by P results in

zaiðzÞ � ai ¼
X
j

ajðzÞ�ji þ
X
j

ajðzÞðaj;Lðz�QLÞ�1QLaiÞ

þ ðz�QLÞ�1QLai ð83Þ

where the rate matrix � has elements �jk ¼ ðaj;LakÞ. Transforming back to the time
domain and using Q2 ¼ Q to show that eQLtQ ¼ eQLQtQ ¼ QeQLQtQ results in the
desired projected equation of motion,

@

@t
aiðtÞ ¼

X
j

ajðtÞ�ji þ
X
j

ðt
0

dt0 ajðt0ÞMjiðt� t0Þ þ riðtÞ ð84Þ

Here
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MjkðtÞ ¼ ðaj;LQeQLQtQLakÞ ð85Þ

is a time-dependent memory matrix (also called a memory kernel) and

riðtÞ ¼ eQLQtri; ri ¼ QLai ð86Þ
is the so-called random force. Equation (84) is in the form of a generalized Langevin
equation. The first term on the right-hand side leads to an exponential decay of the
observables towards zero (the matrix �ki has only non-positive eigenvalues, because
the same is true for L); the second term represents a generalized friction term with
the memory kernel MkiðtÞ. The name random force is used for riðtÞ because it
is always orthogonal to the space of observables being projected on to: the
definition (86) implies PriðtÞ ¼ 0. In particular ðaj ; riðtÞÞ ¼ 0 so that the random
forces are uncorrelated with the initial values of all the observables considered. Using
this property of the random force, taking a product of (84) with the different ak also
gives the desired equation for the correlation functions CijðtÞ ¼ ðai; ajðtÞÞ:

@

@t
CkiðtÞ ¼

X
j

CkjðtÞ�ji þ
X
j

ðt
0

dt0Ckjðt0ÞMjiðt� t0Þ ð87Þ

or, in matrix form and after Laplace transform, bearing in mind that the initial
condition is Ckiðt ¼ 0Þ ¼ �ki,

CðzÞ ¼ ðz� ��MðzÞÞ�1: ð88Þ
In the case of general observables with arbitrary equilibrium correlations this result
generalizes to

CðzÞ ¼ CðzC � ��MðzÞÞ�1C ð89Þ
where C (in our notation, see after (79)) denotes the correlation matrix at time t ¼ 0,
whose elements Cij � Cijðt ¼ 0Þ ¼ ðai; ajÞ are the equilibrium correlations.

Importantly, in systems with detailed balance one can show that the memory
matrix is the correlation function of the random force. This follows from the fact
that for such systems, the operator L is self-adjoint. (The detailed balance con-
dition wðn0 ! nÞpeqðn0Þ ¼ wðn! n0ÞpeqðnÞ implies from (74) that Lðn0; nÞpeqðn0Þ ¼
Lðn; n0ÞpeqðnÞ for all n and n0; multiplying by aðnÞbðn0Þ and summing over n and n0

gives the desired result ðLa; bÞ ¼ ða;LbÞ.) Using also the fact that Q is self-adjoint,
the definition (85) can thus be written as

MjkðtÞ ¼ ðQLaj ; eQLQtQLakÞ ¼ ðrj; rkðtÞÞ: ð90Þ

Using similar arguments one also shows that, for systems with detailed balance, the
correlation function matrix, frequency matrix and memory function matrix are all
symmetric.

The result (90) implies, in particular, that one can treat MðzÞ in the same way as
CðzÞ, expressing it in terms of an appropriate frequency matrix �2ðzÞ and a new,
second-order memory function M2ðzÞ. This gives for the correlation function

CðzÞ ¼ C½zC � ��M zM � �2 �M2ðzÞð Þ�1M��1C ð91Þ
where M is the value of the memory matrix at t ¼ 0, Mij ¼ ðQLai;QLajÞ. This
approach implicitly tracks the motion of the random forces ri, and so it is not
surprising that the same result for CðzÞ would be obtained from the first-order
memory function if the space of relevant observables was enlarged to include
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the ai as well as the ri (or, equivalently, the ai and Lai; either way one projects
onto the same space of observables). This process can be iterated to obtain a
continued fraction expression for C in terms of memory functions of increasing
order [229].

4.7.2. Irreducible memory function
The projection formalism, while formally exact, hides all complexities of the

dynamics in the memory functions, and one needs to find approximate ways of
calculating these in order to make the approach useful. In applications to
microscopic models of dense supercooled liquids (systems of classical particles
obeying Newton’s equations), the relevant ‘slow’ observables ai are normally
chosen as Fourier modes of the particle number density fluctuations, and the
dynamics is deterministic and time-reversible. Approximations (such as mode-
coupling, see below) are normally applied to the second-order memory function.
The resulting models for the correlation functions have been much studied [16–18]
and predict, e.g. dynamical transitions—signalled by the divergence of the longest
relaxation time—as external control parameters such as the overall particle density
are varied.

For models with stochastic dynamics and detailed balance, it is less obvious
which memory function to choose as the starting point for approximations. Above
we encountered the first- and second-order memory function; Kawasaki [230, 231]
suggested another, so-called irreducible memory function, based on earlier work on
the dynamics of colloidal suspensions [232]. The idea is to decompose the operator
QLQ that governs the time evolution of the random force into two parts:

QLQ ¼ L0 þ L1: ð92Þ
Here L0 is defined by its action on an arbitrary vector b, as

L0b ¼
X
ij

QLai�
�1
ij ðQLaj; bÞ ð93Þ

while L1 is defined by the relation (92). Applying the identity (81) with A ¼ z� L1,
B ¼ L0 to the Laplace transform of the expression (90) for the memory matrix then
gives

MjkðzÞ ¼ ðQLaj; ðz�QLQÞ�1L0ðz� L1Þ�1QLakÞ þ ðQLaj; ðz� L1Þ�1QLakÞ: ð94Þ

Calling the last term the irreducible memory function Mirr
jk ðzÞ and using the

definition (93), this becomes

MjkðzÞ ¼
X
lm

MjlðzÞ��1lm Mirr
mkðzÞ þMirr

jk ðzÞ ð95Þ

or in matrix form MðzÞ ¼MirrðzÞ þMðzÞ��1MirrðzÞ. The first-order memory
function can thus be expressed in terms of the irreducible one as MðzÞ ¼
MirrðzÞð1� ��1MirrðzÞÞ�1, and in the correlation function matrix (89) this gives

CðzÞ ¼ C½zC � � 1� ��1MirrðzÞ
� ��1��1C: ð96Þ

A nice physical interpretation of the irreducible memory function was given by Pitts
and Andersen [233]. They argue that a system with stochastic dynamics (e.g. a system
of colloidal particles with Brownian dynamics, or the much more abstract lattice
gases with kinetic constraints) must eventually be derivable from an underlying

Glassy dynamics of kinetically constrained models 285



system with deterministic, time-reversible dynamics. At long times, the two descrip-
tions should give the same results for correlation functions. This then implies that the
irreducible memory function for stochastic dynamics must be proportional to the
second-order memory function of the time-reversible description. The argument is
based on a comparison of (91), as applied to the time-reversible system, with (96)
when applied to the stochastic system. Time-reversibility can be shown to imply that
the matrices � and �2 in (91) vanish, giving

CðzÞ ¼ C½zC �M zM �M2ðzÞð Þ�1M��1C: ð97Þ

For times that are long compared to the microscopic timescales of the deterministic
dynamics, the corresponding z can be shown to be small enough for the term zM to
be neglected [233]. Agreement with (96) then requires that M2ðzÞ ¼ �M��1Mþ
M��1MirrðzÞ��1M. The first term is independent of z and gives a delta-function-like
contribution to M2ðtÞ; for longer times, the second term shows that M2ðtÞ of the
deterministic description and MirrðtÞ of the stochastic description are related by
constant factors as claimed. The upshot of this is that approximations analogous to
mode-coupling theory for dense liquids are obtained by applying the mode-coupling
approximation to the irreducible memory function of stochastic systems.

4.7.3. Mode-coupling approximation
The simplest approximation for the (reducible) memory function is to neglect it.

Setting MðzÞ ¼ 0 in (89), the calculation is reduced to the diagonalization of the
matrix �, and all correlation functions become superpositions of exponentially
decaying modes. Effectively this corresponds to a mean-field-like truncation of the
hierarchy of correlation functions to just those of the ‘relevant variables’ retained.
This approach can describe some aspects of the slowing down of the dynamics in
kinetically constrained systems, but is incapable of predicting, e.g. an incomplete
decay of correlation functions which would be expected at a dynamical transition.

An improved—but still uncontrolled—approach is the mode-coupling approx-
imation (MCA). As an illustration, consider the East model. The configuration n is
specified by that of all spins ni ¼ 0; 1, and the matrix elements of the Liouvillian are
given by (25) and (31)

Lðn0; nÞ ¼ LTðn; n0Þ ¼
X
i

n0i�1½cð1� n0iÞ þ ð1� cÞn0i� �n;Fin0 � �n;n0
� �

: ð98Þ

Here we have abbreviated by c � ceq the equilibrium concentration of up-spins, and
Fi is the operator which flips spin i. If we are interested in spin-correlation functions,
the relevant observables are the spin fluctuations �i ¼ ½cð1� cÞ��1=2ðni � cÞ, normal-
ized such as to obey Cij ¼ ð�i; �jÞ ¼ �ij. Together with the unit observable e and all
different products �i1 � � � �im (m ¼ 1; . . . ;N) these observables form an orthonormal
basis for the space of all observables. In an obvious abuse of notation, products such
as �j�k are here understood to be taken componentwise, e.g. ð�j�kÞðnÞ ¼ �jðnÞ�kðnÞ.

One can now construct the rate and memory matrices. For an arbitrary
observable aðnÞ one has, from (98)

ðLaÞðnÞ ¼
X
i

ni�1½cð1� niÞ þ ð1� cÞni�½aðFinÞ � aðnÞ� ð99Þ

and applying this to a ¼ �i gives
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L�i ¼ �cf�i þ ½ð1� cÞ=c�1=2�i�1�ig: ð100Þ
The rate matrix is �ij ¼ ð�i;L�jÞ ¼ �c�i; j since ð�i; �j�kÞ ¼ 0. The initial values of the
random forces follow as

ri ¼ QL�i ¼ L�i �
X
j

�jð�j;L�iÞ ¼ �½cð1� cÞ�1=2�i�1�i ð101Þ

giving for the reducible memory matrix

MijðtÞ ¼ cð1� cÞð�i�1�i; eQLQt�j�1�jÞ ð102Þ

while the expression for Mirr
ij ðtÞ is obtained by replacing QLQ with L1 in the

exponent on the right-hand side of (102). The MCA can be applied to either of
these functions. It replaces QLQ or L1 by L, and also assumes that the resulting
fourth-order correlation function can be factorized into pairwise contributions like
ð�i; eLt�jÞ. Since the spin–spin correlation functions for the East model are site-
diagonal, CklðtÞ ¼ ð�k; eLt�lÞ ¼ CðtÞ�kl (see section 5.3), the only non-zero contribu-
tion to (102) becomes MMCA

ij ðtÞ ¼ �ijM
MCAðtÞ with [218]

MMCAðtÞ ¼ cð1� cÞð�i�1; eLt�i�1Þð�i; eLt�iÞ ¼ cð1� cÞC2ðtÞ: ð103Þ
Using this as an approximation for Mirr

ij ðtÞ, one has from (96), bearing in mind that
all matrices involved are diagonal,

CðzÞ ¼ zþ c

1þ c�1MMCAðzÞ

� ��1
: ð104Þ

Together with (103) this is a closed MCA equation for CðtÞ, which is equivalent to a
model of the glass transition studied in detail by Leutheusser [234, 235]. One can ask,
in particular, whether on lowering c a dynamical transition occurs to a non-ergodic
state where CðtÞ no longer decays to zero for t!1. If Cðt!1Þ ¼ q, then
CðzÞ ’ q=z andMMCAðzÞ ’ cð1� cÞq2=z for small z. Inserting into (104) and taking
z! 0 gives

q ¼ 1þ c

ð1� cÞq2

� ��1
ð105Þ

or q=ð1� qÞ ¼ ð1� cÞq2=c. The largest solution in the range 0 ! q ! 1 gives
Cðt!1Þ [17]; it is easily worked out as q ¼ 1=2þ ½1=4� c=ð1� cÞ�1=2, yielding a
first-order dynamical transition—a discontinuous jump of q, from 0 to 1/2—at
c=ð1� cÞ ¼ 1=4. Thus, the MCA approximation applied to the irreducible memory
function of the East model predicts a spurious dynamical transition at c ¼ 0:2 [230].
As expected from the discussion at the end of section 4.7.2, applying the MCA to the
reducible memory function gives even less reasonable results: Jäckle and co-workers
found both for constrained spin models (e.g. the East model [218]) and the triangular
lattice gas [118] that unphysical divergences for the correlation functions at long
times could occur.

It should be noted that for models with stochastic dynamics, MCAs for second-
or higher-order memory functions can never predict a non-ergodic decay of
correlation functions to a non-zero value; see e.g. [233, 236, 237]. This can be seen
from (91). If M2ðzÞ is linked via a MCA to CðzÞ, then a non-ergodic state requires
that M2ðzÞ diverge as � 1=z for z! 0; but then CðzÞ ¼ CðzC þOðzÞ � �Þ�1C for
small z which has a finite limit for z! 0 rather than the assumed 1=z divergence (as
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long as � is non-zero). For time-reversible dynamics, the situation is different since
there � ¼ 0; see before (97).

Notice that for more complicated directed models, e.g. the North-East model or
Cayley tree models, the random force ri ¼ QL�i will contain not just second-order
products of spin fluctuations, but also higher orders such as �j�k�l . For sufficiently
simple models [230, 238] the coefficients can be worked out explicitly, and the MCA
then gives expressions for the memory functions which also involve higher powers of
CðtÞ. If this procedure is too complicated, one can in addition project ri on to a
subspace of observables, e.g. the one spanned by the second-order products
�j�k [237]. Finally, we note that in the context of supercooled liquids, extended
MCAs have been derived [19, 239, 240]. These lead to approximations for the
memory matrix of the form MMCAðzÞ½1þ�ðzÞMMCAðzÞ��1, where MMCAðzÞ is the
memory matrix in the conventional MCA, e.g. (103) for the East model, and �ðzÞ is
a new memory matrix. The presence of a non-zero �ðzÞ ensures that in extended
MCA the memory matrix does not become singular for z! 0 even ifMMCAðzÞ does,
and thus smoothes out the sharp dynamical transitions generally predicted by
conventional MCA. The formalism of extended MCA has not yet been adapted
for models with stochastic dynamics; nevertheless, approximations of similar form
have recently been derived for kinetically constrained models using the diagrammatic
approaches reviewed in the next section.

4.8. Diagrammatic techniques
Equilibrium correlation functions for kinetically constrained models have

also been studied using diagrammatic expansion. In fact, the first theoretical
treatment [74] for f ; d-SFMs was derived from a diagrammatic expansion. We
review here the formulation recently provided by Pitts and Andersen [238] for the
East model and other models with directed constraints; a related approach was used
for the 1; 1-SFM in [241]. The spin autocorrelation function in the East model is site-
diagonal (see section 5.3), and in the notation of section 4.7 can be written as

CðtÞ ¼ ð�i; eLt�iÞ; CðzÞ ¼ ð�i; ðz� LÞ�1�iÞ: ð106Þ

The Liouvillian is given in (98) and can be written as L ¼
P

i Li, with Li
corresponding to spin flips at site i. One can now expand the inverse in (106), and
insert decompositions of the identity matrix 1 ¼

P
� �Þð�, where � runs over the

orthonormal basis vectors of the space of all observables built up from products
of the �j (see after (98)). This gives for the Laplace transform of the spin–spin
autocorrelation

CðzÞ ¼
X1
k¼0

1

zkþ1

X
i1���ik

X
�1����k�1

ð�i;Li1�1Þð�1;Li2�2Þ � � � ð�k�1;Lik�iÞ: ð107Þ

Each term in this series can be represented by a diagram; the value associated with
each diagram is determined by a product of ‘matrix elements’ ð�;Lj�0Þ, which for the
East model are easily worked out explicitly. A closer investigation of the structure of
the diagrammatic expansion reveals that the first-order reducible and irreducible
memory functions can both be obtained as the sum of appropriately selected subsets
of diagrams [238]. If these subseries are summed approximately, expressions for the
memory functions result which are, non-trivially, of the same general form as those
obtained from a MCA within the projection formalism: the irreducible memory

F. Ritort and P. Sollich288



functionMirrðtÞ becomes a polynomial in CðtÞ. For the East model, for example, the
most straightforward approximation yields

MirrðtÞ ¼ cð1� cÞCðtÞ: ð108Þ
(This result was also obtained by Jäckle and Eisinger [79, 218] using their ‘effective
medium approximation’.) Compared to (103), the power of CðtÞ on the right-hand
side of (108) is reduced by one, although (103) itself can also be retrieved if a different
subset of the diagrams for MirrðzÞ is summed. For the (3, 2)-Cayley tree model and
the North-East model one obtains by the same approach identical expressions for the
irreducible memory function,

MirrðtÞ ¼ 2c3ð1� cÞCðtÞ þ c2ð1� cÞ2C2ðtÞ ð109Þ
again containing one power of CðtÞ less than the results from the MCA used by
Kawasaki [230].

For the East model, Pitts and Andersen [238] pushed the analysis even further
and showed that a more sophisticated rearrangement of the series forMirrðzÞ can be
used to derive approximations that are of the same form as the extended MCA for
supercooled liquids (see section 4.7.3). As expected on general grounds from the
structure of extended MCA, these improved approximations avoid the spurious
dynamical transitions predicted for the East model by simpler approximations
such as (108). A fuller discussion of the results obtained from the diagrammatic
expansions will be given later, in section 5.3.

4.9. Mappings to quantum systems and field theories
It can be useful to think of the vector space of observables on the space of

configurations n as a quantum mechanical Hilbert space. A useful basis for this
Hilbert space are the vectors jni ¼ jn1 . . . nNi; jni corresponds to the observable
which is one if each spin i has the specified value ni, and zero otherwise. The vector
describing the probability of being in any given configuration is then written as
jpðtÞi ¼

P
n pðn; tÞjni, and the master equation (73) becomes

@

@t
jpðtÞi ¼ �HjpðtÞi: ð110Þ

The quantum Hamiltonian H here corresponds to the operator denoted �LT in (73);
the minus sign is introduced so that the eigenvalues of H are non-negative and its
ground states just give the steady states jpi of the system. Notice that the quantum
mechanical Hilbert space product is defined so that the configurations jni are
orthonormal; this is different from (76).

We describe briefly how to construct H, using the East model as an example. One
essentially needs to transcribe LT from (98). It is useful to adopt a particle language,
with ni ¼ 0 and 1 respectively corresponding to the absence and presence of a
particle at site i. It is then natural to define j0i, the configuration with
n1 ¼ . . . ¼ nN ¼ 0, as the vacuum, and obtain other configurations by applying
suitable creation operators b

y
i which act as

b
y
i j . . . ni ¼ 0 . . .i ¼ j . . . ni ¼ 1 . . .i; b

y
i j . . . ni ¼ 1 . . .i ¼ 0: ð111Þ

The ‘Paulion’ [242] operators b
y
i and their Hermitian conjugates bi then commute at

different sites, while at the same site they obey anticommutation rules, fbi; big ¼
fbyi ; b

y
i g ¼ 0, fbi; byi g ¼ 1. The operator b

y
i bi counts the number of particles at site i in
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the usual way, b
y
i bijni ¼ nijni. Only one more ingredient is needed to write down H:

the spin-flip operator Fi from (98) becomes b
y
i þ bi in the quantum version. Thus, the

Hamiltonian H � �LT for the East model is

H ¼ �
X
i

b
y
i�1bi�1½cð1� b

y
i biÞ þ ð1� cÞb

y
i bi�ðb

y
i þ bi � 1Þ

¼
X
i

b
y
i�1bi�1½cðbi � 1Þbyi þ ð1� cÞðb

y
i � 1Þbi� ð112Þ

using the anticommutation relations to simplify the final expression. Conservation of
probability is reflected in the fact that hejH ¼ 0, where jei ¼

P
n jni ¼

Q
i ð1þ b

y
i Þj0i

is the unit or ‘reference’ state; this ensures that hejpðtÞi ¼
P

n pðn; tÞ ¼ 1 does
not change in time. As is typical, the Hamiltonian (112) is non-Hermitian since it
is derived purely from a dynamical problem. Since the dynamics obeys detailed
balance, however, the similarity transformation jni ! P

1=2
eq jni and H ! P

1=2
eq HP

�1=2
eq

with Peq ¼
P

n peqðnÞjnihnj could be used to transform H to an explicitly Hermitian
form.

Physical observables A are functions of the ni, and therefore correspond to
operators which are diagonal in the basis jni, Aðn; n0Þ ¼ hnjAjn0i ¼ AðnÞ�n;n0 ; their
expectation values are given in the quantum formulation by

AðtÞh i ¼
X

n

AðnÞpðn; tÞ ¼ hejAjpðtÞi ¼ hejAe�Htjpð0Þi: ð113Þ

Above, we effectively viewed the quantum mechanical Hilbert space as a Fock space,
since it is spanned by configurations with any possible value of the total particle
number

P
i ni between 0 and N. Equivalently, one can think of the Hilbert space as

the configuration space of a quantum spin system, with ni ¼ ð1þ �iÞ=2 and �i the
eigenvalue of the z-component �zi of a quantum spin operator. The particle creation
and annihilation operators then become raising and lowering operators ��i ¼
�xi � i�

y
i , and the vacuum state is the one with all spins down.

The above idea of mapping classical stochastic dynamical systems on to quantum
models was pioneered by Doi [243, 244] for ‘bosonic’ systems, where many particles
can occupy a given site, and later generalized to the ‘fermionic’ case of at most single
occupancy that is relevant to us (see, e.g. [245]). An overview of developments in the
field since then and a comprehensive bibliography can be found in [242]. As
demonstrated beautifully in recent reviews [195, 246], quantum mappings have
proved very powerful in the analysis of many stochastic non-equilibrium systems,
particularly where the resulting Hamiltonians are those of known (and sometimes
even exactly solvable) quantum systems [247]. They can also form the starting point
for field-theoretic path-integral representations [248, 249]. Either from the latter or
directly from the real-space (lattice) quantum Hamiltonians, renormalization group
methods (see, e.g. [195, 250, 251]) then also become available to study the behaviour
at large lengthscales.

For KCMs specifically, however, the benefits of the approach largely remain to
be explored. Some use has been made of the formalism (e.g. [100, 215, 217, 237, 241,
252]) but with few extra insights gained that would not also have been available
directly from the master equation; and in at least one case the formal manipulations
actually obscure rather than clarify the simplifications resulting from detailed
balance [237, 252].
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4.10. Mappings to effective models

The low-temperature dynamics of KCMs can often be understood by means of a

mapping to effective models. We already discussed such a mapping for f ; d-SFMs

with f ¼ 1 in section 3.1.2, where we found that the dynamics at low up-spin

concentration ceq can be described in terms of the diffusion of defects, in this case

isolated up-spins, with an effective diffusion constant Deff ¼ ceq=2. Apart from

diffusing, up-spins can also ‘coalesce’: when two of them are only separated by a

single down-spin, the latter can flip up and then two of the resulting three up-spins

can flip down successively. The reverse process where a single up-spin creates a

second one is of course also possible by detailed balance. The effective low-

temperature model for the 1; d-SFMs is thus one of diffusing up-spins which can

‘react’ according to Aþ A$ A, where A stands for the single species of defect

‘particle’ in the system. This convenient representation, in which the kinetic

constraints no longer appear explicitly, has been exploited, e.g. in [241, 253], and

a similar description has been used for a driven version of the 1; 1-SFM [254] (see

section 5.7). Much is known about such reaction–diffusion models; see, e.g. [255] for

a recent list of references on the Aþ A$ A model in d ¼ 1. We have not specified

above the precise ratio of the reaction and diffusion rates, but its value is expected to

be unimportant in the relevant regime of small ceq [256].

As explained already in section 3.5, in a lattice version [127] of the topological

froth model a similar mapping to an effective model is also useful. At low-

temperatures very few defects (þ1;�1-spins) exist, and it can be argued [127] that

the dynamics is dominated by defect pairs—dimers of adjacent þ1;�1-spins—and

isolated defects. Since dimers can diffuse and annihilate with each other or with

isolated defects, one thus has again an effective reaction–diffusion model at low

temperatures which can be used to understand, e.g. the relaxation of the energy, i.e.

the defect concentration, after a quench.

Other effective models for KCMs can be obtained by coarse-graining to a

continuum description; this approach has been successfully exploited to describe

the properties of lattice gases, e.g. the KA model with and without gravity [257,

258]. One represents the state of the system by a coarse-grained density field

cðzÞ which under the effect of gravity should only depend on height z. Since

the lattice gas is non-interacting, the local free energy density is simply

f ðcÞ ¼ T ½c ln cþ ð1� cÞ lnð1� cÞ� þ gcz, with the last term accounting for the effects

of gravity. One can now postulate a standard dynamics for the conserved density

field, ð@=@tÞcðzÞ ¼ �@JðzÞ=@z. The current JðzÞ ¼ ��ðcðzÞÞ@�ðzÞ=@z is the product

of a local mobility �ðcÞ and the negative gradient of the chemical potential, which is

given by �ðzÞ ¼ �F=�cðzÞ with F ¼
Ð
dz f ðcðzÞÞ the total free energy. The model is

made glassy only through the choice of the functional form of the mobility �ð�Þ. To
model the power-law singularity of the diffusion constant seen in simulations of the

KA model [88] (see section 3.3.1), this was chosen in [258] as �ð�Þ ¼ cð1� c=cdynÞ�,
which tends to zero with an exponent � � 3:1 as the density approaches the

dynamical transition at cdyn. Being based on the behaviour of the diffusion constant

in a system at uniform density c, it is not obvious that this is still a good

approximation for the local mobility, especially in the interesting high-density region

where one may expect pronounced inhomogeneities. Nevertheless, is has been shown

to work remarkably well both for the KA model under gravity [258] and without

gravity but with particle exchange with a reservoir allowed [257]. We mention in
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passing that the dynamics of a related class of models with density-dependent
mobilities have recently been analysed in [259, 260].

5. Results

In this section, we give a comprehensive survey of the known results on the
dynamics of KCMs, including work on related models where appropriate. We begin
in section 5.1 with the question of (effective) irreducibility, which ensures that naive
calculations of equilibrium behaviour apply to KCMs. The following sections are
arranged to mirror the structure of section 2. In section 5.2 we give results for the
typical relaxation timescales of KCMs and their dependence on temperature or, for
lattice gases, density; we also evaluate there the evidence for genuine dynamical
transitions in KCMs. In section 5.3 we address the stationary dynamics of KCM,
which should be relevant for modelling the dynamics around the (metastable)
equilibrium of supercooled liquids. Section 5.4 is concerned with out-of-equilibrium
dynamics, including nonlinear relaxation after quenches or crunches, hysteresis
effects in heating–cooling cycles and two-time correlation and response functions.
Dynamical lengthscales in KCMs and the evidence for dynamical heterogeneities are
discussed in section 5.5. In section 5.6 we review the applicability of energy landscape
paradigms such as configurational entropies and Edwards measures to KCMs.
Finally, section 5.7 surveys some recent results on the behaviour of KCMs under
external driving, which can be used to model, e.g. tapping experiments in granular
media.

Within each subsection, we list results for the various models as far as possible in
the order in which they were introduced in section 3. First are f ; d-SFMs and their
variants with directed constraints; where appropriate, we discuss the models with
f ¼ 1 separately because of their qualitatively different defect-diffusion dynamics.
The next major group of models is formed by the kinetically constrained lattice
gases, followed by the models inspired by cellular structures and the triangle and
plaquette models obtained by mappings from interacting systems with unconstrained
dynamics. Finally, results for related models such as urn, oscillator and needle
models are included where appropriate.

5.1. Irreducibility
Beginning with spin-facilitated models with undirected constraints, let us sum-

marize under which conditions on f the f ; d-SFM is effectively irreducible. Formally,
this means pðc;L!1Þ ¼ 1 for all c > 0; pðc;LÞ is the probability that a random
initial configuration with up-spin concentration c on a lattice of N ¼ Ld spins
belongs to the high-temperature partition (see section 3.1.1). In order to understand
finite-size effects, it is also useful to define the concentration c�ðLÞ as the one where
pðc;LÞ ¼ 1=2 for given L; effective irreducibility corresponds to c�ðL!1Þ ¼ 0. The
irreducibility results quoted below were mostly derived within the context of
bootstrap percolation (BP). Recall from section 4.1 that the m-BP process is defined
as iteratively removing from a lattice all particles that have fewer than m neighbours.
By mapping particles to down-spins and vacancies to up-spins we saw in section 4.1
that if this process leads to an empty lattice, the corresponding configuration in the
f ; d-SFM belongs to the high-temperature partition, provided that m is chosen as
m ¼ 2d þ 1� f . As an example, the irreducibility problem for the 3; 3-SFM
corresponds to 4-BP in d ¼ 3 dimensions.
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As explained in section 4.1, f ; d-SFMs with f > d are always strongly reducible;
for f ¼ 1, on the other hand, it is trivial to see that they are effectively irreducible.
Non-trivially, Schonmann [261] was able to prove rigorously that all models with the
intermediate values 2 ! f ! d are also effectively irreducible. Enter [262] had earlier
proved the result for the special case of the 2; 2-SFM, formalizing an earlier
unpublished argument due to Straley; Schonmann [261, 263] gave a generalization
to BP-like models with more complicated rules. Fredrickson and Andersen [74] had
earlier given a non-rigorous argument for irreducibility of the 3; 3-SFM; Reiter [82]
also constructed irreducibility proofs for the 2; 2-SFM and 3; 3-SFM.

Numerical investigations of finite-size reducibility effects in SFMs go back at
least to Fredrickson and Brawer [85], who studied pðc;LÞ and c�ðLÞ in the 2; 2-SFM.
A simple linear extrapolation of c�ðLÞ versus the inverse linear system size
L�1 ¼ N�1=2 suggested c�ðL!1Þ � 0:04, but Fredrickson and Brawer [85] argued
that the functional form of this extrapolation was inappropriate since earlier
arguments [74] had already suggested c�ðL!1Þ ¼ 0. It was later shown
rigorously [207] and confirmed by simulation [264] that for the general 2; d-SFM,
c�ðLÞ decreases only very slowly with system size, as c�ðLÞ � 1=ðlnLÞ1=ðd�1Þ. For
other choices of f , the finite-size effects can be even larger. Enter et al. [208]
considered the case f ¼ d; this is the ‘most dangerous’ case that is still effectively
irreducible, since for f ¼ d þ 1 and above the models are strongly reducible. For
d ¼ 3 the finite-size scaling of the critical concentration was predicted to be
c�ðLÞ � 1= lnðlnLÞ [208]; compared to d ¼ 2 this has an extra ln in the denominator
and this pattern continues for higher d, with c�ðLÞ � 1= ln½lnðlnLÞ� for d ¼ 4, etc.
This very slow approach of c�ðLÞ to zero is obviously difficult to verify numerically;
for d ¼ 3 initial simulations were interpreted in terms of a non-zero c�ðL!1Þ [201,
204, 265], but later work showed an approach of c�ðLÞ to zero that is consistent with
the predictions [208].

Consider next spin models with directed kinetic constraints. For the asymmetric
1; 1-SFM and its limit case the East model, the same argument as for the (symmetric)
1; 1-SFM applies; all configurations except those with all spins down belong to the
high-temperature partition and reducibility effects are unimportant. For the North-
East model [81, 261] it has been shown, via a mapping to directed percolation, that in
the thermodynamic limit a configuration will have a finite fraction of permanently
frozen spins if its up-spin concentration c is below the critical value c� ¼ 0:2942. (The
link to directed percolation arises because a spin will never be flipped up if and only
if there is an infinite path starting from the chosen spin that consists of steps towards
the North or East and visits only down-spin sites.) For the ða; f Þ-Cayley tree models
in the most strongly constrained case f ¼ a� 1, one has a continuous blocking
transition at c� ¼ ða� 2Þ=ða� 1Þ, below which the fraction of permanently frozen
spins grows continuously from zero; this can be shown by using recursion relations
for trees of increasing depth (see section 4.1). For 2 ! f < a� 1 a blocking transition
still exists, but is discontinuous.

Moving on to constrained lattice gases, reducibility effects in the KA model were
discussed already in the original paper on the model [88]. As mentioned in section 3.3,
such effects obviously depend on the parameter m in the model; recall that particles
with m or more occupied neighbour sites are not allowed to move. On a cubic lattice
m ¼ 6 corresponds to an unconstrained system, while the case m ¼ 3 is strongly
reducible, with any set of eight particles arranged in a cube unable to move. For
m ¼ 4, KA argued that the model should be effectively irreducible in the thermo-
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dynamic limit, as follows. They focused on the ‘backbone’, comprising all particles
which are permanently frozen by other frozen particles, i.e. which remain frozen
when all mobile particles are removed (see section 4.1). The backbone can thus be
determined by iteratively removing all mobile particles from the lattice. In this
process, a particle is removed if it has fewer than m ¼ 4 particles as neighbours, and
if there is at least one free neighbour site for which this condition would still be true
after a jump to that site. Since the first part of this criterion is just the same as BP
with m ¼ 4, a backbone of permanently frozen particles will remain for densities
where 4-BP does not reach the empty lattice configuration. This implies [208] that
for particle densities c � 1�Oð1= lnðlnLÞÞ a backbone will occur with high
probability in a system of linear size L; this criterion is just the obvious transforma-
tion (c! 1� c) of the one for irreducibility of the 3; 3-SFM because the latter
problem is essentially equivalent to 4-BP. For lower densities one expects the
probability of a backbone to occur to be small, and the system to be effectively
irreducible. The theoretically expected finite size effects are extremely strong,
however: c � 1�Oð1= lnðlnLÞÞ translates into a double exponential divergence
L � expfA exp½B=ð1� cÞ�g of the system sizes required to avoid a backbone at a
given density. KA showed by direct simulation that up to densities c ! 0:86 for their
L ¼ 20 system the probability for a backbone to occur is very small (� 0:007; see
figure 12 above), and that therefore finite-size reducibility effects on their simulation
results should be negligible. (A possible caveat is that there may be particles that are
permanently frozen only by mobile neighbours, and these would not be counted in
the backbone; but simulations by Jäckle and Krönig [113] for the triangular lattice
gas suggest that this is a small effect.) For only slightly higher densities (c ¼ 0:88 and
0:885), they found that much larger system sizes (L ¼ 40 and 50, respectively) were
required to avoid backbones; this is at least qualitatively consistent with the
theoretically expected strong increase of L with c.

In the KA model with particle exchange allowed at the boundary with a reservoir
at some chemical potential, or under the effect of gravity in a simulation box of large
height, reducibility effects are greatly reduced compared to the conventional KA
model. This is because particles can be removed one by one to the reservoir, or the
upper reaches of the simulation box, and then reinserted, so that all configurations
that can be ‘emptied’ in this way are mutually accessible. In some cases this makes
the dynamics fully irreducible. A nice illustration is provided by a b.c.c. lattice where
particles can move only if they have fewer than m ¼ 5 nearest neighbours in their old
and new positions [117]; lattice planes can then be successively emptied starting from
the top, since every particle has at most four nearest neighbours in the lattice plane
underneath (and, due to the lattice structure, none in its own plane). For the
conventional KA setup, i.e. a cubic lattice with m ¼ 4, it was argued in [110] that
configurations up to densities c ¼ 1�Oð1=LÞ are mutually accessible. While
there are some configurations with such densities that can be accessed, accessibility
of typical configurations should only be possible up to lower densities
c ¼ 1�Oð1= lnLÞ. This follows from the fact that, in a given lattice plane at the
top of the system that is to be emptied, most particles (for c close to 1) have one
neighbour in the plane underneath; they can thus be removed only if they have less
than three neighbours in the plane. The problem thus reduces to BP on a square
lattice with m ¼ 3 which—as we know from the equivalence to the irreducibility
problem in the 2; 2-SFM—reaches the empty configuration with probability close to
one only for 1� c � 1= lnL.
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For the triangular lattice gas (with two-vacancy assisted hopping), it was shown
in [113] that no permanently blocked particles should exist in the thermodynamic
limit, at any particle concentration c < 1. The argument is quite similar to the
irreducibility proofs outlined in section 4.1. It is based on the fact that a hexagonal
ring of vacancies can move outwards as long as there is at least one vacancy on each
of the six edges surrounding the hexagon. The probability of a local particle
configuration with a vacancy hexagon that can grow to arbitrary size can be shown
to be non-zero, and so in a thermodynamically large system at least one such local
configuration will exist with probability one. A similar argument had earlier been
given for the hard-square lattice gas [173] and later refined in [205, 206].

For models inspired by cellular structures, we are not aware of any explicit
analysis of reducibility effects. However, as explained in section 3.5 these models all
have dynamics of the defect-diffusion type. By analogy with 1; d-SFMs, reducibility
effects would therefore be expected to be irrelevant. For the triangle and plaquette

models of section 3.6 the dynamics is clearly irreducible since it is in one-to-one
correspondence with the irreducible (since unconstrained) spin-flip dynamics of the
underlying spin system.

Finally, among the other models related to KCMs, only needle models are not
obviously irreducible. The only case that has been addressed here is that of needles
attached at their endpoints to a square (planar) lattice, and with their motion
restricted to one side of the lattice plane [194]. Here it easy to see that every
configuration can be reached from any other, going via the unentangled state with all
needles orthogonal to the plane. The transformation to the unentangled state is
achieved by a series of small steps: one first ‘stretches’ the configuration in the
direction perpendicular to the lattice, and then ‘cuts back’ the increased needle
lengths to their original value. The overall effect is a small rotation of all needles
which does not cause them to cross, and repeated application eventually leads to the
unentangled state. For needles attached to three-dimensional lattices, the irreduci-
bility or otherwise of the dynamics appears to be an open problem.

5.2. Relaxation timescales and dynamical transitions
In this section we give results for the typical relaxation timescales of KCMs and

their dependence on temperature or, for lattice gases, density; we also evaluate the
evidence for dynamical transitions where ergodicity is broken. As explained in
section 3.1.1, our criterion for a dynamical transition will be a divergence of an
appropriate relaxation time in the thermodynamic limit.

We begin with spin-facilitated models. As explained in section 3.1.2, f ; d-SFMs
with f ¼ 1 behave rather differently than those with f � 2, since relaxation can occur
by diffusion of defects (isolated up-spins) through the system. This lack of any
significant cooperativity in the dynamics leads to behaviour typical of strong glasses,
with relaxation times increasing in an Arrhenius fashion as T is lowered; exemplary
results for the 1; 1-SFM are shown in figure 8 above. This expectation was confirmed
in a theoretical analysis by Fredrickson and Andersen [74], who used a diagrammatic
technique to obtain approximations to the integrated relaxation time of the spin
autocorrelation function. A later mean-field theory [217], paraphrased in section 4.4,
also predicted the expected Arrhenius dependence of relaxation times. As an aside,
we note that Fredrickson and Andersen [74] also investigated SFMs on lattices other
than the conventional cubic ones, and found that there defect-diffusion dynamics can
also occur for f � 2. This is the case for, e.g. the SFM on a triangular lattice with
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f ¼ 2. Here the defects are pairs of neighbouring up-spins. Such a pair can facilitate
an up-flip of a neighbouring spin; if then one of the original up-spins flips down, the
defect has effectively rotated around one of its endpoints, and by repetition of this
process can diffuse across the lattice in a tumbling motion.

More interesting are f ; d-SFMs with f � 2 (on the conventional cubic lattices);
we saw in section 3.1.2 that in these models relaxation processes proceed in a
strongly cooperative fashion which should lead to a superactivated relaxation
timescale increase. For 2; d-SFMs, for example, the approximate analysis of [74]
resulted in an integral equation for the autocorrelation function very similar to
typical mode-coupling equations (see section 4.7.3). This predicts a divergence of the
relaxation time, and therefore a dynamical transition, at an up-spin concentration of
cdyn ¼ 1=f½ð3=2Þ32dð2d � 1Þ�1=2 þ 1g. Fredrickson and Andersen argued that since
their approximation was of a mean-field type it should be reasonable at least for
larger d. For, e.g. d ¼ 1 it is clearly incorrect since the 2; 1-SFM, being strongly
reducible, shows an incomplete decay of the spin autocorrelation function at any c.
For d ¼ 2, the theory fails in the opposite way: later simulations [85, 266] and
theoretical arguments [82] strongly suggested that there is no true dynamical
transition at any non-zero c. As is typical of MCA-like theories, however, a fit of
the relaxation time increase to a power-law behaviour suggests a divergence close to
the theoretically predicted value cdyn. For larger spatial dimension, d ¼ 3, simula-
tions of the 2; 3-SFM [266] found agreement with the theory of [74] over a broader
range of c, as expected, although again there was no evidence of an actual dynamical
transition. Butler and Harrowell [93, 94] also obtained relaxation times for the 2; 2-
SFM from simulations of the persistence function (see section 5.3 below), finding the
expected superactivated temperature dependence. The 2; 2-SFM and 2; 3-SFM (with
slightly modified transition rates) were revisited in later simulations by Graham
et al. [77, 78], who also studied the 3; 3-SFM. Their data for the relaxation times—
extracted using stretched exponential fits to spin autocorrelations—are shown in
figure 9 above. Graham et al. fitted their results by a VTF law (2), with a divergence
at a non-zero temperature T0. This provides a good fit over two and a half decades in
� , as does a power-law singularity at non-zero temperature for the 2; 3-SFM data.
However, extrapolations towards an actual divergence are subject to the usual
reservations; inspection of figure 9 suggests, for example, that an EITS behaviour
with Arrhenius corrections, � � expðA=T2 þ B=TÞ, would also fit the data but not
give any divergence at T > 0. The absence of such a divergence is also predicted by a
recent theoretical treatment [237] of 2; d-SFMs, using an MCA for the second-order
memory function of spin fluctuations to obtain approximate spin autocorrelation
functions. This gave a superactivated growth of the relaxation time at low T , whose
functional form was not however analysed in detail. Overall, we regard the theories
and simulation data on the ‘cooperative’ SFMs as compatible with the absence of a
bona fide dynamical transition at non-zero temperature. However, the theoretical
prediction of even the functional form of the temperature dependence of relaxation
timescales in these models remains an open problem. (One plausible conjecture on
the basis of the growth of dynamical lengthscales is that the divergence of � for small
T is in fact doubly exponential, � � exp½A expð1=TÞ�; see section 5.5.)

Next we turn to SFMs with directed kinetic constraints. The simplest of these is
the East model, which as discussed in section 5.1 is effectively irreducible at any non-
zero up-spin concentration or, equivalently, non-zero temperature. Already when the
model was first proposed [79] it was argued that relaxation timescales should remain
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finite for any T > 0. This has recently been proved rigorously: the longest relaxation
time, obtained as the inverse of the smallest decay rate that one would find by full
diagonalization of the master equation, is bounded between exp½1=ð2T2 ln 2Þ� and
exp½1=ðT2 ln 2Þ� in the limit of small temperatures [267]. The upper bound in this
result is also consistent with the estimate of [220]. The East model therefore exhibits
an EITS relaxation time divergence at low temperatures, as anticipated intuitively in
section 3.1.2 on the grounds of the cooperative nature of relaxation processes. That
relaxation times in the East model must diverge in a superactivated fashion, i.e. more
strongly than any power of the inverse up-spin concentration 1=c � expð�Þ, had
already been shown by Jäckle and coworkers [218, 219]. They used an elegant
argument based on the fact that the relaxation necessarily becomes faster if the
kinetic constraint on the leftmost spin in a finite chain is lifted. We note briefly that
MCA approaches fail rather dramatically for the East model: Kawasaki’s [230]
application of the MCA to the irreducible memory function, reviewed in section
4.7.3, predicts a spurious dynamical transition at up-spin concentration c ¼ 0:2.

Having seen that the 1; 1-SFM with its undirected kinetic constraint shows
strong-glass behaviour, while the East model has a much more dramatic relaxation
time increase typical of fragile glasses, it is not unexpected that the asymmetric 1; 1-
SFM which interpolates between these two extremes shows a fragile-to-strong cross-
over on lowering T [83, 84]. Referring to (32) in section 3.1, the East model
corresponds to the value a ¼ 0 for the interpolating parameter, and displays
cooperative relaxation on ‘fragile’ timescales � � expð1=T2 ln 2Þ. For any a > 0,
however, one has the diffusion of isolated up-spins, which dominates the dynamics of
the 1; 1-SFM, as an additional relaxation process. As will be explained shortly, the
timescale for the latter is �diff � ð1þ a�1Þ expð1=TÞ. This increases only in an
Arrhenius (strong) fashion so that defect-diffusion, being the faster process,
dominates the relaxation at low T . The cross-over occurs where � � �diff ; since the
prefactor in �diff becomes large for a! 0, the cross-over shifts to lower temperatures
as a decreases. The derivation of the defect-diffusion timescale �diff is essentially an
extension of the analogous argument for the 1; 1-SFM given in section 3.1.2.
Consider the rate for diffusion of an isolated up-spin by one step to the right;
the rate for a diffusion step to the left is the same from detailed balance. The
right neighbour of the up-spin needs to flip up, which from (32) takes place at rate
ceq � c. A successful diffusion step is only obtained if the original up-spin then flips
down before the new up-spin does; the probability for this is a=ðaþ 1Þ since the rates
for a down-flip of the original and of the new spin are að1� cÞ and 1� c,
respectively. This gives the overall rate of ca=ð1þ aÞ for a diffusion step, hence
�diff � ð1þ a�1Þ expð1=TÞ as anticipated.

To finish off our discussion of SFMs with directed constraints, we now discuss
the North-East and Cayley tree models. These differ from all models discussed so far
in this section in that they are strongly reducible below some non-zero up-spin
concentration c�; see section 5.1. Since reducibility implies non-ergodicity, these
models must therefore show diverging timescales as c approaches c�. It is in principle
possible that a separate, and therefore non-trivial, dynamical transition could occur
at some higher cdyn, but numerical studies suggest that this is not the case and that
relaxation timescales diverge only at c� [81]. In the North-East model, simulations
for fairly small lattice sizes (L ¼ 40) suggest a power-law divergence of the relaxation
time as c approaches c�, with an exponent around 5, but possibly larger for larger
lattices [81].
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A number of theories have been applied to both the North-East and Cayley tree
models and generally do predict dynamical transitions, though at incorrect values of
c. For the ða; a� 1Þ-Cayley tree, diagrammatic treatments [238], an MCA applied
to the irreducible memory function [230] and an effective medium approximation
[268] have all been used. The known value of the transition is at cdyn ¼ c� ¼
ða� 2Þ=ða� 1Þ; see section 5.1. The diagrammatic method predicts a higher value,
cdyn ¼ ða� 1Þ=a (¼ 2=3 for a ¼ 3, compared to the true c� ¼ 1=2). The effective
medium approximation gives an even higher estimate, cdyn ¼ 0:690 for a ¼ 3. Both
are somewhat superior to the MCA, which gives a transition at too low a value of c,
e.g. cdyn ¼ 0:4090 for a ¼ 3 [269], and also incorrectly predicts that the fraction of
frozen spins jumps discontinuously to a non-zero value below the transition. For the
North-East model, all three approaches make exactly the same predictions as for the
ð3; 2Þ-Cayley tree model with a ¼ 3. Thus, neither captures the behaviour observed
in numerical simulations [81, 268] and expected from the relation to directed
percolation, with a transition at cdyn ¼ c� � 0:2942 (see section 5.1) and a non-
analytic increase of the fraction q of frozen spins below the transition according to
q � ðc� � cÞ0:25�0:05.

We next turn to relaxation timescales in kinetically constrained lattice gases.
Kob and Andersen, in their original paper on the KA model [88], determined the
self-diffusion constant Ds as a function of the particle density c; Ds was obtained
from the long-time limit of the mean-square particle displacements. For densities
between c � 0:3 and c ¼ 0:86, they obtained a very good fit to their data with
Ds � ðcdyn � cÞ�, covering over three decades in Ds, with cdyn ¼ 0:881 and exponent
� ¼ 3:1 (see figure 13 above). This suggests a dynamical transition caused by a
divergence of the diffusion timescale 1=Ds at c ¼ cdyn. A singularity of Vogel–
Fulcher type (1=Ds � exp½A=ðcdyn � cÞ�) could be excluded as providing a much
worse fit to the data. Relaxation times extracted from equilibrium correlation
functions also showed power law divergences at densities very close to cdyn. KA
argued convincingly that their data were not affected by finite-size effects, and that
the extrapolated vanishing of Ds at c ¼ cdyn was therefore a genuine dynamical
transition. They conceded, however, that simulations closer to or in fact above cdyn
would be needed to establish the existence of such a transition more firmly. It is
intriguing that the cdyn found by KA is quite close to the density where the (linear)
system size L needed to avoid reducibility effects due to permanently frozen particles
begins to increase strongly. The theoretical expectation is that L eventually diverges
as L � expfA exp½B=ð1� cÞ�g (see section 5.1), and this very strong increase of a
lengthscale might explain the apparent vanishing of the diffusion constant Ds. In the
mathematical limit L!1, Ds may remain non-zero up to c < 1, but its value would
be so small and the system sizes required to measure it so unrealistically large that
this would be of little physical relevance. Finally, it has been suggested that the
power-law singularity of Ds might be analogous to critical slowing-down, in which
case one would expect the exponent � to be insensitive to the precise nature of the
kinetic constraint or the lattice type. Simulations for f.c.c. lattices with
m ¼ 5; 7; 8 [270], and for the b.c.c. lattice with m ¼ 5 [258] support this hypothesis.
The underlying reasons for such apparent universality remain poorly understood,
however.

For the triangular lattice gas with two-vacancy assisted hopping [113, 118]
numerical simulations were performed of both the self and collective diffusion
constants (see section 2.2). The self-diffusion constant Ds decreases by about four
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orders of magnitude as the particle concentration is increased from c ¼ 0 to c ¼ 0:77;
it can be fitted both by a power-law Ds � ðcdyn � cÞ� and an exponential singularity
Ds � exp½�A=ð1� cÞ�. Since in the thermodynamic limit no particles are expected to
be permanently blocked (see section 5.1), it was argued that the dynamical transition
at cdyn < 1 predicted by the first fit is spurious [113]. However, this argument
effectively assumes that irreducibility (absence of permanently blocked particles)
rules out a dynamical ergodicity breaking transition; as explained in section 3.1.1,
this is not an obvious implication. The self-diffusion constant Ds for the triangular
lattice gas was also obtained from an approximate calculation of the intermediate
self-scattering function (14), using the projection formalism with the memory
function set to zero. As explained in section 2.2, the long-time and long-wavelength
limit of this quantity determines Ds. The approximation used was too simple to
capture the rapid decrease of Ds with increasing c, however, and in fact predicts a
non-zero limit for c! 1 [113]. A similar approximation for the collective diffusion
constant D predicts D � ð1� cÞ2. Extending the set of observables included in the
projection technique modifies this to D � ð1� cÞ3, but even so the numerically
observed decrease of D with c is much more pronounced [118].

Next we consider models inspired by cellular structures. As discussed qualita-
tively in section 3.5, these all exhibit diffusion of appropriate defects, so that one
would expect an activated temperature dependence of relaxation times. Indeed,
Davison and Sherrington considered the relaxation time � over which the auto-
correlation function of the local deviations ni � 6 from the hexagonal ground state
decays to 1=e of its initial value [126], and found that it is well fitted by an offset
Arrhenius law, � ¼ Aþ B expðC=TÞ. Similar behaviour is observed in the lattice
analogue of the model [127]. The plaquette model also exhibits defect-diffusion and
therefore activated relaxation times; see section 3.6. The triangle model, on the other
hand, displays cooperative relaxation processes similar to those in the East model.
As explained in section 5.4.1 below, this leads to an estimate of the relaxation
timescale � � exp½T2=ð2 ln 2Þ� [131]. This differs from the result for the East model
only through the extra factor of 1=2 in the exponent, which accounts for the two-
dimensional nature of the model.

In models with entropic barriers such as the Backgammon model or the oscillator

model relaxation times remain finite at any non-zero temperature, exhibiting only
power law corrections to the dominant Arrhenius behaviour � � �n expðA�Þ; here A
is a constant and n ¼ �2 and n ¼ 1=2 in the Backgammon and oscillator models,
respectively. Relaxation times to reach the ground state at T ¼ 0 do of course
diverge with the system size (as 2N for the Backgammon model [156, 157, 161], or
more slowly as N2 [161] in variants such as model C from [151]), but at T > 0 the
final energy per box or particle lies above the ground state by a finite amount and so
all timescales remain finite.

Finally, we comment on needle models. In the model of thin needles attached to
an f.c.c. lattice, Renner et al. [192] investigated the dependence of the rotational self-
diffusion constant Ds on the ratio l ¼ L=a of needle length L and lattice constant a.
The measured values could be well fitted by a power-law singularity Ds � ðldyn � lÞ�
with ldyn � 2:7 and � � 4:2. This would indicate a dynamical transition, though it is
difficult to exclude the possibility that measurements around l � ldyn would reveal a
rounding of the apparent singularity. For a similar model, with needles attached by
their endpoints to a cubic lattice, Obukhov et al. [194] argued that there was a true
dynamical transition at ldyn � 4:5. Their evidence for this was based on simulations
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of the average root-mean-square angular displacements �ðtÞ as a function of time.
They argued that if there is indeed a transition, then for all l near ldyn, �ðtÞ should
show the same behaviour, up to times that diverge as l ! ldyn. The effect of an
increase in length (which they implemented approximately by freezing a small
fraction of the needles) should therefore be smallest for l ¼ ldyn, and their
simulations appeared to confirm this. They also interpreted their results as showing
that �ðtÞ had a finite long-time limit for l > ldyn, but again it seems difficult to exclude
the alternative interpretation of a cross-over to slow rotational diffusion outside their
simulation time window. For smaller lengths l < ldyn, Obukhov et al. [194] argued
phenomenologically that since a needle interacts typically with l3 others, the
relaxation timescale should increase as expðl3Þ, and found some simulation evidence
for this. If there is indeed a dynamical transition then this behaviour should cross
over to a divergence at l ¼ ldyn, but this was not investigated in detail. For the two-
dimensional case of needles attached to a square lattice, the simulation data were
consistent with the relaxation time behaviour � � expðl2Þ, and no evidence of a
dynamical transition was found.

5.3. Stationary dynamics
One of the important questions about KCMs is how good they are at

reproducing the characteristic aspects of the supercooled state. We therefore review
in this section the results for equilibrium properties of KCMs such as correlation,
response and persistence functions.

We begin by defining the relevant quantities for spin-facilitated models. Many
studies have analysed the spin autocorrelation function, which using nih i ¼ c � ceq
can be written as

CðtÞ ¼ 1

N

X
i

niðtÞnið0Þh i � c2
cð1� cÞ : ð114Þ

We have multiplied by a constant factor here to normalize the correlation function to
Cð0Þ ¼ 1. Notice that only the cN spins which are in the up-state ni ¼ 1 at time 0
contribute non-zero averages niðtÞnið0Þh i in (114); one can therefore also write
CðtÞ ¼ ð niðtÞh i � cÞ=ð1� cÞ where ni is any spin that is initially up.

The dynamics of the overall up-spin concentration cðtÞ ¼ ð1=NÞ
P

i niðtÞ is also
often of interest; in equilibrium its average is cðtÞh i ¼ c for all times. Its normalized
equilibrium correlation function is

CcðtÞ ¼
1

N

X
ij

niðtÞnjð0Þ
� �

� c2
cð1� cÞ ð115Þ

and is seen to be a sum of non-local spin correlation functions niðtÞnjð0Þ
� �

� c2.
Finally, the persistence function FðtÞ has also been studied; it measures the fraction
of spins which, starting from an equilibrated configuration at time 0, have never
flipped up to time t. The integral

Ð1
0 dt FðtÞ gives the mean-first passage time, i.e. the

average time after which a spin will first flip. The persistence function and mean-first
passage times can also be defined separately for spins that were up or down in the
starting configuration.

We begin by considering spin-facilitated models with defect-diffusion dynamics,
i.e. f ; d-SFMs with f ¼ 1. Most work has focused on the 1; 1-SFM, though there are
also a few results for 1; d-SFMs in d > 1 (see below). To get some intuition, we first
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recap briefly the discussion in section 3.1.2 of the low-temperature, i.e. small-c,
dynamics of the 1; 1-SFM. We saw that up-spins occur as isolated defects, and that
these diffuse with an effective diffusion constant Deff ¼ c=2. The typical distance
between defects is 1=c, so that the timescale � on which defects start noticing each
other is set by ð2D�Þ1=2 ¼ 1=c, giving � ¼ c�3 as in (34). The spin autocorrelation
function, CðtÞ ¼ ð niðtÞh i � cÞ=ð1� cÞ for spins with nið0Þ ¼ 1, simplifies for small c
to CðtÞ ¼ niðtÞh i. It is therefore just the probability that a spin that was up at time 0
is also up at time t. For t� � , where defects are non-interacting random walkers,
this is just the return probability of a random walk and therefore

CðtÞ ¼
ð�
��

dq

2�
exp½�2Deffð1� cos qÞt� ð116Þ

which is a function of ct only, with CðtÞ ¼ 1� ct for ct� 1 and CðtÞ ¼ ð2�ctÞ�1=2
for ct" 1. This behaviour should then cross over to a faster decay when t becomes
of order � ¼ c�3 and defects start interacting; in this regime CðtÞ is already small, of
order ðc�Þ�1=2 ¼ c. Interestingly, we see here that the spin relaxation function in the
1; 1-SFM allows three different timescales to be defined: the instantaneous time,
where CðtÞ ¼ 1=e, scales as c�1 � expð1=TÞ. The longest timescale, on which defects
begin interacting is � ¼ c�3 ¼ expð3=TÞ. The integrated timescale

Ð1
0

dt CðtÞ, finally,
is dominated by the ðctÞ�1=2 tail of CðtÞ up to times t � � , and therefore scales as
c�1=2�1=2 ¼ c�2 � expð2=TÞ; see figure 8 above. All three timescales show activated
behaviour, as anticipated in section 3.1.2. Figure 19 shows that the scaling of CðtÞ
obtained above, i.e. a product of ðctÞ1=2 times a cutoff function on longer timescales
t, is qualitatively confirmed by simulations [55].

We now turn to detailed theoretical calculations of the spin autocorrelation
function of the 1; 1-SFM. A comprehensive analysis was given in [253]. Calculations
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Figure 19. Normalized spin autocorrelation function CðtÞ in the 1; 1-SFM for up-spin
concentrations ranging from c ¼ 0:269 down to c ¼ 0:054. The solid lines show fits to
the form CðtÞ ¼ ð1þ t=�1Þ�� expð�atbÞ where �1; �; a and b are fitting parameters. As
expected from the diffusive nature of the dynamics, the exponent � is close to 1=2,
and �1 is of order 1=c (see text for details). From [55]. Copyright American Institute
of Physics.



were performed within the projection approach, with memory terms set to zero.
Three different sets of observables were considered for the projection. The first
contained the normalized fluctuations �i ¼ ½cð1� cÞ��1=2ðni � cÞ of local spins
around their averages, and their pairwise products; the second included in addition
some triple products. The third contained single spin fluctuations as well as the
variables Ln�i with n ¼ 1; . . . ; 5, which can be motivated via a high-temperature
expansion. As expected, the last choice works best for large c (down to c � 0:3). For
lower c, the approximation which includes triple spin products gives the most
accurate results and predicts an asymptotic decay of CðtÞ � ð2�ctÞ1=2 expð�t

ffiffiffiffiffiffiffi
8c5

p
Þ.

For times c�1 � t� c�5=2 this gives precisely the square-root decay as expected
from the discussion above. A treatment of the effective low-temperature model of
diffusing defects gave a similar functional form, but with the exponential cutoff
function replaced by expð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8c2Deff t

p
Þ. This has the scaling with c3t ¼ t=� expected

on qualitative grounds, but the functional form is not necessarily reliable since it is
derived under the assumption that the exponent is still small and defects have just
started to interact. Information on the integrated relaxation time, which depends on
the long-time behaviour of CðtÞ, could therefore not be deduced from this approach;
within the best alternative (three-spin) approximation of [253] it scaled as c�7=4, still
somewhat below the scaling with c�2 expected from the qualitative arguments above.
A later analysis of equilibrium correlation functions in the 1; 1-SFM [241] took a
different approach based on a spatial coarse-graining of the local up-spin concentra-
tions. To produce small concentration fluctuations, however, the coarse-graining
distance must then be of the order 1=c or larger, and fluctuations on such
lengthscales are no longer related to the spin autocorrelation function in an obvious
way.

Interestingly, it turns out that the relaxation of the overall up-spin concentration
in the 1; 1-SFM, as determined by the correlation function CcðtÞ defined in (115),
can be calculated exactly in the limit of small c [271, 272]. This is possible because
of the mapping of the 1; 1-SFM on to an effective Aþ A$ A reaction–diffusion
model; see section 3.1.2. An exact calculation [271, 272] for the latter results in
CcðtÞ ¼ ð1þ 2t=�Þerfc½ðt=�Þ1=2� � 2½t=ð��Þ�1=2 expð�t=�Þ, with a long-time behaviour
of ½�ðt=�Þ3��1=2 expð�t=�Þ. The timescale here is � ¼ ð2Deffc

2Þ�1 ¼ c�3 as before, so
that fluctuations in the overall up-spin concentration relax when diffusing up-spins
begin to interact (see above). In contrast to the spin autocorrelation function, there is
no decay on the shorter timescale �1=c for diffusion of individual defects, because
the up-spin concentration remains unchanged while up-spins only diffuse but do not
interact.

Finally for the 1; 1-SFM, we turn to the persistence function of down-spins,
which is fairly straightforward to estimate [241]. Consider a domain of l down-spins
bounded by up-spins at t ¼ 0. As time increases, the up-spins will have flipped spins
in a region of size �

ffiffiffiffiffiffiffiffiffiffiffiffi
2Deff t

p
around each, so that only around l � 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2Deff t
p

persistent down-spins will remain. Since the equilibrium distribution of down-spin
domain lengths is PðlÞ � c expð�clÞ for low c, the persistence function is approxi-
mately

X
l�2

ffiffiffiffiffiffiffiffiffi
2Deff t

p
l � 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2Deff t

p� �
ce�cl ¼ e�2c

ffiffiffiffiffiffiffiffiffi
2Deff t

p
ð117Þ

and again decays on timescales scaling as c�2D�1eff � c�3 ¼ � .
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For the 1; d-SFM in arbitrary dimension d, with equilibrium up-spin concentra-
tion c, it was shown in [214] that 2dc is an exact eigenvalue of the Liouvillian, giving
the relaxation rate of an appropriately defined staggered magnetization. The authors
also found numerically for d ¼ 1; 2 that exactly half this rate determines the early
stages of the decay of the spin autocorrelation functions in these models, which are
well fitted by the simple exponential CðtÞ ¼ expð�dctÞ. This result actually has a
simple interpretation for small c, where up-spins are isolated and far from each
other. As for the 1; 1-SFM, the spin autocorrelation function is then for short times
just the return probability of a random walker in d dimensions with diffusion
constant Deff . This is the d-th power of the result (116) for d ¼ 1, giving for short
times CðtÞ ¼ ð1� ctÞd ¼ 1� dctþOððctÞ2Þ consistent with the early time scaling
found in [214].

Next we consider SFMs with cooperative dynamics, i.e. f ; d-SFMs with f � 2. As
mentioned already in section 5.2, in their early theoretical work on 2; d-SFMs
Fredrickson and Andersen [73, 74] predicted that the spin autocorrelation function
should show a dynamical transition at some up-spin concentration cdyn; an
increasingly non-exponential shape of the correlation function was predicted on
approaching cdyn from above, while below the correlation function should decay to a
non-zero value. Simulations soon after [85], however, showed that this predicted
transition is spurious; instead, the spin autocorrelation functions showed stretched
exponential decays for low c, with stretching exponents decreasing as c was lowered,
and relaxation times increasing in a super-Arrhenius fashion (see section 5.2). Similar
results were later reported by Graham et al. [77, 78] for the spin autocorrelation
function in the 2, 2-SFM, 2, 3-SFM and 3, 3-SFM (with the slight modification that
rates for allowed transitions were chosen to be independent of the number of
facilitating neighbours). The stretched exponential behaviour sets in at low c and
intermediate times; the short time relaxation is exponential. In all cases the stretching
exponent b stays between around 0.3 and 0.6 and decreases with c. Fredrickson [273]
also studied the autocorrelation function of the total up-spin concentration, CcðtÞ,
and found similar behaviour, but with different stretching exponents which were
somewhat closer to 1. Harrowell [274] simulated the persistence function in the 2; 2-
SFM and found that at long times it was well fitted by a stretched exponential with a
stretching exponent b close to 1/2, for up-spin concentrations c between around 0.08
and 0.2. Additional evidence of stretching was obtained [275] by analysing the power
spectrum of spin fluctuations, i.e. the Fourier transform of the autocorrelation
function CðtÞ; see (10) in section 2.2. At high temperatures the spectrum is practically
Lorentzian, with a slight broadening because even for T !1 the kinetic constraints
still act (since c ¼ 1=2; constraints only become irrelevant for c ¼ 1, corresponding
formally to � ¼ �1). At temperatures below T ¼ 0:5 the power spectrum showed
1=!-noise in a large band of frequencies; from (11) this corresponds directly to a
large frequency range where the dissipative response is approximately constant, and
hence to a wide spectrum of relaxation times.

Finally, we mention simulation work [276] on the spin autocorrelation function
in the 2; 2-SFM with a ferromagnetic interaction J included; see (22). Stretched
exponential behaviour is again observed, but with parameters (relaxation time and
stretching exponent) that depend on J and T only through the equilibrium
concentration c of up-spins. This shows that the dynamical behaviour of the model
in the glassy regime is largely independent of the precise details of the energy
function and instead dominated by the effects of the kinetic constraints.
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We now move on to the stationary dynamics of SFMs with directed constraints.
In these models, it can be shown [268] that the directionality of the constraint implies
that all non-local spin correlations niðtÞnjðtÞ

� �
� c2 vanish, so that the spin

autocorrelation function (114) and the autocorrelation function (115) of the total
up-spin concentration give exactly the same information. The proof is easiest to see
in the East model: consider spin ni and a spin to its right, nj with j > i. Because each
spin facilitates spin-flips of only its right neighbours, the value of njð0Þ cannot affect
the state of niðtÞ at times t > 0. Hence niðtÞnjð0Þ

� �
� c2 ¼ 0 for t > 0. But in detailed

balance systems all correlation matrices are symmetric (see section 4.7.1) and so also
njðtÞnið0Þ
� �

� c2 ¼ 0 for t > 0; the two results together imply that all non-local
correlations vanish.

For the simplest model with directed constraints, the East model, Jäckle and
Eisinger [79, 218] obtained an approximation for the spin autocorrelation function
using an effective medium approximation. Effectively the same result was derived by
Pitts and Andersen [238] using diagrammatic methods; see (108). The approximation
predicts a spurious dynamical transition at an up-spin concentration of c ¼ 0:5, with
q ¼ Cðt!1Þ increasing smoothly from zero to non-zero values. The MCA derived
by Kawasaki [230], on the other hand, gives the relation (103) and, as discussed in
section 4.7.3, predicts a transition at c ¼ 0:2, with a discontinuous jump of q from 0
to 1/2. Both approximations can therefore only be reasonable at sufficiently large c,
or for short times at smaller c; a comparison with numerical simulations [269] shows
that the effective medium approximation is generally more accurate in these regimes.
Improved approximations of the form of extended MCA [238] avoid the prediction
of a spurious dynamical transition at c > 0, and are quantitatively more satisfactory
over a larger range of times and up-spin concentrations. However, for small c they
still predict a decay of CðtÞ that is too fast and too similar to an exponential
compared with numerical simulations. It had been noticed early on [79] that the non-
exponential behaviour is well fitted by a stretched exponential only over a limited
time range.

Pitts et al. [269] also suggested that for low T (i.e. low c) the autocorrelation
function of the East model might exhibit scaling behaviour in the form
CðtÞ ¼ ~CCðt=�ðTÞÞ with a diverging timescale �ðTÞ for T ! 0 and a scaling function
~CC close to a stretched exponential. It seems likely that such scaling will indeed
apply in the asymptotic long-time regime; from arguments based on links to
defect-diffusion models [218], the rigorous work of [267] and results for the out-
of-equilibrium behaviour [220] the asymptotic timescale should be �ðTÞ �
expð1=T2 ln 2Þ, but the asymptotic scaling function is expected to be a simple (not
a stretched) exponential, possibly up to power-law factors [218]. However, for times
much shorter than �ðTÞ it was shown that the correct scaling variable for the initial
decay of the autocorrelation function is not t=�ðTÞ but rather � ¼ ½t=�ðTÞ�T ln 2 for
low T [220, 221], giving very strongly stretched relaxation behaviour. To be
compatible with the cross-over to the asymptotic t=�ðTÞ-scaling, the scaling function
of � would then have to decay to zero at the finite value � ¼ 1, since � > 1 gives
t=�ðTÞ ¼ �1=T !1 for T ! 0 [213]. Buhot and Garrahan [83, 84] gave an
alternative derivation of the stretching exponent T ln 2, by considering the persis-
tence function of up-spins. (For the East model, this is essentially identical to the
autocorrelation function for c! 0, since once an up-spin has flipped down the
probability for it to ‘reappear’ later in the same place is OðcÞ.) For the asymmetric
1; 1-SFM with small asymmetry parameter a they found a cross-over in the
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persistence function from behaviour typical of the East model (a ¼ 0) to that for the
1; 1-SFM, at times around t � ð1þ a�1Þe1=T where the diffusion of up-spins enabled
by the non-zero value of a becomes significant (see section 5.2).

For the more complicated SFMs with directed constraints, i.e. the North-East
model and the ða; a� 1Þ-Cayley tree models, most work has focused on predicting
the location of the dynamical transitions, which in these models arise from strong
reducibility effects below some up-spin concentration c� (see section 5.2). Beyond
this, almost no details on the shape of spin autocorrelation and persistence functions
are known.

Let us now consider the equilibrium dynamics of kinetically constrained lattice

gases. Kob and Andersen [88] simulated the intermediate self-scattering function (14),
suitably modified to take account of lattice symmetries (see section 3.3.1). In accord
with the original motivation for defining the model, they compared their results
primarily to the predictions of MCT as applied to supercooled liquids [16–19]. No
plateau at intermediate times was found, in contrast to MCT (see figure 14 above).
This was rationalized from the fact that in MCT the decay of correlations to the
plateau is caused by particles ‘rattling’ in their cages; but in the KA model, particles
that are caged in were argued to be likely completely immobile, so that rattling is
essentially absent and any plateau would be very close to the initial value of the
correlator. MCT predicts a power law in time for the decay from the plateau, and in
the glassy regime of high densities the simulation results for small wavevectors (large
lengthscales) were in accord with this. But the power law exponent was not
independent of density as expected fromMCT, and for larger wavevectors deviations
from power law behaviour appeared. The decay at longer times is predicted to be a
stretched exponential by MCT, and the large-wavevector data could be fitted by this,
but again with a variable stretching exponent not expected from theory. Overall,
Kob and Andersen concluded that the KA model, in spite of having been designed to
incorporate the caging effects that MCT should be able to describe, showed
surprisingly poor agreement with MCT predictions.

For the triangular lattice gas, the autocorrelation function (114) has been
simulated; since in this model ni ¼ 0, 1 represent a hole and a particle, respectively,
this is essentially a local density correlation function. Non-exponential time-
dependences were found on increasing particle concentration c, but with a functional
form more complicated than a simple stretched exponential [118]. The correlation
of Fourier-transformed density fluctuations, i.e. the intermediate scattering
function (13), shows more structure. In particular, at high particle densities the
character of the relaxation changes as a function of the wavevector, from a single
decay at small wavevectors (large lengthscales) to a two-stage decay with an
intermediate plateau at large wavevectors; see figure 20. (As explained in
section 5.5 below, this wavevector-dependence can be interpreted as evidence for
dynamical heterogeneity.) An MCA applied to the reducible memory function
produced satisfactory fits to the data at low c (< 0:3), but was found to lead to
unphysical divergences of the correlation functions for larger c; compare the
discussion in section 4.7.2. Contrasting with the results for the KA model, one
notices that the triangular lattice gas exhibits two-step relaxation processes while the
KA model does not. This may be due to the different correlation functions studied
(self versus coherent intermediate scattering function): although at least from the
MCT for supercooled liquids [16–19] one would not expect this to cause qualitative
differences, Jäckle [86] hints that also for the triangular lattice gas the self-

Glassy dynamics of kinetically constrained models 305



intermediate scattering functions do not show two-step relaxations. Another possible

explanation might be that the triangular lattice gas has genuinely different dynamics,

with wider cages in which particles can ‘rattle’ while being confined by their

neighbours. But it is not obvious from the dynamical rules why this should be the

case; a closer comparison between the two models would be desirable to clear up this

puzzle.

In the topological, off-lattice version of the cellular model (section 3.5), Davison

and Sherrington [126] considered the autocorrelation function of the local deviations

ni � 6 from the hexagonal ground state. For the lowest T � 0:25 for which

equilibrium can be achieved, this just begins to develop a shoulder, which one

expects to broaden into a plateau for lower T . The region around the shoulder could

be fitted reasonably well with the prediction of the MCT for supercooled liquids,

which gives a power-law decay from a plateau value. The plateau could be more

clearly seen in the lattice version of the model [127], with the timescale for the decay

from the plateau following an Arrhenius law as expected due to the activated

character of the dynamics.

In the model of thin needles attached to an f.c.c. lattice, Renner et al. [192]

investigated equilibrium correlation functions by extensive computer simulations.

They used Newtonian dynamics, so that the state of each needle i is characterized by

a its orientation, specified by unit vector ui, and its angular velocity xi. The

autocorrelation function of the ui was found to develop a shoulder for needle

lengths (normalized by the lattice constant) of l ¼ L=a � 2:5. For larger l it failed to

decay completely within the simulation time window, with the shoulder developing

into a region of very slow decay, roughly linear in ln t. (Less detailed simulations for

the same model on a b.c.c. lattice [193] found similar results.) A clearer change in

behaviour was seen in a carefully crafted correlation function of the angular
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Figure 20. Intermediate scattering function (13) for the triangular lattice gas, for particle
concentration c ¼ 0:7 and a large wavevector k corresponding to lengthscales of
order the lattice spacing. Notice the two-stage relaxation; the shoulder would be
expected to grow into a plateau for even higher c. The dashed line is, up to a
multiplicative constant, the fraction of particles that do not hop up between times 0
and t; this is seen to govern the long-time decay of the intermediate scattering
function. From [86]. Copyright Institute of Physics Publishing.



velocities,  ðtÞ ¼ P2ðh x̂xiðtÞ � x̂xið0ÞÞi, where P2ðxÞ ¼ ð3x2 � 1Þ=2 is the second
Legendre polynomial and x̂xi is the angular velocity normalized to unit length. The
attraction of this choice is that it detects whether the needle orientations ui explore
the whole unit sphere (which means that orientational caging effects are un-
important) or whether they remain close to a particular orientation. In the first case
also x̂xi explores the whole unit sphere, and  ðtÞ decays to 0 for large t. In the second
case, x̂xi—which is always orthogonal to ui—remains confined to the plane
orthogonal to the frozen needle orientation, and decorrelation within this plane
gives  ðtÞ ¼ 1=4 for large t. Consistent with this,  ðtÞ was found to develop a plateau
at  ¼ 1=4 for needle lengths above l � 2:7. The change in behaviour is smooth, and
therefore is unlikely to correspond to a true dynamical transition (see section 5.2),
but nevertheless takes place over a narrow range of l.

We mention finally that stretched exponential behaviour has also been found in
the energy autocorrelation function for a simplified Backgammon model [158] and
for the low-T Glauber dynamics of the unconstrained ferromagnetic Ising chain [146,
277, 278], in both cases in an intermediate time window limited by exponential
behaviour for early and late times.

5.4. Out-of-equilibrium dynamics
In this section we discuss the out-of-equilibrium dynamics of KCMs, which

should be relevant for understanding the behaviour of glasses (as opposed to
supercooled liquids, which still achieve metastable equilibrium on accessible time-
scales). We begin with a discussion of nonlinear relaxation after sudden changes in,
e.g. temperature (section 5.4.1). Section 5.4.2 reviews results on the behaviour of
KCMs under cyclic heating and cooling. In section 5.4.3 we move on to two-time
correlation and response functions and effective temperatures defined on the basis of
FDT violations out of equilibrium. Finally, section 5.4.4 briefly discusses ways of
classifying glassy dynamics in KCMs by comparing the evolution of two indepen-
dent ‘clones’ of a system.

5.4.1. Nonlinear relaxation
We begin our discussion with spin-facilitated models, specifically with 1; d-SFMs

that exhibit defect-diffusion rather than cooperative relaxation processes. In the 1; 1-
SFM, the relaxation of the up-spin concentration cðtÞ after a quench to low T , and
therefore low equilibrium up-spin concentration ceq, was studied in [55]. On
timescales of order unity, one has effectively zero-temperature dynamics as explained
in section 4.3, and cðtÞ will decay to a plateau value, e.g. c ¼ ð1=2Þe�1=2 if the system
was at T ¼ 1, c ¼ 1=2 before the quench. Thereafter, relaxation takes place via the
diffusion of isolated up-spins which coalesce when they meet; as long as cðtÞ " ceq,
the reverse process of one up-spin creating another one is negligible. One thus has a
process of diffusive growth of domains of down-spins. The basic rate for this process
is set by the effective up-spin diffusion constant Deff ¼ ceq=2, giving average domain
lengths scaling as �ll � ðceqtÞ1=2 (see figure 21) and thus for the up-spin concentration
cðtÞ � 1=�ll � ðceqtÞ�1=2. This scaling also follows from exact results for the effective
low-ceq reaction–diffusion model Aþ A! A, see, e.g. [272]. Equilibrium is reached
when c ¼ ceq, giving an equilibration time scaling as c�3eq . Notice that this equilibra-
tion timescale is of the same order as the longest relaxation time in the final
equilibrium state; see section 5.3.
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Next we consider SFMs with cooperative dynamics. For the 2; 2-SFM, the

relaxation of the up-spin concentration after a quench from ceq ¼ 1 (all spins-up)

was simulated in [85]. Already for final up-spin concentrations ceq around 0.3, the

relaxation curves were distinctly non-exponential, and could be fitted by stretched

exponentials down to ceq � 0:08. Fredrickson [273] considered more general changes

in ceq, both increasing and decreasing. For changes that were not too large, the

nonlinearities could be well described by a ‘fictive temperature’ approach (see,

e.g. [7]), which assumes that the instantaneous relaxation time is the equilibrium

relaxation time for the current up-spin concentration. For quenches to low ceq � 0:1,
Graham et al. [77, 78] reported that the short-time relaxation exhibited a shoulder

before crossing over into stretched exponential behaviour. Comparing with the

discussion of the 1; 1-SFM above, this is as expected. In fact, for even lower T one

expects to see a roughly T-independent decay onto a plateau on timescales of order

unity, reflecting the flipping down of mobile up-spins that would take place even

at T ¼ 0, with further decay only on the much larger activated timescale

c�1eq � expð1=TÞ for up-flips.
Among SFMs with directed constraints, the East model is the simplest one. Here,

the relaxation of the up-spin concentration cðtÞ after a quench from high to low T

can be understood from the analysis described in section 4.6, which reveals that the

dynamics takes place on a hierarchy of timescales of order c�keq � expðk=TÞ, with
k ¼ 0; 1; . . . If cðtÞ is plotted against the scaled time variable � ¼ T ln t, then for

T ! 0 the k-th stage of the dynamics shrinks to the point � ¼ k. In this limit the

results of section 4.6 imply that the average domain length �ll will increase in a

‘staircase’ fashion, with jumps at integer values of �. The up-spin concentration

c ¼ 1=�ll will therefore also relax in plateaux towards ceq � 1. At non-zero
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Figure 21. Growth of the average domain length �ll (top) and corresponding decay of the up-
spin concentration c (bottom) after a quench in the 1; 1-SFM. Results are given for
several temperatures corresponding to equilibrium up-spin concentrations (from top
to bottom in the lower plot) ceq � 1:1� 10�4; 1:3� 10�3; 6:7� 10�3; 0:034. The
average domain length grows diffusively as �ll � t1=2 (dotted straight line in upper
plot). From [55]. Copyright American Institute of Physics.



temperature the steps between the plateaux will be rounded and cross over into the

decay predicted by the anomalous coarsening law, c ¼ 1=�ll � t�T ln 2. Figure 22 shows

the results of simulations for a range of values of � ¼ expð1=TÞ ¼ ceq=ð1� ceqÞ.
Compared to earlier simulations [80], the longer timescales (up to t ¼ 1010) reveal the

plateaux in �ll versus � that develop with decreasing T ; their values are in good

agreement with the predicted theoretical values. In [80], the relaxation of cðtÞ had
also been explored after upward quenches, i.e. increases in T of ceq. A strong
asymmetry in the relaxation functions for upward and downward temperature

changes was found; this of course makes sense due to the strong dependence of

the relaxation time on the final temperature.

For the asymmetric 1; 1-SFM, which compared to the East model enables
facilitation also by right up-spin neighbours but at a rate reduced by the asymmetry

parameter a (see (32)), we already mentioned in section 5.2 that, in addition to the

cooperative relaxation processes of the East model, relaxation can proceed by up-

spin diffusion on the timescale �diff � ð1þ a�1Þe1=T . Buhot and Garrahan [83, 84]
argued that the decay of cðtÞ should therefore cross over for t � �diff to the diffusive

domain growth scaling ðt=�diffÞ�1=2 typical of the 1; 1-SFM. They confirmed this in

simulations; as a increases the relaxation of cðtÞ exhibits fewer and fewer plateaux

since the cross-over time �diff decreases.
At this point, we briefly interrupt the usual order in which we give results for the

different KCMs and discuss the triangle model (see section 3.6). The reason is that

this model exhibits, somewhat surprisingly, a time- and lengthscale hierarchy very

similar to that of the East model. Newman and Moore [130] showed that the relevant
configurations for relaxations at low temperatures consist of three up-spins in the

corners of equilateral triangles of side length l ¼ 2k. (Recall that the spins we are

talking about here are the ‘defect spins’ ni ¼ ð1� �i�j�kÞ=2 2 f0; 1g, not the spins

�i ¼ �1 of the underlying interacting model, and that the allowed transitions are
simultaneous flips of the ni at the corners of elementary upward triangles.) For k ¼ 0,

there is no energy barrier for flipping down the three up-spins. For k ¼ 1, the spins

can be flipped down by flipping three smaller triangles of unit side length in series, as
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Figure 22. Evolution of average domain length �ll in the East model, after a quench at t ¼ 0
from equilibrium at c ¼ 1=2 to a small temperature T . Simulation results for four
values of � ¼ expð�1=TÞ ¼ ceq=ð1� ceqÞ are shown, obtained from a single run for a
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theoretical prediction for T ! 0. Inset: theory for larger �, and � !1 asymptotes.
From [220]. Copyright American Physical Society.



shown in figure 23. Since the intermediate state now contains four up-spins, this

process has an energy barrier of one. Continuing recursively, one sees that minimum

energy path for flipping three up-spins in the corners of a triangle of size l ¼ 2k is

simply k; this is in direct analogy to the relaxation of domains of size l ¼ 2k in the

East model. The associated activation timescales � � expðk�Þ � c�keq again become

well separated for low temperatures, and the up-spin concentration c ¼ nih i after a
quench shows the corresponding plateaux [131]. The theory for the East model can

be applied to this case and, while no longer exact, provides a good approximation

to the observed plateau heights [131]. Smoothing out across the plateaux, the

typical distance between up-spins grows as �ll � tT ln 2 as in the East model; since
�lleq �

ffiffiffiffiffiffi
ceq
p � expð1=2TÞ in equilibrium, extrapolation of this growth law gives an

equilibration time � � expð1=2T2 ln 2Þ differing only by a factor 1=2 from that for

the East model [131]. We had already anticipated this result in section 5.2.

Let us return now to SFMs and consider one of the variations on SFMs discussed

in section 3.2: the ferromagnetic Glauber Ising chain with the constraint that flips of

spins with two up-spin neighbours are forbidden. The coarsening behaviour of this

model at T ¼ 0 has been studied by simulation and an independent interval

approximation combined with a scaling analysis [105]. The kinetic constraint implies

that domains of up-spins cannot coalesce, because the final down-spin between them

can never be eliminated. Domain walls can therefore be eliminated only by

coalescence of down-spin domains, giving faster growth l�ðtÞ � t1=2 ln t for the

average length of down-spin domains, while up-spin domains coarsen according to

the conventional lþðtÞ � t1=2. The up-spin concentration—which in the absence of

the kinetic constraint and at T ¼ 0 would remain constant in time—therefore decays

logarithmically to zero, cðtÞ ¼ lþðtÞ=½l�ðtÞ þ lþðtÞ� � 1= ln t and this has been

likened [105] to the slow compaction observed in vibrated granular media (see

section 2.6).

Next we consider constrained lattice gases. As pointed out in section 3.3, in the

standard KA model the density c of particles is conserved. Nonlinear density

relaxation can therefore only be studied in variants of the model that allow for

compaction under gravity or particle exchange with a reservoir. In the KA model

with gravity (on a b.c.c. lattice, with m ¼ 5) the relaxation of the density was studied

from an initial loose packed state of bulk density c � 0:71, obtained by letting the

particles fall from the upper half of the simulation box at T ¼ 0 [117]. (The

equilibrium state at this temperature, by contrast, has all particles packed at the

bottom of the system to their maximum density c ¼ 1; see section 5.1 for why this
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Figure 23. Relaxation pathway in the triangle model. The starting configuration has three
defects (up-spins, shown as filled circles) at the corners of an equilateral triangle of
side length 2. These can be relaxed by successively flipping the spins in three
elementary triangles as shown; the activation barrier is �E ¼ 1 since one extra up-
spin is created during this process. This procedure can be iterated to larger triangles,
e.g. up-spins in the corners of a triangle of size 4 can be relaxed by carrying out the
above move sequence in three subtriangles of size 2, with a resulting activation
barrier of �E ¼ 2. Figure from [130]. Copyright American Physical Society.



maximally dense state is accessible in spite of the kinetic constraints.) If one then lets
the system evolve at non-zero T , corresponding roughly to excitation by vertical
vibration of the container, cðtÞ increases slowly. Its time-dependence could be well-
fitted by an inverse logarithmic law, cðtÞ ¼ c1 � ½c1 � cð0Þ�=½1þ A lnðt=�Þ� which
has been used to describe experimental data on granular compaction (see section 2.6).
While the equilibrium bulk density ceq is a decreasing function of T , the extrapolated
long-time value c1 of the density first increases with T , goes through a maximum
and then decreases before eventually meeting the equilibrium curve. (The meeting
point occurs at 1=T � 0:04. Since the lattice units were chosen such that the height
difference for a particle hop to a nearest neighbour site in a lattice plane above or
below is unity, this temperature corresponds to a ‘barometric’ excitation height of
around 25; this is a substantial fraction of the bulk height of the sample, which was
�100.) The fact that c1 < ceq for lower T was interpreted as evidence for a
dynamical transition, with the system failing to achieve equilibrium even at very
long times. The possibility that a slow increase of cðtÞ towards ceq would be observed
outside the simulation time window is of course difficult to exclude. As an aside, we
note that the same model has also been used successfully to study segregation of
granular materials under vibration: by allowing some particles to move irrespective
of the kinetic constraints, one obtains a model with two particle species. At T > 0
the more mobile particles then accumulate at the bottom of the simulation box, since
they can fill the holes that remain between the constrained particles [117].

The second variation of the KA model where density relaxation can be
investigated does not include gravity but allows particle exchange in a boundary
layer that is in contact with a particle reservoir at some chemical potential �; see
section 3.3. A ‘crunch’ then corresponds to a sudden increase in �. The relaxation of
particle density after such a crunch has been investigated by simulations and within a
coarse-grained continuum model (see section 4.10). If the final chemical potential is
such that the corresponding equilibrium density ceq is below that of the dynamical
transition at cdyn (see section 5.2), the continuum model predicts [258] that the
timescale for the relaxation of the density profile to the uniform value ceq is governed
by the inverse self-diffusion constant in a homogeneous system, i.e. � � 1=Ds �
ðcdyn � ceqÞ�� with � � 3:1. As ceq approaches cdyn, this timescale diverges. For
crunches to higher chemical potentials, the continuum model predicts that the
density profile relaxes towards the maximum achievable density cdyn with a power-
law time-dependence � t�1=� [257], and numerical simulations are consistent with
this [110, 257].

The two ideas of including gravity and allowing particle exchange with a
reservoir have also been combined; the boundary layer for particle exchange is then
assumed to be at the top of the system. Density relaxations are somewhat more
complicated to predict in this situation because of the non-trivial vertical density
profile. The typical relaxation time was predicted to diverge when the equilibrium
density of the lowest, densest layer approaches cdyn, but with an exponent �� 2 that
is smaller than � [258]. For higher reservoir chemical potentials, a section at the
bottom of the density profile relaxes to cdyn for long times; the time-dependence for
this relaxation was found from both an asymptotic solution of the continuum model
and numerical simulations as a power law, t�1=ð��1Þ.

We now turn to models inspired by cellular structures; see section 3.5. In the
topological froth model, glassy behaviour is seen in the relaxation of the energy
(which is proportional to the number of defects). Starting from two different initial
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configurations, one strongly disordered and one perfectly ordered, the initial
configuration is remembered at low T even for the longest accessible simulation
times [125]. The time evolution of the energy relaxation from a high-temperature,
disordered state was studied in more detail for the lattice version of the model [127]
and showed the two-step form expected for activated dynamics, with a nearly T-
independent decay to a plateau on timescales of order unity, and the remaining decay
taking place only on activated (Arrhenius) timescales. From the effective low-
temperature model for this system (see sections 3.5 and 4.10) one deduces that the
short-time evolution is dominated by diffusion of defect dimers and dimer–antidimer
annihilation Aþ B!1; the dynamics on longer, activated timescales arises instead
from the diffusion of isolated defects and defect-antidefect annihilation, giving again
Aþ B!1. This leads to the prediction of t�1=2-scaling for both the short- and
long-time decays, which is in good agreement with simulations [127].

Finally, for models with entropic barriers such as the Backgammon and oscillator

models, we already saw in section 4.3 that the energy relaxes logarithmically slowly
after a quench [149–153]. This behaviour persists for all times if the final temperature
is zero; at non-zero temperature it is observed only at intermediate times smaller
than the longest relaxation time. For the zeta urn model [159, 162] with a random
initial configuration, one finds both at criticality and in the condensed regime that
the occupancies PkðtÞ show scaling behaviour, becoming functions of the single
scaling variable kt�1=2 when both k and t are large.

5.4.2. Heating–cooling cycles
In this section we review the behaviour of KCMs under cyclic variations of

temperature (or density etc). As explained in section 2.1, such heating–cooling cycles
in real glasses show strong hysteresis effects. These demonstrate that, as soon as a
supercooled liquid falls out of equilibrium because its relaxation times are too large
to keep pace with the external heating and cooling, it develops a strong memory of
its temperature history.

To recap briefly the discussion in section 2.1, on cooling the energy E departs
from the equilibrium line at some cooling-rate dependent Tg; for lower temperatures,
the decrease in energy with temperature T is much reduced and the value of the
specific heat therefore drops around Tg. When the system is heated back up, the
energy increases slowly enough with T to cross below the equilibrium line, rejoining
it by a steep increase only at a higher temperature; this increase manifests itself as a
peak in the specific heat. (Notice that we use the term specific heat here to refer to
the temperature-derivative of the energy; in equilibrium, the specific heat is also
related to the amplitude of energy fluctuations but out of equilibrium this is not
the case.)

Many KCMs exhibit the above effects; by way of illustration we show in figure 24
typical cooling–heating cycles in the Backgammon model [149, 150]. While the
temperature evolution of the energy during the cooling process is easy to understand
in terms of the effective freezing of the slow degrees of freedom of the system, the
behaviour on reheating is less intuitively obvious. We therefore now sketch an
analysis of this phenomenon due to Brey and Prados, who applied the concept of a
‘normal curve’ for the heating process to a number of simple models. The normal
curve in general exists for any irreducible Markov process with time-dependent
transition rates. It gives the long-time behaviour of the time-dependent probability
distribution over configurations, independently of initial conditions, and is the
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analogue of the unique stationary distribution for irreducible Markov processes with

constant transition rates [278, 279]. For cooling processes the dynamics becomes

reducible in the limit T ¼ 0, even in models without kinetic constraints, and so a

normal curve does not exist; for the heating case, however, there is no such

restriction. Brey et al. [277, 280] studied in detail the ferromagnetic Ising chain with

Glauber dynamics. (A similar analysis can be performed [124] for the models with

hierarchical kinetic constraints described in section 3.4.) They showed that the

energy during a heating process from T ¼ 0 can be decomposed into two contribu-

tions, EðTÞ ¼ ENðTÞ þ EpðTÞ. The first term is the normal curve for heating,

constructed with equilibrium at T ¼ 0 as the starting configuration. The second

term describes the correction due to the preceding cooling protocol by which T ¼ 0

was reached, and vanishes in the limit of infinitely slow cooling. Brey et al. proved

that the normal curve stays below the equilibrium curve EeqðTÞ and coincides with it

only at T ¼ 0 and T ¼ 1. On the other hand, in a realistic cooling schedule one does

not reach equilibrium at T ¼ 0, so that EpðT � 0Þ is positive and the total energy

EðTÞ is above the equilibrium curve at low T . As T is increased and the normal

curve drops increasingly below the equilibrium curve, the two effects eventually

cancel and this causes the crossing of EðTÞ below the equilibrium curve.

The effects of cyclical heating and cooling have been studied in a number of

KCMs; we already referred to the Backgammon model above. As far as spin-

facilitated models are concerned, Graham et al. [77, 78] studied in detail the

behaviour of the specific heat in temperature cycles for the 2; 2-SFM, 2; 3-SFM
and 3; 3-SFM. Starting from a glassy configuration obtained by quenching to low T ,

a sharp peak in the specific heat was observed on heating, and a much broader peak

Glassy dynamics of kinetically constrained models 313

0.0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

E/M

0.16 0.18 0.2

T

-0.8

-0.75

-0.85

-0.9

-0.95

-1

Figure 24. Heating–cooling cycles in the Backgammon model at two different cooling rates.
For the lower cooling rate (dashed) the system follows the equilibrium relation
between E and T to lower temperatures. From [150].



at lower temperatures on cooling; as explained at the beginning of this section, this
agrees qualitatively with experimental observations on glasses.

In the context of lattice gases, the analogues of cooling runs were studied for the
grand canonical KA model, where particle exchange with a reservoir is allowed in a
boundary layer (see section 3.3). The evolution of the inverse particle density 1=c was
simulated in slow compression runs, implemented by decreasing the inverse chemical
potential 1=� at a constant rate [110]. The inverses are chosen here to emphasize the
analogy with energy and temperature in glasses; small 1=� corresponds to low T , and
small 1=c to the glassy regime of low energy. Similarly to cooling experiments in real
glasses, 1=c begins to deviate from the equilibrium curve 1=c ¼ 1þ e�� (see (35))
later and later as the compression rate is reduced. Given that the KA model has an
at least effective dynamical transition at cdyn ¼ 0:881 (see section 5.2), where the
timescale for self-diffusion appears to diverge, one would expect that cdyn is the
density that is reached in very slow compression experiments. The results are
compatible with this [110]; see figure 15 above. Increasing and decreasing 1=� in
analogy to heating–cooling cycles also leads to the expected hysteresis in 1=c, with
lower values of 1=c found in the decompression phase that is analogous to reheating.

Finally, simulations of cooling runs have been carried out in several other
KCMs. In the triangle model, annealing runs with an exponential cooling schedule,
TðtÞ ¼ T0 expð��tÞ were performed, and showed the expected deviations from the
equilibrium relationship between defect concentration c and temperature T when
inverse cooling rates and relaxation times became comparable [130]. In the
topological model of cellular structures, cooling experiments [126] found that even
for slow cooling rates the system falls out of equilibrium at sufficiently low
temperatures where relaxation timescales become very long (T � 0:2), and similar
behaviour is observed in the lattice variant [127].

5.4.3. Two-time correlation and response, and effective temperatures
As explained in section 2.3, systems such as glasses which do not equilibrate on

experimentally accessible timescales show ageing, which means that their properties
depend on the ‘waiting time’ tw that has elapsed since they were prepared by, for
example, a quench. The time-evolution of one-time quantities such as up-spin
concentration or particle density, discussed in section 5.4.1, already testifies to this.
Often ageing effects can persist, however, even when the relaxation of one-time
quantities has become so slow that their values are already effectively constant. One
then needs to consider two-time quantities such as correlations and response
functions. Since the system is out of equilibrium, these generically violate FDT,
and it has been suggested that the FDT violation factor Xðt; twÞ defined by (18) can
be used to define an effective temperature Teff ¼ T=X .

We begin our discussion with spin-facilitated models. As in section 5.3, let us
review briefly the definitions of the two-time quantities most frequently studied in
these models. The two-time spin autocorrelation function is, in a natural general-
ization of (114),

Cðt; twÞ ¼
1

N

X
i

½ niðtÞniðtwÞh i � niðtÞh i niðtwÞh i�: ð118Þ

No normalizing factors have been introduced here, since the normalization of two-
time quantities is a somewhat subtle issue; see section 2.3. Comparing with (16), it is

F. Ritort and P. Sollich314



easy to see that Cðt; twÞ is (apart from a factor of N) the two-time correlation
function of a ‘random staggered magnetization’ � ¼ ð1=NÞ

P
i �ini, with the signs

�i ¼ �1 chosen randomly for each i [281]. Imposing the constraint
P

i �i ¼ 0
simplifies matters by making �ðtÞh i ¼ 0 for all t. The associated response function
is obtained by adding a term �Nh� to the energy function E; if the field is increased
from zero to a small constant value h at time tw, then the normalized change in �,
�ðtÞh i=h, gives the two-time step response function �ðt; twÞ for t > tw. As emphasized
in section 2.3, in an out-of-equilibrium situation two-time correlation and response
are non-trivial functions of their two time arguments, whereas in equilibrium they
depend only on t� tw.

As in the case of stationary dynamics, one may also be interested in the two-time
correlations of the overall up-spin concentration; by analogy with (115), but again
without normalization, this is

Ccðt; twÞ ¼
1

N

X
ij

½ niðtÞnjðtwÞ
� �

� niðtÞh i njðtwÞ
� �

�: ð119Þ

The corresponding perturbation in the energy function, which defines the response
�cðt; twÞ, is �Nhc ¼ �h

P
i ni. For the standard SFMs where E ¼

P
i ni, this

effectively changes temperature from T to T=ð1� hÞ ¼ T þ hT þ � � �, so that
�cðt; twÞ can also be thought of as measuring the response of the up-spin
concentration to small temperature changes.

After these preliminary definitions we turn to results for SFMs with undirected
constraints. All the work on two-time quantities that we are aware of has focused on
1; d-SFMs with their defect-diffusion dynamics. Simulations in d ¼ 1; 2 considered
a quench from T ¼ 1 (ceq ¼ 1=2) to small T and ceq and measured the spin
correlation function Cðt; twÞ, normalized by the equal-time value at the earlier time,
Cðtw; twÞ [214]. A strong dependence on tw was observed for waiting times of order
unity, while in the regime 1� tw � c�1eq the effect of tw was negligible. This makes
sense in light of the discussion in section 5.4.1. For times of order unity the system
evolves through the flipping-down of mobile up-spins; as emphasized in section 4.3,
in this regime one expects the exactly solvable T ¼ 0 dynamics to correctly predict
the dynamics, and this was indeed found in [214]. Further evolution of the system
requires diffusion of isolated up-spins, and so only takes place once tw becomes of
order 1=Deff � c�1eq . Even for tw of this order and larger, however, simulations
showed ageing effects on Cðt; twÞ to be rather weak [55, 214]. For the 1; 1-SFM, one
might expect that in this time regime, where the model exhibits growing domains of
down-spins, the two-time correlations should collapse when plotted as a function of
the ratio of typical domain lengths at the early and late times, �llðtwÞ=�llðtÞ � cðtÞ=cðtwÞ.
The simulations of [55, 282] did not show this, but the values of tw accessed may not
have been large enough to see the expected scaling.

In the 1; 1-SFM, the response function �ðt; twÞ conjugate to the spin autocorrela-
tion is found to be non-monotonic as a function of the later time t [46, 55, 282]. This
may appear surprising, but a nice intuitive justification for this behaviour was given
in [46], for the regime of times long compared to the initial fast relaxation processes
(see above). For low up-spin concentrations cðtÞ, up-spins are far apart, as they
would be in equilibrium if ceq is small. Since only up-spins and their neighbours are
mobile and can therefore contribute to the response, �ðt; twÞ should be proportional
to ½cðtÞ=ceq��eqðt� twÞ, where �eqðt� twÞ is the equilibrium response at the final
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temperature after the quench. This form fits simulation data very well [46]; the non-
monotonicity arises since �ðt; twÞ is a product of two factors, one (cðtÞ) decreasing
with t and one (�eqðt� twÞ) increasing. The behaviour of the autocorrelation
function can be rationalized with a similar approach. Intriguingly, these scaling
relations suggest that Cðt; twÞ and �ðt; twÞ are related by the trivial equilibrium FDT,
even though, e.g. the up-spin concentration cðtÞ is still far above its equilibrium value
ceq. Simulation results indeed showed that a plot of T�ðt; twÞ versus Cðt; tÞ � Cðt; twÞ
(see section 2.3) gives a straight line of slope one through the origin [46]. Earlier
attempts [55] at FDT plots using the disconnected correlation function
ð1=4Þ ð2niðtwÞ � 1Þð2niðtÞ � 1Þh i, chosen in such a way as to be automatically normal-
ized to unity at t ¼ tw, had produced rather counter-intuitive non-monotonic
relations between response and correlation.

An interesting twist to the apparently trivial FDT relations in the out-of-
equilibrium dynamics of the 1; 1-SFM is provided by recent work on defect
(domain-wall) dynamics in the ferromagnetic Ising chain with unconstrained
Glauber dynamics [145]. The dynamics of these defects is rather similar to those in
the 1; 1-SFM, except that rather than coalesce they annihilate when they meet.
Indeed, appropriate scaling plots of domain-wall autocorrelation and response
functions look rather similar to those in [46], and the FDT plot becomes a straight
line at long times. This suggests again that the FDT violation factor is Xðt; twÞ ¼ 1
and equilibrium FDT holds. However, when plotted, e.g. against t=tw, one finds that
Xðt; twÞ is a non-trivial function and generically < 1. This apparent paradox is
resolved by noticing that significant FDT violations only occur on timescales t� tw
of order tw, where the autocorrelation function has already decayed to such a small
fraction of its equal-time value that FDT violations are not visible either in the FDT
plot or the scaling collapse. A detailed investigation of Xðt; twÞ for the 1; 1-SFM for
similar effects in the regime t� tw � tw should therefore be worthwhile.

We finish off our discussion of the 1; 1-SFM by briefly mentioning results for the
response �cðt; twÞ of the up-spin concentration to small temperature changes [214].
As is typical of activated dynamics, this response function is actually negative, and
much larger in absolute value than the equilibrium response. The apparently
counter-intuitive negative sign can be understood by considering, e.g. a small
decrease in T : this slows down the relaxation of cðtÞ to lower values, giving larger
values of cðtÞ rather than smaller ones as in equilibrium.

Next we turn to SFMs with directed constraints, in particular the East model. The
two-time spin autocorrelation function Cðt; twÞ and corresponding response �ðt; twÞ
were simulated in [55]. Because of the hierarchy of well-separated timescales that
dominates the out-of-equilibrium dynamics (see section 4.6), Cðt; twÞ exhibits
plateaux, and a naive plot against t=tw does not give a reasonable collapse of the
curves. On the other hand, plotting Cðt; twÞ=Cðtw; twÞ against the domain length
ratios �llðtwÞ=�llðtÞ ¼ cðtÞ=cðtwÞ gave good scaling collapse, as expected from the
coarsening character of the out-of-equilibrium dynamics at low T . In fact, since
in the limit T ! 0 domains simply coalesce irreversibly, one would predict
Cðt; twÞ ¼ cðtÞ½1� cðtwÞ� and thus Cðt; twÞ=Cðtw; twÞ ¼ cðtÞ=cðtwÞ, and this is com-
patible with the data of [55].

The response function �ðt; twÞ was found to be monotonic in t for the East model,
in contrast to the results for the 1; 1-SFM; this may be because the much slower
decrease in time of cðtÞ is not sufficient to produce noticeably non-monotonic
behaviour. FDT plots were also considered in [55], but have to be regarded with
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caution since they were constructed using a disconnected correlator as for the 1; 1-
SFM. They consisted to a rough approximation of two straight line segments, but
with no obvious limit plot being approached for long times; the FDT violation factor
X in the non-equilibrium sector became rather small (� 0:1) for low temperatures.
This is not inconsistent with the coarsening character of the model, which in d > 1
would be expected to give X ¼ 0 (see section 2.3 and [283]). Since the East model is
d ¼ 1-dimensional, however, this comparison is not conclusive.

At this point we consider the triangle model, because of the similarities of its
out-of-equilibrium dynamics to that of the East model. Interestingly, the
response function �cðt; twÞ of the up-spin concentration of the ‘defect spins’
ni ¼ ð1� �i�j�kÞ=2 was found to be non-monotonic in t [131], and led to
corresponding non-monotonic FDT plots. The origin of this behaviour can be
understood from the plateaux in the evolution of cðtÞ, which occur between the
relaxation timescales �k � expðk=TÞ. The perturbation conjugate to c is essentially
an increase in temperature, which reduces the �k but leaves the heights of the
plateaux in cðtÞ unaffected. The response is therefore largest around the transitions
between the plateaux, and small in between. Garrahan and Newman [131] argued
that this argument should also apply to the local response function �ðt; twÞ, and
conjectured on this basis that �ðt; twÞ in the East model should also exhibit non-
monotonic behaviour, at lower temperatures than those simulated in [55]. Notice
that in the triangle model, because of its derivation via a mapping from a system of
interacting spins �i ¼ �1 (see section 3.6), there are further correlation and response
functions that one can consider [130, 131]. One intriguing observation is that the
two-time autocorrelation function of the �i (rather than the ni) seems to scale neither
with t=tw, nor with the ratio of typical distances between defects �llðtwÞ=�llðtÞ; the
reasons for this are not presently understood [131].

We next review results on two-time quantities in constrained lattice gases. As
explained in section 5.4.1, one needs to consider the recent variations on the KA
model that include gravity or a particle reservoir to study these out-of-equilibrium
quantities. As an analogue of two-time correlation functions, the average squared
particle displacement Bðt; twÞ ¼ h½raðtÞ � raðtwÞ�2i has been studied; the correspond-
ing response function that would be related via FDT in equilibrium is obtained by
applying a random force to each particle and measuring the displacement in the
direction of the force. In the grand canonical KA-model, ageing effects on Bðt; twÞ
were studied after a crunch, i.e. an increase of the chemical potential � to a point
where the equilibrium density ceq would be above the critical value cdyn [110, 257,
284]. (Since particle exchange only acts in the boundary plane, this increase of
chemical potential is performed slowly, rather than near-instantaneously as in a
conventional temperature quench, to avoid inhomogeneities across the sample.)
For large tw, it was found that Bðt; twÞ becomes to a good approximation a
function of the scaled time difference ðt� twÞ=tw and increases roughly logarith-
mically, indicating very slow anomalous diffusion. A qualitative explanation for this
is provided [257] by supposing that Bðt; twÞ �

Ð t
tw
dt0Dsðt0Þ, with Dsðt0Þ a time-

dependent self-diffusion constant which depends on density according to
DsðtÞ � ðcdyn � cðtÞÞ�. Since, as described in section 5.4.1, the density approaches
the critical value as cdyn � cðtÞ � t�1=� this gives DsðtÞ � t�1 and thus directly the
observed logarithmic increase Bðt; twÞ � lnðt=twÞ of the particle displacements.
Remarkably, an FDT plot of the conjugate response versus Bðt; twÞ was of a simple
‘mean field’ form (see section 2.3), consisting of two approximately straight line
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segments [284]; this is shown in figure 25. The FDT violation factor was X � 0:79 in

the non-equilibrium sector (though its dependence on tw does not appear to have
been investigated), and it was later shown that this value can be understood from an
appropriately defined Edwards measure; see section 5.6. Similar FDT results were

also found for compaction under gravity at constant number of particles [285].
As mentioned in section 5.4.1, the KA model connected to a particle reservoir has

also been considered when subject to gravity, with the contact layer with the

reservoir at the top of the system. For sufficiently high reservoir chemical potential
�, the system develops a dense zone at the bottom where the particle density slowly
approaches the critical value cdyn. Using a continuum model, it was argued [258]—in

accord with simulation [285]—that in this dense zone the mean-square particle
displacement scales as Bðt; twÞ � t

�1=ð��1Þ
w � t�1=ð��1Þ, where � � 3:1 is the exponent

for the divergence of the inverse self-diffusion constant at the critical density.

Intriguingly, the exponents here are negative, implying that for t!1 the displace-
ment saturates to a constant value (which itself tends to zero for tw !1). Notice

also that, in contrast to the case without gravity discussed above, the ageing here is
not ‘simple’, i.e. Bðt; twÞ is not a function of the scaled time difference ðt� twÞ=tw
alone.

Moving on to KCMs inspired by cellular structures, Aste and Sherrington [125]
studied the two-time persistence function in the topological froth model, defined as
the fraction of cells that have not been involved in any moves between tw and t.

While for high temperatures this is tw-independent and decays exponentially with
t� tw, for low temperatures (T < 1) simulations show ageing effects. These can be
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Figure 25. Out-of-equilibrium FDT plot for the grand canonical KA model: simulation

results for waiting time tw ¼ 105 after a ‘crunch’ to chemical potential � ¼ 2:2.
Symbols show a parametric plot, obtained by varying the final time t, of the two-time
response (of particle displacements to random forces) against the corresponding two-
time correlation (mean-square particle displacement Bðt; twÞ). The plot initially
follows equilibrium FDT, indicated by the line through the origin, but then crosses
over on to a second straight line with slope smaller by an FDT violation factor of
X � 0:79. From [284].



qualitatively understood [125] from the fact that most moves are due to the diffusion
of pairs of pentagonal and heptagonal cells, whose concentration decreases with tw.
The two-time correlation function for local deviations from the hexagonal ground
state configuration, ðniðtÞ � 6ÞðniðtwÞ � 6Þh i, along with the conjugate response
function, was simulated in [126]. This correlation function decays to a plateau
within times t� tw of order unity, while the remaining decay takes place on
timescales growing with tw. The response function is non-monotonic in t at fixed
tw. This can be understood by arguments similar to those for the 1; 1-SFM above; the
decay in the response at long times again arises from the decrease in the number of
defects that drive the dynamics, which in this case are pairs of 5- and 7-sided cells.
The behaviour of the lattice version of the model is qualitatively similar [127].
Interestingly, however, if response and correlation are normalized properly (see
section 2.3) by the equal time correlator at the later time t, the resulting FDT plot
becomes the trivial equilibrium one [128]. The physical reasons for this remain to be
understood.

Of the models that arise via a mapping from underlying interacting spin systems
with unconstrained dynamics we have already dealt with the triangle model above.
Two-time quantities in the plaquette model have recently been considered in
[46], focusing on the correlation and response functions for the defect spins
ni ¼ ð1� �i�j�k�lÞ=2 (see section 3.6). Recall that the elementary transitions
between configurations are simultaneous flips of four of the ni in the corners of an
elementary lattice square. This implies in particular that pairs of n.n. defects ni ¼ 1
can diffuse unidirectionally—pairs in the x-direction can diffuse along the y-direction
and vice versa—and pairs of defects in diagonally opposite corners of lattice squares
can oscillate. Both of these processes are fast, taking place on timescales of order one
since they involve no change of the energy E ¼

P
i ni, and determine the behaviour

of Cðt; twÞ and �ðt; twÞ for t� tw of order unity. On longer timescales, diffusion of
isolated defects takes over. This proceeds by an isolated defect creating a freely
diffusing defect pair, which must then be absorbed by another isolated defect. The
activation energy for creating the pair is �E ¼ 2, and the overall timescale for this
process scales as expð2=TÞ=cðtÞ; the factor 1=cðtÞ gives the typical probability that
the defect-pair will indeed be absorbed by a different isolated defect, rather than the
original one. On the basis of these considerations, good scaling collapse of response
and correlation functions in the two different time-regimes could be obtained [46].
Remarkably, an FDT plot of T�ðt; twÞ versus Cðt; tÞ � Cðt; twÞ gave data collapse on
to a master plot for a range of different t and tw, and consisted of two straight line
segments. Buhot and Garrahan [46] gave a plausible argument for the location of the
breakpoint between these two segments, but the value of the FDT violation factor X
in the non-equilibrium sector remains to be understood.

Let us finally turn to models related to KCMs, beginning with urn models. For
the Backgammon model different types of correlation functions have been con-
sidered. In the original paper on the Backgammon model [149], the energy–energy
correlation function was simulated at T ¼ 0, finding simple ageing scaling with
ðt� twÞ=tw. These results were later confirmed by numerical integration of the exact
master equation solution in [152] and by asymptotic expansion techniques [153, 155]
which showed the existence of subdominant logarithmic corrections to the simple
scaling. The energy–energy autocorrelation function does not show the existence of a
fast relaxation process analogous to the �-relaxation in supercooled liquids and
glasses. Such a separate fast process does appear, however, in the autocorrelation
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function Cðt; twÞ of the local number of particles per box. This correlation function
and its associated response was considered in [154], using a numerical integration of
a truncated hierarchy of dynamical equations; a detailed analytical solution was
subsequently given by Godrèche and Luck [160]. The main findings are that, for
large tw, Cðt; twÞ develops a pronounced plateau, as does the corresponding response;
the long-time decay from this plateau again shows simple ageing scaling. The FDT
violation factor Xðt; twÞ when plotted against Cðt; twÞ for fixed large tw is well
approximated by a piecewise constant function, equal to one for values of Cðt; twÞ
above the (tw-dependent) plateau and to a smaller value for smaller C. This second,
non-trivial value of X tends to one logarithmically as 1� const= ln2 tw, however, so
that there is no non-trivial limit plot; also, X does not correspond to a ratio between
the actual temperature T and the temperature defining the effective equilibrium state
found in the adiabatic analysis of the dynamics (see section 4.5).

For the zeta-urn model [162] the FDT violation factor Xðt; twÞ is found to
become asymptotically a non-trivial function of the ratio t=tw. Of interest is
particularly the limit X1 obtained for t=tw !1, which is related to universal
amplitude ratios in critical dynamics. Along the critical line in the phase diagram of
the urn model (see section 3.7.2) one finds that 4=5 < X1 < 1. This contrasts with
analogous results for ferromagnetic Ising models at criticality (see, e.g. [138]) where
0 < X1 < 1=2, and is more similar to the Backgammon model where Xðt; twÞ ! 1 in
the limit of large t.

For the oscillator model (see section 3.7.3), it is natural to consider the two-time
autocorrelation function of the oscillator positions xi, and the corresponding
response. One finds [167, 169] that these display simple scaling with logarithmic
corrections: defining gðsÞ ¼ sðln sÞ3=2, one has Cðt; twÞ ¼ gðtwÞ=gðtÞ for the correla-
tion and Rðt; twÞ ¼ �@�ðt; twÞ=@tw ¼ gðtwÞ=½tgðtÞ� for the impulse response. The
effective temperature derived via the FDT violation can easily be computed and
gives the equipartition result Teff ¼ 2EðtÞ in the long-time limit; the simplicity of this
result has no counterpart in any of the other models.

5.4.4. Coarsening versus glassiness
We conclude this section with a brief discussion of an interesting quantity for

characterizing the qualitative nature of out-of-equilibrium dynamics. This is the
overlap between two ‘clones’ of a system evolving under different realizations of the
stochastic noise in the dynamics. Specifically, one imagines that the system has aged
until tw and is in configuration nð1ÞðtwÞ. One then makes a copy nð2ÞðtwÞ ¼ nð1ÞðtwÞ
and lets the two clones evolve independently for t > tw. The quantity of interest,
introduced in the context of the spherical SK model [44] and analysed in detail
in [286], is then the ‘clone overlap’

QtwðtÞ ¼
1

N

X
i

½hnð1Þi ðtÞn
ð2Þ
i ðtÞi � hn

ð1Þ
i ðtÞihn

ð2Þ
i ðtÞi�: ð120Þ

The averages are both over the configuration at the starting time tw and over the
subsequent stochastic evolution; only the former couples the two clones. The decay
of QtwðtÞ tells one how fast the clones separate in configuration space as they evolve,
and is to be compared with the two-time correlation function Cðt; twÞ defined
in (118), which measures how much each clone has decorrelated from its configura-
tion at time tw. In equilibrium, because of detailed balance, the forward evolution by
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time �t ¼ t� tw of one clone is equivalent to backward evolution by the same time,
so that

Qtwðtw þ�tÞ ¼ Cðtw þ 2�t; twÞ: ð121Þ

Both quantities are of course functions of �t only because of TTI; for exponentially
decaying correlation functions (121) gives Qtwðtw þ�tÞ / C2ðtw þ�t; twÞ.

Barrat et al. [286] proposed the name ‘type I’ for systems for which QtwðtÞ
remains large while Cðt; twÞ decays to zero. Intuitively, this corresponds to the
system ‘falling down a gutter’ in configuration space, where the two clones
remain similar even though they have moved far from their starting point at tw. A
number of coarsening systems display this behaviour, with in fact S1 ¼
limtw!1 limt!1QtwðtÞ > 0 while the analogous limit for Cðt; twÞ vanishes. The
intuitive reason for this is that on large lengthscales and at low T most coarsening
models behave essentially deterministically [144]—with the ferromagnetic Ising chain
with Glauber dynamics an obvious exception—so that the two clones stay closely
correlated in their evolution while moving far from their configuration at time tw. In
‘type II’ systems, on the other hand, Q and C decay on the same timescale, and this
can be interpreted as true ‘glassy’ evolution resulting from a rugged energy landscape
in which the two clones quickly begin to follow different routes.

Only a few studies exist of the clone overlap in KCMs. One reason for this is that
the limiting quantity S1 is not useful for KCMs: barring dynamical ergodicity
breaking, the system will eventually equilibrate to its trivial Boltzmann distribution
and the clones then decorrelate, giving Qtwðt!1Þ ¼ 0 and hence S1 ¼ 0. (In an
infinitely large coarsening system, on the other hand, S1 can be non-zero since
equilibrium is never reached.) One therefore has to look at finite times and consider
whether QtwðtÞ decays more slowly (type I) or on the same timescale (type II) as
Cðt; twÞ.

One-dimensional spin-facilitated models were studied in [55]. Numerical results
for the East model showed plateaux in the t-dependence of QtwðtÞ where Q was larger
than expected from the equilibrium relation (121), indicating a resemblance to
coarsening (type I) systems. For the 1; 1-SFM, on the other hand, the equilibrium
relation (121) was found to be valid to a good approximation, showing that Q and C
decay on the same timescale and the dynamics is therefore of type II. Similar type II
behaviour has also been observed for the lattice model of the topological froth [127]
and a disordered version in d ¼ 3 of the plaquette model [132]. Results for the
evolution of the grand canonical KA model [112] after a crunch to large reservoir
chemical potential likewise suggest type II behaviour: even though the particle
density c approaches the value cdyn where the (effective) dynamical transition takes
place, QtwðtÞ always tends to zero as t!1. A direct comparison with Cðt; twÞ would
however be needed to make this argument more conclusive.

The implications of these results for KCMs in general remain unclear: the fact
that the limiting quantity S1 cannot be used makes a clear-cut distinction into type I
and II dynamics on the basis of the clone overlap difficult. One possibility would
be to look at the so-called anomaly in the two-time response function �ðt; twÞ
conjugate to Cðt; twÞ. This anomaly can be defined as Að�tÞ ¼ �ð�t; 0Þ�
limtw!1 �ðtw þ�t; twÞ and measures the difference in step response between an
ageing system and an equilibrium system. Barrat et al. [286] suggested that type I
(coarsening) and II (glassy) dynamics should correspond respectively to a zero and
non-zero long-time value Að�t!1Þ of the anomaly. Studying the behaviour of
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Að�tÞ for KCMs could therefore help to clarify whether a classification into
coarsening versus glassy behaviour is meaningful for these models.

5.5. Dynamical lengthscales, cooperativity and heterogeneities
As explained in section 2.5, an important question in glassy dynamics is whether

the increase in relaxation timescales is linked to a growth in a dynamical lengthscale.
Such a lengthscale could arise from cooperativity in the dynamics; if the dynamics is
spatially heterogeneous, then the size of the heterogeneities (i.e. the size of regions
within which the dynamics is approximately homogeneous) also defines a length. In
this section we report on the various attempts in the literature at defining dynamical
lengthscales for KCMs. Notice that the absence of a growing static (equilibrium)
lengthscale is trivial in KCMs, since equilibrium correlations are ruled out by the
non-interacting energy functions used.

We begin the discussion with spin-facilitated models. A first category of
lengthscale definitions is based on irreducibility considerations: as we saw in sections
4.1 and 5.1, at low temperatures KCMs are effectively irreducible only for systems
above a given size. We call such lengthscales ‘irreducibility lengths’; they have also
been referred to as percolation lengths because of the link to bootstrap percolation,
e.g. in [75, 76], or cooperativity lengths [81, 173, 205, 287, 288]. Consider for example
an f ; d-SFM. As discussed in section 4.1, one can define the probability pðc;LÞ that a
randomly chosen equilibrium configuration in a system of linear size L belongs to the
high-temperature partition; this means that the all-up spin configuration can be
reached by a series of transitions respecting the kinetic constraints. A characteristic,
c-dependent irreducibility length L�ðcÞ can then be defined as that L for which
pðc;LÞ has a given value, say pðc;LÞ ¼ 1=2 [173, 205, 287]. This is just the inverse
function of the critical concentration c�ðLÞ defined in section 4.1. L�ðcÞ could also be
obtained as the inverse function of a somewhat differently defined critical concentra-
tion, c�ðLÞ ¼

Ð 1
0 dc c½dpðc;LÞ=dc� [75]. However, since the derivative dp=dc is non-

negligible only in the narrow c-range where pðc;LÞ increases steeply from 0 to 1
(compare figure 6 above), the two definitions are essentially identical. Closely related
is the definition of an irreducibility lengthscale proposed in [81]: instead of measuring
the probability that a randomly chosen configuration belongs to the high-tempera-
ture partition, let f ðc;LÞ be the average fraction of down-spins that remain after all
mobile spins have been flipped up iteratively. Setting f ðc; 0Þ ¼ 1, one can define
qðc;LÞ ¼ f ðc;L� 1Þ � f ðc;LÞ, the probability that a down-spin remains immobile
for system size L� 1 but not for size L. If (as is the case for, e.g. the 2, 2-SFM) the
system is effectively irreducible, then f ðc;L!1Þ ¼ 0 for any c > 0 and thusP1

L¼1 qðc;LÞ ¼ 1. An average lengthscale can then be defined as
P

L Lqðc;LÞ [81].
Whatever method is used, one typically finds irreducibility lengths that diverge very
quickly as temperature is lowered. For the 2; 2-SFM, for example, the critical up-
spin concentration for effective irreducibility decreases only logarithmically with
system size, c�ðLÞ � 1= lnL; see section 5.1. This gives L�ðcÞ � expðA=cÞ or, with
c � expð�1=TÞ, a doubly exponential divergence L�ðTÞ � exp½A expð1=TÞ� of the
irreducibility length as the temperature is decreased. Irreducibility lengths can also
be defined for models with directed kinetic constraints, e.g. the North-East model
and the ð3; 2Þ-Cayley tree, and then diverge at the up-spin concentration c� below
which even infinite systems are strongly reducible [81].

More local approaches to defining an irreducibility length have also been
proposed, e.g. by Sappelt and Jäckle [288]. They defined the length lði; nÞ, for a
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given spin i and configuration n, as the size (measured in number of n.n. shells) of the

smallest region around spin i within which other spins have to be flipped to make the

spin mobile. Figure 26 shows an example for the 2; 2-SFM. The spin in the centre of

the configuration shown has lði; nÞ ¼ 5 because in order to make it mobile one needs

to flip some spins in the fifth n.n. shell, but none that are further away. In addition to

an average lengthscale, which is comparable to the global irreducibility lengths

defined earlier, this method yields a whole distribution of lengthscales. Sappelt and

Jäckle [288] found that it had two distinct maxima, one for small l (in fact at l ¼ 1)

and a second broad one around the average value of l. The spatial distribution of

lði; nÞ should also be able to give insights into the origin of dynamical heterogene-

ities, but has not to our knowledge been analysed.

The above definitions of irreducibility lengths all share the feature that they take

the dynamics of KCMs into account only through the presence or absence of kinetic

constraints: they measure how big a system (or a region where motion is allowed)

needs to be for all or most spins to become mobile eventually, but do not consider

what the timescales required would be. It is therefore not immediately obvious

whether and how these lengthscales are related to typical relaxation times in KCMs.

Possible connections have nevertheless been investigated; e.g. for the f ; 2-SFM with

f ¼ 1:5; 2; 3 (the last case being strongly reducible) typical relaxation times were

found to increase roughly exponentially with the average of the local irreducibility

length lði; nÞ defined above [97]. In the 2; 2-SFM, Nakanishi and Takano [75] also

found a stronger-than-power-law timescale increase with the irreducibility length

L�ðcÞ, albeit using an unconventional definition of relaxation time as the longest—as
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Figure 26. Definition of local irreducibility (or cooperativity) length in the 2; 2-SFM, for the
circled spin in the centre. Dotted lines show n.n. shells around this spin. If the
spins in the first n.n. shell are held fixed, the centre spin cannot be flipped. The same is
true if the spins in the second shell are held fixed while other spins are allowed
to move. Continuing outwards, only once spins in the fifth n.n. shell are allowed
to flip can the centre spin be flipped down, by the spin-flip sequence 5 (or 50)
! 4! 3! 2! 1! 0. The cooperativity length is therefore l ¼ 5.



opposed to typical, e.g. integrated—relaxation time for up-spin concentration
fluctuations.

Definitions of lengthscales closely related to irreducibility lengths but now
accounting for the timescales involved in relaxation have also been proposed. Schulz
and Schulz [289] analysed cooperativity in the 2; 2-SFM by randomly selecting a
lattice site and then running the dynamics, allowing spin flips only in increasingly
large regions around the chosen spin. The smallest region within which a relaxation
of the spin occurred within some (long) fixed time interval was then defined as the
spin’s cooperatively rearranging region. The size of this region is clearly a dynamical
analogue of the quantity lði; nÞ discussed above, and in fact at least as large as the
latter. As expected, the size distribution of the cooperative regions broadened
towards larger values as T was lowered [289]. It could be fitted with two
exponentials, corresponding to small and large regions in broad qualitative agree-
ment with the results of [288] described above; with decreasing T the fraction of large
regions as well as their average size increased, the latter in a superactivated fashion.

Among other possible tools for defining dynamical lengthscales, non-local
dynamical correlations are obvious candidates. For the 2; 2-SFM, Fredrickson and
Brawer [85] numerically simulated equilibrium correlations between different spins,
nið0ÞnjðtÞ
� �

� c2. These decay to zero for t!1, but are also zero at t ¼ 0 since
different spins are uncorrelated in equilibrium. Fredrickson and Brawer [85] found
that the onset of non-zero dynamical correlations was fast, while their decay was
much slower and took place on the same timescale as the decay of the spin
autocorrelation function. Interestingly, they also observed that dynamical correla-
tions were significant only within a relatively short spatial range, e.g. of order five
lattice spacings even for the relatively small up-spin concentration of c � 0:08.

Next we review studies of dynamical heterogeneities, which have again mainly
focused on the 2; 2-SFM. In an early study [275] the fluctuations of the up-spin
concentration were analysed. In a large system, these should be Gaussian, but for the
small systems (L ¼ 16; . . . ; 32) simulated in [275] non-Gaussian fluctuations were
detected in a number of higher-order time correlation functions, suggesting non-
trivial spatial correlations due to cooperative dynamics.

A more direct analysis of heterogeneities in the 2; 2-SFM was given by Butler and
Harrowell [93]. They started the system from a random equilibrium configuration
and then recorded for each spin how often it flipped within a time interval t.
Obviously (if the system is large enough for reducibility effects to be negligible) then
all spins should eventually flip infinitely often as t!1. However, Butler and
Harrowell found long-lived regions of spins that did not flip even for very long times
t, implying pronounced dynamical heterogeneity; see figure 27. The remaining sites
of the lattice, i.e. those containing mobile spins, they classified as either active or
inactive depending on whether these spins were able to make the surrounding spins
mobile on the timescales t considered. The long-time relaxation is dominated by this
‘propagation of mobility’ from the active sites, while inactive sites occur as islands of
mobile spins confined by immobile down-spins and do not contribute significantly to
the relaxation except at short times. The typical distance � between active sites then
provides an intuitively appealing lengthscale characterizing the heterogeneity of the
dynamics. It is, however, difficult to make the definition of an active site precise; in
their simulations, Butler and Harrowell [93] chose as active sites those spins which
were mobile at time t ¼ 0 and whose eight surrounding spins had all flipped after
some suitably chosen time interval. (This time interval must be neither too short—
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otherwise no sites would be classified as active—nor so long that inactive sites are

counted because mobility from active sites has already been propagated toward

them.) Butler et al. found a convincing power-law relationship between the

relaxation timescale—measured by the mean-first passage time, i.e. the integral of

the persistence function—and the distance between active sites, � � �� with exponent

� � 7:6 over six decades in � . This fit to the observed dependence of � on T (or c) is

better than one based on the Adam–Gibbs relation [85]; see section 5.6. Butler and

Harrowell also estimated �, or rather the concentration 1=�2 of active sites,

theoretically and found good agreement with the simulated values [93]. Intriguingly,

however, their calculation turns out to be very similar to that of the concentration of

nucleating sites occurring in irreducibility proofs for the 2; 2-SFM (section 4.1). This

suggests that � should be related to the irreducibility length L�ðcÞ, and in fact Butler

and Harrowell speculate that these two lengths might diverge in a similar fashion as

c! 0. If this is so, then using L�ðcÞ � expðA=cÞ and the power-law relating � with

� � L� one would predict � � expðA0=cÞ for small c, corresponding to an extremely

strong, doubly exponential increase � � exp½A0 expð1=TÞ� of the relaxation time with

temperature. However, the simulation results were obtained in the regime where the

lengthscales are still small, with, e.g. � � 7 for the lowest c � 0:08 in qualitative

agreement with the correlation function results of [85] described above.

In a companion paper, Butler and Harrowell also considered a more direct

operational definition of a dynamical lengthscale for the 2; 2-SFM [94]. This is

obtained by adding free surfaces to the 2; 2-SFM and defining the cooperativity

length as the lengthscale over which deviations from bulk relaxation behaviour are

observed. The free surfaces are implemented by adding two rows of facilitating up-

spins on opposite boundaries of the square lattice, while maintaining periodic

boundary conditions in the other direction. The persistence time of spins near the

surface is small—and shows a simple Arrhenius dependence on temperature—but

grows to the bulk value in the layers further from the surface. Pinned surfaces

consisting of down-spins, on the other hand, give persistence times that decrease into

the bulk. The distance from the surface at which bulk behaviour is reached defines a
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Figure 27. Dynamical heterogeneities in the 2; 2-SFM. Starting from an equilibrium
configuration at up-spin configuration ceq � 0:083 the plots show, for a series of
increasing times (measured in Monte Carlo steps, MCS), as black those spins which
have never flipped. The lower four plots in particular demonstrate the existence of
very long-lived regions of frozen spins. From [93]. Copyright American Institute of
Physics.



dynamical lengthscale and, encouragingly, turns out to be similar for free and pinned
surfaces. It increases by a factor of three while the persistence time increases by four
orders of magnitude; again, a power-law relationship � � �� was observed with
7:0 < � < 7:6 [290]. Extrapolating naively, Butler and Harrowell [94] then also
estimated that the typical relaxation time increases of � 1012 observed on super-
cooling glass-forming liquids would correspond to a growth of the cooperativity
length by a relatively modest factor of around 33 � 30.

In a later study, Foley and Harrowell [290] further analysed dynamical
heterogeneities in the 2; 2-SFM by measuring the spatial correlations of the first
passage times averaged over different regions of the lattice. (For a visualization of
the local, unaveraged first passage times see also [274]; a more recent study of kinetic
structures in SFMs is [291].) Starting from an equilibrium configuration, they
measured for each spin i the time �i at which it first flips. They then defined, for
any given region of linear size l, the average of the �i in that region as �ðlÞ, and
considered the moments

mqðlÞ ¼
½�ðlÞ � � �qh i
½�ð1Þ � � �qh i : ð122Þ

Here the averages are over all regions of size l � l in the numerator, and over all
regions of size 1� 1, i.e. all lattice sites, in the denominator; � ¼ �ð1Þh i ¼ �ðlÞh i is
the average first passage (or first flip) time for the whole lattice. The moments mqðlÞ
thus measure the fluctuations in the average first passage time of regions of size l,
scaled so that mqðlÞ � 1 corresponds to times �i which are fully correlated within
regions of size l. The decrease of mqðlÞ with l can thus be used to define a correlation
length �q, for which Foley and Harrowell found two main results [290]. First, it is
not possible to identify a single such lengthscale since the value of �q depends
significantly on the order q of the moment considered; this could suggest a
multifractal structure of the spatial correlations in the dynamics. Secondly, they
again observed a power-law relation between timescales and dynamical lengthscales,
� � ��2, though with an exponent � � 12 that is rather larger than for the lengthscales
derived from the concentration of actives sites.

More recently, the ratio Q [68] of the lifetime of heterogeneous regions to their
local relaxation time has also been measured, in a modified version of the 2; 2-SFM
where multi-state spins are used to model orientational degrees of freedom. Q can be
determined from an appropriately generalized persistence function, and was found
to be of order unity [292]. This could in fact have been expected on the basis of the
results of Butler and Harrowell [93, 94] for the 2; 2-SFM: the timescales for
propagation of mobility, which limits the lifetime of heterogeneities, are of the same
order as typical relaxation timescales. At present it therefore seems that SFMs
cannot model the values of Q" 1 observed in some recent experiments (see
section 2.5).

Finally, we mention a very recent approach to the study of heterogeneities in
SFMs, proposed by Garrahan and Chandler [293]. They map the non-equilibrium
trajectories of a system on a d-dimensional lattice onto the statics of a ðd þ 1Þ-
dimensional spin system. This space-time view provides an interesting geometrical
framework for understanding dynamical heterogeneities. For example, since in the 1,
1-SFM and the East model spatial domains of down-spins can only be ‘invaded’
from their left (or, for the 1, 1-SFM, right) boundary, their two-dimensional space-
time representations always give closed regions, separated by interfaces formed by
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up-spins. Since only neighbours of up-spins are mobile, this shows geometrically that

mobile sites will ‘follow each other around’, in interesting correspondence with

simulation results for Lennard-Jones systems [60, 61].

Garrahan and Chandler [293] also studied dynamical heterogeneities in the 1; 1-
SFM and East model quantitatively, by considering the time-averaged magnetiza-

tions miðtÞ ¼ ð1=tÞ
Ð t
0 dt

0 ½2niðt0Þ � 1�. Slow spins that do not flip have the maximal

value ð¼ 1Þ of the ‘heterogeneity’ m2
i ðtÞ, while fast spins give lower values. For t! 0

and t!1 there are no spatial correlations between the m2
i ðtÞ, but at intermediate t

of the order of typical relaxation times, non-trivial spatial structure can appear.

This can then be used to define a lengthscale for dynamical heterogeneities, which

increases slowly with decreasing temperature T [293]. The k-dependence of the

structure factor (Fourier transform) SðkÞ associated with the correlations

hm2
i ðtÞm2

j ðtÞi � hm2
i ðtÞihm2

j ðtÞi also shows non-trivial features; e.g. in the East model,

the hierarchical nature of relaxation processes leads to space-time regions of up-spins

with a fractal structure, giving a power-law decrease SðkÞ � k� ln 3= ln 2 for inter-

mediate k.

Next we review studies of dynamical lengthscales and heterogeneities in con-

strained lattice gases. An irreducibility length can be defined if, instead of the fraction

f ðc;LÞ of permanently immobile spins in SFMs, one considers the fraction of

particles in the backbone (see section 4.1; recall that the backbone contains all

particles that are permanently frozen in place due to the presence of other such

particles). For the triangular lattice gas [113], simulation results showed a growth of

this length for particle concentration c! 1 that could be fitted by an exponential

divergence � exp½�const=ð1� cÞ�. Following earlier work on the hard-square lattice

gas [173, 205], Jäckle and Krönig then compared this timescale-independent

definition of a lengthscale with dynamical quantities, by measuring the diffusive

displacements of particles in finite-size lattices [113]. Strong deviations from the

limiting behaviour for large systems were found, e.g. up to L ¼ 15 at particle

concentration c ¼ 0:7; this length is of similar order of magnitude as the irreduci-

bility length L� � 8 for this c. The finite-size effects on diffusion are already visible

for small particle displacements, and thus genuinely due to cooperative dynamics

rather than the trivial upper limit on displacements imposed by the finite lattice.

Similar size effects appear in correlation functions measured on lattice strips of finite

width [115], both for translational motion and for orientational degrees of freedom

in the appropriately extended model (see section 3.3). Intriguingly, it was observed

in [173] (for the hard-square lattice gas) that the irreducibility length L� is

substantially larger than the distance over which particles need to diffuse before

the mean-square displacement becomes linear in t. This shows that the irreducibility

length is a rather subtle measure of the cooperative nature of the dynamics, and

cannot simply be thought of as the size of a cage within which particles are trapped

until they can diffuse freely.

Jäckle and Krönig [118] further studied dynamical heterogeneities in the

triangular lattice gas by considering non-local dynamical correlations, as measured

via the dynamic structure factor (13). As explained in section 2.2, the latter should

decay as expð�Dk2tÞ for long times and small wavevectors k, reflecting the diffusive

nature of the dynamics; D is the collective diffusion constant. For larger k, the

observed long-time decay rates will deviate from Dk2. The onset of these deviations

at wavevectors of length kc (say) then defines a lengthscale 1=kc below which the
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dynamics is heterogeneous; this was found in [118] to increase with c, but the precise
form of this dependence was not analysed.

Very recently, heterogeneities in the KA-model have also been studied [294].
Motivated by results for mean-field spin glasses [295–297], the fourth-order
correlation function

C4ðtÞ ¼
1

Nc2ð1� cÞ2
X
ij

niðtÞnið0ÞnjðtÞnjð0Þ
� �

� niðtÞnið0Þh i njðtÞnjð0Þ
� �� �

ð123Þ

was simulated. This can also be written as the scaled variance C4ðtÞ ¼
Nð q2ðtÞ
� �

� qðtÞh i2Þ of the ‘overlap’ between configurations a time t apart,

qðtÞ ¼ 1

Ncð1� cÞ
X
i

niðtÞnið0Þ � c2
� �

: ð124Þ

By definition, qð0Þ ¼ 1 and thus C4ð0Þ ¼ 0. As t increases, qðtÞ will decay,
approaching qðt!1Þ ¼ 0 for times long enough for the system to have lost all
memory of its initial configuration. However, for particle concentrations c close to
the (at least effective) dynamical transition cdyn ¼ 0:88 in the KA model, one would
suspect that the system remains trapped near its initial configuration for a long time.
This will give a non-zero value of qðtÞ which will also fluctuate strongly between
dynamical histories started off at different initial configurations nið0Þ, leading to a
large value of C4ðtÞ. Consistent with this, it was found in [294] that the simulated
C4ðtÞ exhibited a maximum at finite t, before decaying again as the system finally
loses memory of its initial configuration.{ The maximum becomes higher and shifts
to larger t as c is increased towards cdyn, reflecting the fact that the system is trapped
more strongly, and for longer times, at higher c. Similar results have been found in
frustrated lattice gases [299] and Lennard-Jones glasses in d ¼ 2 dimensions [300]. In
the spherical p-spin glass, a rough analogue of C4ðtÞ can be shown to have a
maximum which actually diverges as the dynamical transition of this mean-field
model is approached; this is related to the divergence of an appropriately defined
static spin-glass susceptibility below the transition [295–297] and suggests a
corresponding diverging lengthscale. In the KA model, the definition (123) of
C4ðtÞ as a sum over all pairs of lattice sites likewise suggests that the observed
increase in the maximum value of C4ðtÞ reflects a growing lengthscale over which the
dynamics is heterogeneous because configurations remain dynamically correlated.
How this length is related to others defined, e.g. for the triangular lattice gas (see
above) is not obvious, and a closer investigation of this issue would seem worthwhile.
A wavevector-dependent generalization of C4ðtÞ, obtained by including a factor
exp½ik � ðri � rjÞ� in the definition (123), could be helpful in defining the lengthscale
for dynamical heterogeneities more precisely. Such a quantity would be closely
related to the structure factor of dynamical heterogeneities considered by Garrahan
and Chandler [293]. This can be seen from the fact that, e.g. the fourth-order
contribution to their correlation hm2

i ðtÞm2
j ðtÞi � hm2

i ðtÞihm2
j ðtÞi is proportional to
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{ In the simulations of [294] it appears that, at least for the smaller values of c investigated, C4ðtÞ
decays to values below unity for t!1. On the other hand, from the definitions (123) and (124) one

calculates, using the fact that nið0Þ and niðt!1Þ are uncorrelated equilibrium configurations, that

C4ðt!1Þ ¼ 1. The origin of this discrepancy is unclear to us. However, more recent simulations

confirm the theoretical expectation C4ðt!1Þ ¼ 1 (J. J. Arenzon, private communication), also in

inhomogeneous systems as long as one focuses on approximately homogeneous subregions [298].



Ð t
0 dt1 dt2 dt3 dt4 ð niðt1Þniðt2Þnjðt3Þnjðt4Þ

� �
� niðt1Þniðt2Þh i njðt3Þnjðt4Þ

� �
Þ, which one

would expect to behave qualitatively similarly to the terms under the sum in (123).

5.6. Energy landscape paradigms
In this section we review studies investigating the application of energy landscape

paradigms such as configurational entropies and Edwards measures (see section 2.4)
to KCMs.

The usefulness of the Stillinger–Weber configurational entropy was studied in [55]
for the East model and the 1; 1-SFM. It was argued that the SW entropy is not
relevant for understanding glassy effects in these models. The key observation is that
all reasonable definitions of a SW-like configurational entropy are independent of
the asymmetry parameter a which interpolates between the two models (see (32)),
while the actual dynamics varies dramatically between the limits of a ¼ 0 (East
model) and a ¼ 1 (1; 1-SFM). The natural definition of an inherent structure (IS) is
as a configuration that is frozen at T ¼ 0 (see section 2.4); in such a configuration, all
up-spins are isolated. The number of such configurations with a given up-spin
concentration or equivalently energy eIS is easily counted [55] and its logarithm gives
the configurational entropy NscðeISÞ, shown in figure 28. (The configurational
entropy for the triangle model can be obtained by similar reasoning [131].) One
might hope that a configurational entropy calculated over inherent structures of a
given free energy f , rather than energy eIS, may have better properties; but in the low-
temperature regime f � eIS since entropic contributions from the size of the basins
around each IS are negligible, and so no significant differences are expected. As an
alternative, it might be interesting to study the timescale-dependent definition of a
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Figure 28. Stillinger–Weber configurational entropy in the 1; 1-SFM for a chain of 64 spins.
The lower curve gives the result from a direct count of configurations which are
frozen at T ¼ 0, and the symbols are estimates derived from the actual dynamics at
different temperatures (assuming that the free energy of the inherent structures is
independent of their energy eIS). The upper curve is obtained by an approximation
based on integrating the temperature dependence of the average value of eIS.
From [55]. Copyright American Institute of Physics.



configurational entropy over metastable states proposed by Biroli and Kurchan [56]
(see section 2.4). For this one would anticipate clear differences between the 1; 1-
SFM and the East model, arising from the fact that in the latter there is a whole
hierarchy of well-separated timescales on which metastable states could be defined.

The applicability of the Adam–Gibbs [37] relation � � expðconst=TsÞ between
typical relaxation times � and the thermodynamic entropy s has also been
investigated for KCMs. Underlying this relation is the assumption that there is a
connection between a lengthscale characterizing cooperative dynamics and the
(inverse of the) thermodynamic entropy s. Sappelt and Jäckle argued that such
a connection cannot exist in general, and certainly not in KCMs [288]. This is
most obvious in models such as the North-East model or the (3, 2)-Cayley tree:
at the up-spin concentration c� where these models become strongly reducible, the
irreducibility length L� diverges (see section 5.5) while the entropy per spin,
s ¼ �c ln c� ð1� cÞ lnð1� cÞ, is a smooth function of c. Even in other KCMs, the
divergence of an appropriately defined cooperativity length for c! 0 is much more
pronounced than the weak logarithmic divergence of the entropy [288]. Even though
the foundations of the Adam–Gibbs relation are therefore uncertain in KCMs,
Fredrickson and Brawer found that for the 2; 2-SFM the relation holds to a
reasonable accuracy over a range of around six decades in the relaxation time [85],
while for the 2; 3-SFM it appears to be violated [28]. As explained in section 5.5,
however, Butler and Harrowell [93] later showed that there were small but systematic
deviations from Adam–Gibbs even for the 2; 2-SFM, and that the temperature
dependence of � is better rationalized by a power-law link to an appropriately
defined lengthscale.

In the last few years, the applicability of Edwards measures to the description of
glassy dynamics in KCMs has received growing attention. (This includes work on
KCMs driven into non-equilibrium stationary states by external forcing, which is
discussed in section 5.7 below.) For SFMs, one needs to decide which configurations
to regard as ‘blocked’. A natural definition is to use again configurations where no
spins can move at T ¼ 0, i.e. which contain no mobile up-spins; these are identical to
the inherent structures in SFMs discussed above. The Edwards measure is then a
uniform measure over the subset of these configurations with the desired values for
specified observables such as the energy. For the 1; 1-SFM and the East model, as
well as the interpolating asymmetric model, a recent analysis of the T ¼ 0
dynamics [109] shows that the results are not well described by averages over an
Edwards measure constrained to have the correct up-spin concentration. Spin–spin
correlations, for example, fall off super-exponentially in the final configurations
actually reached by the T ¼ 0 dynamics whereas a flat average over blocked
configurations gives an exponential decay.

More successful is the application of Edwards measures to constrained lattice
gases; here the definition of the blocked configurations to be included in the Edwards
measure is straightforward. In the grand canonical version of the KA model, where
particle exchange with a reservoir is allowed, it was shown in [301, 302] that the FDT
violations observed after an increase of the chemical potential into the non-
equilibrium region (see section 5.4.3) were well predicted by an appropriate Edwards
measure. Specifically, the effective temperature deduced from the slope of the out-of-
equilibrium part of the FDT plot (figure 25) agrees numerically with that found from
the entropy of blocked configurations, evaluated at the density cðtwÞ reached during
the ageing process. The structure factor, i.e. the spatial correlations of density
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fluctuations which develop during ageing—but are absent in equilibrium—was
likewise well predicted by the Edwards measure approach.

The geometrical organization of the blocked configurations which the Edwards
measure focuses on has recently also been investigated [294]. The authors generated
blocked configurations by an annealing process in the number of mobile particles.
They then moved a randomly chosen particle to a different location, ran the
dynamics of the KA model from this starting configuration and monitored whether
the system became blocked again after a few transitions or whether it remained
substantially unblocked, with many particles being mobilized. They found that
the ‘unblocking probability’ is high at low densities, but tends to zero at the density
of the (effective) dynamical transition, cdyn � 0:88. Above this density, blocked
configurations are therefore stable with probability one. Measurements of the
overlaps between these configurations showed that at all densities there are blocked
configurations arbitrarily close to other blocked configurations. This contrasts with
results for mean-field spin glasses (e.g. p-spin spherical models), where in the regime
corresponding to high density there is a minimum distance between the analogues of
blocked configurations [294]. This observation suggests that the geometrical
organization underlying glassy dynamics in KCMs is rather different from that in
mean-field models, and clearly deserves further investigation.

5.7. Driven stationary states
In this final results section we review recent work on KCMs in out-of-equilibrium

stationary states generated by external driving. Much of this research is motivated by
attempts to understand the behaviour of granular materials under steady tapping or
vibration.

We begin again with spin-facilitated models and their variants. The effects of
driving by repeated excitation or ‘tapping’ have been studied in, for example, the
1; 1-SFM [303]. A tap corresponds to evolution at non-zero temperature T for some
short time interval ttap, after which the system is allowed to relax fully under zero
temperature dynamics. A possible motivation for this dynamics comes from granular
media; one regards the chain of spins as a crosssection through a granular medium,
with up- and down-spins corresponding to low- and high-density regions or holes
and particles, respectively. The tap typically generates up-spins (holes) while the
subsequent zero-temperature relaxation can only flip spins down, thus filling holes
with particles. The kinetic constraint of the 1; 1-SFM imposes the restriction that
isolated holes cannot be filled. Using the fact that the zero-temperature dynamical
equations of the 1; 1-SFM can be exactly closed [214, 215], the dynamics of the joint
tapping and relaxation process can be solved to lowest order in ttap and expð�1=TÞ,
and a logarithmic decay of the particle density 1� c is found over a wide time
interval [303]. This behaviour is reminiscent of that found in parking-lot models and
other adsorbtion–desorbtion models [216]. The response of the particle density to
sudden changes in tapping intensity also displays interesting memory effects [304,
305] but these are not specific to tapping dynamics and occur even in e.g. the Glauber
Ising chain [306]. Hysteresis effects from cyclic variations of the tapping intensity
have likewise been investigated [307]. Further work on the tapped 1; 1-SFM showed
that in the limit of short or weak taps, an effective master equation can be used to
describe the evolution of the system from tap to tap, without needing to consider the
intermediate excited states generated by the tapping [254]. The steady state of the
resulting model can be described by an Edwards measure at the appropriate up-spin
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concentration, where all metastable or frozen configurations—those in which only
isolated up-spins occur—contribute with equal probability [254].

The effects of different kinds of tapping dynamics in the 1; 1-SFM were further
investigated in [308], where the analysis was also extended to the East model. A ‘tap’
was either a single Monte Carlo sweep of the system at some T > 0 (this corresponds
to a fixed tap duration of ttap ¼ 1), or a random flip applied to each spin
independently with some probability p < 1=2; in between taps the system relaxes
again at zero-temperature. Thermal and random tapping as defined in this way gave
quite different results, e.g. in terms of the magnetization reached in the stationary
state. These differences persisted even for small tapping intensity (T or p! 0). A flat
Edwards measure over frozen configurations with the correct up-spin concentration
was found to describe other aspects of the stationary state, such as the distribution of
domain lengths, only for thermal tapping at moderate intensity—consistent with the
results of [254]—while systematic deviations occurred for random tapping.

Recently, a driven version of the East model has also been proposed that is
motivated by rheological considerations [225]: ‘soft’ glasses such as dense emulsions
and colloidal suspensions can be driven into non-equilibrium steady states by shear
flow [72]. A modified version of the East model with three-state spins was used, but
the third state turned out to be irrelevant for the qualitative behaviour. The
‘rheological’ driving was implemented by adding unconstrained up-flips from
ni ¼ 0 to ni ¼ 1 to the model, at a rate _�� which can loosely be thought of as the
shear rate. This modification breaks detailed balance. One may expect, however, that
the stationary state reached after a long time should be similar to that obtained after
ageing (without shear) for a time tw � 1= _��. The steady state under shear can be
worked out using the same domain picture as for the ageing case; see section 4.6. An
independent interval approximation again needs to be made, though in the driven
case it is not clear whether this becomes exact for T ! 0 as it does in the ageing case.
The theory nevertheless provides a good description of simulation results. There is
also the expected close (though not perfect) match between the domain length
distributions for the ageing and sheared cases when tw and _�� are related by
tw ¼ 1= _�� [225].

In the Glauber Ising chain with ‘falling’ dynamics (only energy-decreasing moves
are allowed) driven by random taps, Lefèvre and Dean [106] calculated a number of
observables (energy fluctuations, correlation functions and domain size distribu-
tions) exactly within the Edwards measure and observed very good agreement with
numerical simulations. As an aside, we note that for the same ‘tapping and falling’
dynamics in ferromagnets on random graphs of fixed connectivity r > 2 (r ¼ 2 gives
the Ising chain), Dean and Lefèvre [107] found in simulations a first-order phase
transition in the stationary behaviour. For p below some threshold pc, the energy E
in the stationary state equalled the ground state energy, jumping by a finite amount
to some E� ¼ Eðpc þ 0Þ as p crosses the threshold. This was interpreted in terms of a
change in behaviour of the Edwards entropy SðEÞ: in an approximate calculation
SðEÞ is concave above E� and therefore gives, in a thermodynamic formalism, locally
stable states of energies E > E�, while for E < E� the entropy SðEÞ is convex so that
states with these energies are unstable.

Finally, driven steady states have also been studied in the context of the KA

model connected to two reservoirs at unequal chemical potential � [309]. The
difference in chemical potentials sets up a particle current between the two reservoirs,
and a non-trivial density profile which can be well reproduced using a continuum
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model (see section 4.10). An interesting feature is that the system may show ‘negative
resistance’: if the particle densities of the two reservoirs are both increased by the
same factor, the current may decrease. This occurs because the decrease in mobility
with increasing density can overwhelm the increase in the density difference which
drives the current.

6. Conclusions and outlook

In this review we have discussed the glassy dynamics of kinetically constrained
models (KCMs). Their characteristic feature is that they have trivial, normally non-
interacting, equilibrium behaviour. The existence of slow glassy dynamics can thus be
studied without any ‘interference’ from an underlying equilibrium phase transition.
A further advantage of KCMs is that they introduce explicitly, via constraints on
the allowed transitions between configurations, the cooperative character of the
dynamics whose origin in more realistic glass models we do not yet fully understand.
In our discussion of KCMs we have included spin-facilitated Ising models (SFMs)
and their variants; constrained lattice gases; models inspired by cellular structures;
the triangle and plaquette models obtained via mappings from interacting systems
without constraints; and finally related models such as urn, oscillator, tiling and
needle models. We now summarize the results and assess how good KCMs are at
modelling glassy dynamics in physical systems such as structural glasses. Avenues for
future research are also discussed.

Broadly speaking, KCMs fall into two classes. The first one contains the 1; d-
SFMs, the cellular models and the plaquette model, all of which can be analysed in
terms of appropriately defined defects that diffuse and react which each other.
Typical relaxation timescales show an activated temperature dependence, so that
these KCMs model ‘strong’ glasses. The reaction–diffusion picture provides a fairly
full understanding of the dynamics both in and out of equilibrium, including, e.g. the
shape of correlation and response functions. Some open questions remain, however,
especially with regard to fluctuation–dissipation theorem (FDT) violations and the
description of out-of-equilibrium dynamics in terms of an effective temperature. Urn
and oscillator models also fall into the category of ‘strong glass’ KCMs, but due to
their lack of spatial structure require different conceptual tools to understand the
dynamics, in particular the notion of entropic barriers which slow down the
dynamics at low temperatures.

The second class of KCMs contains all remaining models, in particular the
constrained lattice gases and SFMs with directed constraints or with facilitation by
f > 1 spins. These show genuinely cooperative dynamics which cannot be broken
down into the motion of localized defects. Their relaxation times diverge in a
superactivated fashion as temperature decreases, so that they model ‘fragile’ glasses.
The cooperative nature of the dynamics means that these models are much less well
understood than the defect-diffusion KCMs. It also implies that reducibility effects
become a serious concern. While arguments developed, e.g. for bootstrap percola-
tion show that in the thermodynamic limit most models become effectively
irreducible in the sense that almost all configurations are dynamically accessible,
the system sizes required can be extremely large in the glassy regime (low up-spin
concentrations for SFMs, or high particle concentrations for lattice gases).

Related though distinct is the question of dynamical transitions where ergodicity
is broken because of diverging relaxation timescales. The only cooperative KCM for
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which strong evidence for such a transition exists is the KA lattice gas, in which
relaxation times appear to diverge when the particle concentration approaches
cdyn � 0:88. Even here finite size effects are difficult to exclude, however, since
around this concentration reducibility effects also become strong for the system sizes
that are accessible in numerical simulations. In the absence of analytical arguments
the existence of a dynamical transition is therefore likely to remain conjectural.
However, from a more pragmatic point of view the more important question is why
relaxation times diverge as quickly as they do around c ¼ cdyn, not whether they are
truly infinite or finite but extremely large at higher densities. This remains an
essentially open issue, as does the origin of the conjectured universality in the
timescale divergence near cdyn. In SFMs, the ‘fragile’ timescale divergence with
decreasing temperature T also remains poorly understood, except for the simplest
cases such as the East model where an EITS law � � expðA=T2Þ has been found.

Closely related are the issues of heterogeneous dynamics and dynamical lengths-

cales. KCMs are ideal for the study of these effects, having only trivial static
correlations so that all effects are directly due to the dynamics. Direct evidence for
dynamical heterogeneities has been found in the 2; 2-SFM and more recently also in
the East model. There has also been some success in identifying dynamical
lengthscales and relating these to the observed relaxation times. But more needs to
be done, both at the analytical and the numerical level, to identify an unambiguously
defined cooperativity length and understand how its growth affects the dynamics.
This is particularly important now that much more data on heterogeneities in
experimental systems are becoming available.

Many of the cooperative KCMs are found in simulations to have stretched
exponential relaxation functions at equilibrium. A quantitative theoretical under-
standing of these effects remains to be achieved, again with the possible exception of
the East model where there are at least plausible conjectures for the stretching
behaviour at low temperatures. Mode-coupling approximations, the most successful
of which are based on approximations to the irreducible memory functions,
generally perform rather badly, predicting, e.g. spurious dynamical transitions.
Recent diagrammatic expansions offer some improvements, giving results formally
analogous to those of the extended mode-coupling theory for supercooled liquids,
but still predict relaxations which are too close to exponential deep in the glassy
regime. A better understanding of the physical nature of these approximation
techniques will be essential for progress in this direction. Adiabatic approximations,
by contrast, are based directly on a physically intuitive separation into fast and slow
degrees of freedom and have been used with some success in the analysis of
cooperative KCMs. A clear example of this is the East model, where the timescale
separation (involving in fact a whole hierarchy of widely separated times) becomes
exact in the low-temperature limit and gives a fairly full understanding of the out-of-
equilibrium behaviour after a deep quench. Further exploration of such techniques
both for KCMs and more general glass models should therefore be fruitful.

For cooperative KCMs in general our understanding of the out-of-equilibrium

dynamics is still only at the beginning. While some general qualitative features such
as apparent freezing in cooling runs and hysteresis in heating–cooling cycles are well
understood, more complex effects such as the behaviour of two-time correlation and
response functions still present puzzles. There is no simple picture as yet of the
observed FDT violations, for example: in the KA lattice gas and the plaquette
model, simple mean field-like FDT plots consisting to a good approximation of two
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straight lines are observed, while other KCMs show more complex behaviour
including non-monotonic FDT relations. The robustness of these results to the
choice of observable, the existence of a well-defined effective temperature Teff and its
connection to an appropriately defined configurational entropy also remain to be
clarified. The KA model is the most encouraging in this sense: the Teff from an
appropriate FDT plot agrees with that derived from an effective equilibrium
description in terms of a flat ‘Edwards measure’ over blocked configurations. In
other models, however, no such simple correspondence is found and much work
remains to be done to understand these results in a wider context.

Finally, KCMs without detailed balance are also beginning to be explored. We
touched on these when discussing stationary states reached by external driving which
can model the tapping of granular materials or shear flow of ‘soft’ glassy materials.
Recent work has focused on the suitability of Edwards measures for describing the
resulting stationary states, but a coherent picture is yet to emerge. More generally,
the similarities in the phenomenology of granular materials (which are effectively at
temperature T ¼ 0) and ‘thermal’ glasses suggest that detailed balance is not a key
ingredient in glassy dynamics. One may for example expect that slowly driven and
ageing systems behave in similar way, and for a driven version of the East model this
has indeed been confirmed. Future work on new KCMs without detailed balance will
no doubt deepen our understanding of driven glassy systems.

Overall, we believe that the simplicity of KCMs and their ability to combine slow
dynamics with trivial equilibrium behaviour make them prime candidates for further
progress in the issues at the heart of current research in glassy dynamics.
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List of abbreviations

b.c.c. body-centred cubic
BP bootstrap percolation
EITS exponential inverse-temperature square
f.c.c. face-centred cubuc
FDT fluctuation–dissipation theorem
IS inherent structure
KA Kob–Andersen
KCM kinetically constrained model
KWW Kohlrausch–Williams–Watts
MCA mode-coupling approximation
MCT mode-coupling theory
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n.n. nearest neighbour
SFM spin-facilitated model

( f ; d-SFM: spin-facilitated model on d-dimensional lattice with f
facilitating spins)

SW Stillinger–Weber
TTI time-translation invariance
VTF Vogel–Tamman–Fulcher
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