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Abstract. In this chapter we summarize recent developments in the study of kinet-
ically constrained models (KCMs) as models for glass formers. After recalling the
definition of the KCMs which we cover we study the possible occurrence of ergodic-
ity breaking transitions and discuss in some detail how, before any such transition
occurs, relaxation timescales depend on the relevant control parameter (density or
temperature). Then we turn to the main issue: the prediction of KCMs for dynam-
ical heterogeneities. We focus in particular on multipoint correlation functions and
susceptibilities, and decoupling in the transport coefficients. Finally we discuss the
recent view of KCMs as being at first order coexistence between an active and an
inactive space-time phase.

1.1 Motivation

Kinetically constrained models (KCMs) are simple lattice models of glasses.
They furnish a perspective on the glass transition problem which has its origin
in the work of Glarum [1], Anderson [2] and coworkers [3], and Andersen and
coworkers [4]. This perspective assumes that most of the interesting properties
of glass forming systems are dynamical in origin, while thermodynamics plays
a very limited role. KCMs tend to have simple and uninteresting thermody-
namics, typically that of a non-interacting lattice gas. In contrast, they display
rich dynamical behaviour as a consequence of kinetic constraints. This com-
bination of simple thermodynamics and locally constrained dynamics is often
assumed to be the result of coarse-graining of a dense molecular system [5]:
dense fluids are structureless at distances beyond the molecular length, but
interatomic forces at high densities are highly constraining, giving rise to lo-
cal restrictions in the dynamics. As such KCMs are meant as models of glass
forming systems at high densities or low temperatures, and aim to capture
their dynamical behaviour for motion beyond the inter-molecular distance and
for long times.
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KCMs generally use local constraints. Nevertheless, as we discuss below,
these give rise to collective dynamics due to a form of dynamical frustration:
at low temperatures/high densities there is a conflict between the scarcity
of excitations/vacancies and the need for them to “facilitate” local motion,
leading to hierarchical and cooperative relaxation. Note that this frustration,
in contrast with e.g. the random first-order approach [6], does not arise from
quenched disorder, an ingredient which at any rate is not trivial to justify
in models of real liquids. A further distinction from the latter approach is
that KCMs offer a “non-topographic” [7] view of the glass transition problem.
By this we mean that it is not a change in the topographic structure of the
potential energy landscape (such as a transition between a saddle-dominated
and a minima-dominated regime) that determines glassy relaxation, but a
change in the degree of connectivity of the configuration space. Indeed, due
to the presence of the constraints, the effective connectivity of this space de-
pends on temperature/density, as we discuss in more detail in section 1.3.
This picture provided by the KCM approach is appealing as an effective de-
scription of the physics for example in the case of hard spheres, where all
allowed configurations have the same energy. For a more detailed discussion
on the non-topographic KCM approach versus the energy landscape scenario
(and additional references on the latter) we refer the reader to [7, 8]. Further
information on disorder or landscape based approaches, along with other ex-
planations of glassy behavior that invoke a thermodynamic transition, can be
found in Chapter 1 of this book.

KCMs are simple enough to allow for detailed analysis. The current interest
in KCMs originates in the fact that they exhibit explicit mechanisms for super-
Arrhenius slowdown and stretched relaxation [9] as a consequence of local,
disorder free interactions, and without the emergence of finite temperature
singularities [10]. At the same time they provide a natural explanation [11] for
the phenomenon of dynamical heterogeneity (for reviews see [12–14]). KCMs
are to the constrained dynamics/facilitation perspective [3,4] what the random
energy model and the p-spin spin glass are to the random-first order transition
approach [6]. Insights from the analysis of KCMs allow one to construct a
comprehensive theoretical picture of the glass transition problem (see [15]
for a review) which is quite distinct from other competing theories [6, 16–
19]. Beyond their importance as models for describing glassy phenomenology,
KCMs are of interest for the mathematical community. Indeed, even though
they belong to the class of interacting particle systems with Glauber and
Kawasaki dynamics, the rate at which elementary moves (birth/death or jump
of particles) occur may degenerate to zero due to the presence of the kinetic
constraints. This prevents the use of the standard probabilistic tools developed
for such systems. Furthermore it gives rise to peculiar phenomena including
the presence of several invariant measures, ergodicity breaking transitions [20],
unusually long mixing times [21] and aging phenomena [22].

The most recent comprehensive review of KCMs is that of Ritort and
Sollich [23] which covers the literature until roughly the end of 2001. Earlier
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surveys can be found in Refs. [24–26]. The aim of this chapter is to briefly
describe the developments in the last decade or so. It is organised as fol-
lows. In Section 1.2 we introduce the KCMs that we will cover, grouping
them according to whether they are non-conservative (Glauber dynamics) or
conservative (Kawasaki dynamics). Section 1.3 is devoted to a discussion of
probably the most basic mathematical manifestation of glassiness in KCMs,
i.e. whether they possess ergodicity breaking transitions. Beyond such a tran-
sition, the relaxation time to equilibrium is effectively infinite. Physically, of
course, this may not be distinguishable from a finite but very long time, and
so we consider in Section 1.4 how relaxation timescales in KCMs depend on
the relevant control parameters (temperature/density). These times do indeed
generically increase extremely fast, in particular in the so-called cooperative
models. In Section 1.5, finally, we turn to the predictions of KCMs for dynam-
ical heterogeneity in glasses. Here the models provide a appealingly intuitive
picture that is directly based on considering the dynamics in real (rather than
e.g. Fourier mode) space. We cover definition and predictions for multi-point
correlation functions and susceptibilities, decoupling in the temperature or
density-dependence of transport coefficients, and finally the view of KCMs as
being at a first-order coexistence between two different dynamical (space-time)
phases. We conclude in Section 1.6 with a summary and a critical discussion of
the advantages and drawbacks of KCMs. We also provide a brief comparison
with alternative approaches, and finally an outlook towards future work.

1.2 The models

The majority of KCMs are defined as stochastic lattice models with binary
degrees of freedom, and it is on such models that we focus in this chapter.
We do not attempt to give here an exhaustive survey of the wider range
of models studied previously, but refer to this for the review listed in the
introduction [23–26]. For our present purposes, then, a KCM has on each
lattice site i an occupation variable ni ∈ {0, 1}, and the collection of the
ni defines the overall configuration n. Conservative KCMs are lattice gases
where the ni indicate the presence (ni = 1) or absence (ni = 0) of particles.
The dynamics follows a continuous-time Markov process that consists of a
sequence of particle jumps, subject to kinetic constraints as explained below.
The total particle number

∑
i ni is conserved.

We will also discuss non-conservative KCMs. These are motivated by a
conceptual coarse-graining to a length scale several times the particle diameter
of the underlying physical glass that is being modelled. Each lattice site i then
represents a small region of material containing at least a few particles, and
one sets ni = 1 (respectively ni = 0) if the density in this region is above
(respectively below) a certain threshold where local re-arrangements – of the
particles inside the element – become possible. This representation no longer
contains the precise values of all local densities, and consequently in non-
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conservative KCMs moves that change
∑
i ni are allowed. The reader should

be aware that in much of the literature a reverse convention for the two states
of ni is used, with ni = 1 standing for high mobility, i.e. low density, and
vice versa for ni = 0. (These states are then often further identified as up-
and down-spins, but we will avoid this terminology.) We opt for the version
discussed above as it makes for a unified discussion of conservative and non-
conservative KCMs: ni = 0, an empty or low-density site, is mobile in both
contexts and facilitates the dynamics on neighbouring sites. For brevity we use
the terms “empty” and “low-density” interchangeably below, and similarly for
“occupied” and “high-density”. When we talk about the density of the system,
we correspondingly mean the fraction of sites with ni = 1, both in conservative
and non-conservative KCMs.

The key property of all KCMs is that in order to perform a move the config-
uration must satisfy a local constraint which usually corresponds to requiring
a minimal number of empty sites in some appropriate neighbourhood. This
represents the physical intuition that, when particles re-arrange in a glass,
motion in any given region requires the presence of mobile regions around
it [4, 27]. When the density of these mobile or facilitating sites decreases, the
dynamics slows down. Another property shared by all models is that the rates
satisfy detailed balance with respect to (w.r.t.) a Boltzmann distribution that
factorizes over sites (mathematically, a Bernoulli product measure), so that
there are no static interactions, beyond the effective hard core repulsion im-
plemented by the restriction ni ∈ {0, 1}. As explained in the introduction,
this idealization means that KCMs can also be viewed as an attempt to find
out how much of glass phenomenology can be explained on purely dynamical
grounds, without recourse to e.g. static phase transitions.

KCMs as described above are plainly quite simplistic compared to more re-
alistic interacting atomic or molecular systems. As we shall explain, however,
for appropriate choices of the constraints they display a behavior which is in
agreement with the broad phenomenology of glass forming liquids including
super-Arrhenius slowing down of the dynamics, stretched exponential relax-
ation, dynamical heterogeneities, aging phenomena and ergodicity breaking
transitions.

1.2.1 Facilitated spin models: FA, East and Spiral models

We next describe the non-conservative KCMs that we will consider. Because
mobile (ni = 0) sites facilitate motion on neighbouring sites, and because
binary degrees of freedom with non-conservative dynamics can be interpreted
as spins, such models are also called “facilitated spin models”. In these models,
the rate for changing the state of site i is fi(n)[(1− ρ)ni + ρ(1− ni)], where
fi depends on the configuration n in a finite neighbourhood of i, but not on
ni itself. It is then immediate to verify that detailed balance holds w.r.t. a
Boltzmann distribution with energy function −∑i ni and inverse temperature
β linked to the density by ρ = 1/(1 + e−β): in equilibrium we have ni = 1
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with probability ρ and ni = 0 with probability 1 − ρ, independently at each
site. In general fi is chosen to be nonzero (allowed move) when an appropriate
neighbourhood of i contains a minimal number of empty sites, otherwise it
is zero (forbidden move). As the temperature 1/β decreases, the density ρ of
occupied sites increases and the density q = 1− ρ = 1/(1 + eβ) of empty sites
decreases: the dynamics must then slow down.

Non-conservative KCMs can be divided into two classes: non-cooperative
and cooperative models. For the former it is possible to construct an allowed
path – a sequence of configurations linked by transitions with nonzero rates –
which completely empties any configuration provided that it contains some-
where an appropriate finite cluster of empty sites, the mobile defect. For co-
operative models, no such finite mobile defects exist. As we will detail in
Section 1.4, non-cooperative and cooperative models display respectively an
Arrhenius and super-Arrhenius slowing down.

We now give the definitions of some specific models which cover these two
different classes of behaviour. The first class of non-conservative KCMs was
proposed by Fredrickson and Andersen (FA) [4], hence the name Fredrickson-
Andersen models. The simplest of these models, which we write as FA-1 (“one-
spin facilitated FA”), allows a change of state at site i only if at least one of
the nearest neighbours is empty: fi(n) = 1 if

∑
j∼i(1 − nj) > 0, fi(n) = 0

otherwise, where the sum runs over the nearest neighbours j of site i. It is
easy to check that the presence of a single empty site allows one to empty the
whole lattice: the model is non-cooperative. For theoretical calculations it is
often easier to define fi somewhat differently, as fi(n) =

∑
j∼i(1− nj). This

leaves the kinetic constraints enforced by vanishing rates as they are and just
changes the rates for allowed moves when more than one empty neighbour
is present; as such, it makes no qualitative difference to the behaviour of the
model.

One can similarly define m-constrained FA models, FA-m, by setting
fi(n) = 1 if at least m neighbouring sites of i are empty, and fi(n) = 0
otherwise. These models are normally considered on hyper-cubic lattices of
dimension d, with 2 ≤ m ≤ d [4]. As can be checked directly, it is not possible
in any of these models to devise a finite cluster of empty sites which always
lets one empty the entire lattice. Consider for example the case d = 2, m = 2
in infinite volume and focus on a configuration which contains two adjacent
infinite rows of occupied sites. Even if the rest of the lattice is completely
empty, none of the sites in these two rows can ever change state because each
has at most one empty neighbour. Thus it is not possible to devise a mobile
defect which can unblock (empty) every configuration and the model is co-
operative. The same conclusion applies on a finite lattice, e.g. with periodic
boundary conditions. The restriction on m comes from the fact that, if m > d,
it is possible to construct finite structures of occupied sites that are blocked,
i.e. can never change state. They are therefore not suitable to describe the
slow dynamics close to a glass or jamming transition because a finite fraction
of the system is jammed at any density.
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Another example of a cooperative model is the one-dimensional East model
[28]. In this case the constraint requires for an allowed move that the left
nearest neighbour be empty, that is fi = 1−ni−1. Note that on a finite chain
the presence of a single empty site at the left boundary lets one empty the
entire chain; but this is not a mobile defect because it will work only when it
is found in a specific position. In a chain that is full except for a finite cluster
of empty sites in a generic location, the part of the chain to the left of the
cluster cannot be emptied, and so the model is cooperative. One can show
that due to the directed nature of the constraint the relaxation involves the
cooperative rearrangements of increasingly large regions as q becomes small.
This leads to super-Arrhenius behaviour of relaxation time scales [29,30]. (The
East model shows up a slight shortcoming of our definition of co-operativity:
with periodic boundary conditions, we would formally label this model non-
cooperative because all sites can be emptied starting from a single empty site.
Physically, the model is clearly co-operative independently of the boundary
conditions.) We discuss below also higher-dimensional generalizations of the
East model, e.g. in d = 3 the North-East-Front (NEF) model, where a local
change of state is allowed if at least one of the neighbouring sites to the North
or East or front is empty.

The models described above have been closely studied since they were
proposed in the 80s [4] and 90s [28], with some work continuing into the
present decade [23], particularly regarding the non-equilibrium behaviour (see
Section 1.4.3) and detailed comparisons with glass phenomenology [5, 31–35]
In parallel, progress has come from the development of new KCMs [5]. We
discuss below one of these, which reproduces in particular the mixed character
of the glass transition, where diverging lengthscales characteristic of second
order transitions combine with a first order jump in the fraction of frozen
degrees of freedom. This two-dimensional Spiral model [20,36,37] is defined as
follows. Consider a square lattice and, for each site i, divide its first and second
neighbours into the North-East (NE), South-West (SW), North-West (NW)
and South-East (SE) pairs, as illustrated in Fig. 1.1. Then the constraint for a
move to occur at i is that “both its NE and/or both its SW neighbours should
be empty” and “both its SE and/or both its NW neighbours should be empty”
(see Fig. 1.1); in other words, fi(n) = 1 if this condition is satisfied and = 0
otherwise. Stated in a more geometrical form, the constraint requires that all
four sites in one of four contiguous sets of neighbours (NE and SE, or SE
and SW, or SW and NW, or NW and NE) have to be empty. The motivation
for the somewhat involved form of this constraint will become clear when we
analyse the dynamical transition in the model below. We note that before
the Spiral model a somewhat more involved choice of the constraints (the so
called Knights model) was proposed [36, 38] which leads to the same mixed
first/second order transition. Other choices in the same spirit have also been
investigated since, see for example [39].
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Fig. 1.1. Site i and its NE, NW, SE and SW neighbours. The constraint is (is not)
verified at the central site in case (a) (in case (b)).

1.2.2 Kinetically constrained lattice gases: KA and TLG models

Conservative KCMs are defined in a similar spirit to their non-conservative
analogues, but with dynamics that conserves total particle number. A particle
at i attempts at a fixed rate (= 1 without loss of generality) to jump to any
empty nearest neighbour site j. The rate for this move is thus ni(1−nj)fij(n).
The factor fij(n) again implements a kinetic constraint and is chosen not to
depend on the configuration at sites i and j. The resulting dynamics preserves
the number of particles, and so detailed balance on finite lattices is satisfied
w.r.t. the Boltzmann distribution which is uniform on configurations with
the appropriate fixed particle number. By linearly combining distributions
with different particle numbers one can of course also create grand-canonical
Boltzmann distributions where each site independently contains a particle
with some probability ρ. Detailed balance is also satisfied w.r.t. these distri-
butions, and they extend naturally to the limit of an infinite lattice.

Again, we can classify conservative KCMs into non-cooperative and co-
operative models. For the former it is possible to construct a finite group of
empty sites, the macrovacancy, such that for any configuration the macrova-
cancy can be moved all over the lattice and any jump of a particle to a
neighbouring empty site can be performed when the particle is adjacent to
the macrovacancy. Clearly the baseline lattice gas in which there are no ki-
netic constraints, which in d = 1 is the symmetric simple exclusion process
(SSEP), is non-cooperative and the minimal macrovacancies are just isolated
empty sites.

Chronologically the first conservative KCM is the Kob-Andersen model
(KA) [27], which has cooperative dynamics. Here a particle can jump to a
neighbouring site only if both in the initial and final position at least m of
its nearest neighbouring sites are empty. The original KA model had m = 3,
with particles on a cubic lattice, but one can similarly define KA-m models on
hyper-cubic lattices of dimension d and for different values of the parameter
m, with 2 ≤ m ≤ d. The restrictions on m arise from the fact that m = 1
corresponds to an unconstrained lattice gas, while a model with m > d has a
finite fraction of frozen particles at any density (as for FA models in the same



8 Juan P. Garrahan, Peter Sollich, and Cristina Toninelli

parameter regime). Similarly to the case of FA-m models with m ≥ 2, one
can directly check that all KA-m models are cooperative. On other lattices,
KA models can be non-cooperative. Consider for example the KA model with
m = 2 on a triangular lattice. Here one can check that a “dimer” of two
neighbouring empty sites forms the required macrovacancy, which can move
across the lattice in a tumbling motion even when all other sites are occupied.
Two other KCMs on triangular lattices were introduced in [40] and have more
recently been analysed in [41]. For the (1)-TLG a particle can move from site
i to a neighbouring site j if at least one of the two mutual neighbours of i
and j is empty. For the (2)-TLG a particle can move from i to j if both the
two mutual neighbour sites are empty. It is easy to verify that the (1)-TLG
is non-cooperative, with – as for KA with m = 2 on the same lattice – a
dimer of vacancies being a macrovacancy. The (2)-TLG, on the other hand,
is cooperative: a chain of particles occupying an entire row of the lattice,
for example, can never be destroyed, thus it is not possible to construct a
macrovacancy.

1.3 Ergodicity breaking transitions

As explained above, the equilibrium distribution in KCMs is trivial because it
factorizes over sites. In particular, then, no equilibrium phase transition can
occur. On the other hand, the presence of constraints might induce transitions
of purely dynamical type: detailed balance alone does not guarantee that the
distribution over configurations will converge for large times to the Boltzmann
equilibrium distribution. To see this, return to the example of the FA-2 model
on a square lattice (m = d = 2), either finite with periodic boundary con-
ditions or infinite, and a starting configuration n(0) which has two adjacent
rows of occupied sites. Then since these sites are forever blocked, for any site
i within the two rows, limt→∞〈ni〉t = 1 6= 〈ni〉eq = ρ, where 〈·〉t, is the av-
erage over the stochastic dynamics which starts from n(0) and 〈·〉eq is the
equilibrium average.

Motivated by this, we can ask whether convergence to the equilibrium
distribution is recovered at least in the thermodynamic limit: if we sample an
initial configuration n(0) from the equilibrium distribution, then is the large
time limit of the average of any function g(n) equal (with probability one)
to its equilibrium average, i.e. is limt→∞〈g〉t = 〈g〉eq? If this is the case we
will say that the system is ergodic. The models we consider are all ergodic
at sufficiently high density q = 1 − ρ of facilitating (empty) sites. If they do
become non-ergodic as q is reduced, we call qc the critical density of empty
sites at which this transition occurs. As will be discussed below, the models
defined in the previous sections are ergodic at any positive q = 1 − ρ, so
that qc = 0, with the exception of the Spiral model and FA models on Bethe
lattices which display ergodicity breaking transitions at 0 < qc < 1.
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Owing to the factorized form of the equilibrium distribution, ergodicity
corresponds to the fact that in the thermodynamic limit the configuration
space is covered by a single irreducible set, i.e. a set of configurations which
are connected to each other by allowed paths; for a proof see [21, Proposition
2.4] and [42, Section 2.3]. This in turn is equivalent to the requirement that
for any site i (in non-conservative KCMs) or pair of nearest neighbour sites
i, j (in conservative KCMs) there is an allowed path which transforms the
configuration into one where the constraint is satisfied at i (i, j). In other
words, the probability that any site i belongs to a cluster of forever blocked
sites must vanish in the thermodynamic limit.

For non-cooperative KCMs one sees easily that ergodicity holds at any
density ρ < 1, i.e. at any q > 0. In the non-conservative case, the probability
of finding at least one mobile defect in an equilibrium configuration goes
to one in the infinite volume limit, and then starting from this defect one
can empty all sites. Thus, any configuration is connected to the “all empty”
configuration with probability one. The situation is similar for non-cooperative
but conservative KCMs.

The case of cooperative KCMs is more delicate and here an ergodicity
breaking transition can occur. The non-conservative case is again simpler, so
we begin with this. In order to determine the probability that a site belongs to
a blocked cluster, consider the following deterministic procedure: iteratively
empty all sites for which the constraint is verified until we reach either the
completely empty configuration, or one in which there is a “backbone” of
mutually blocked occupied sites. Then it is easy to verify that the sites that
are blocked forever under the stochastic dynamics of the actual KCM are
precisely those that are empty at the end of this deterministic procedure. In
other words, the problem of the existence of an ergodicity breaking transition
for cooperative non-conservative KCMs can be reformulated as a percolation
transition for the final configuration of the above deterministic dynamics.
For FA-m models this deterministic dynamics coincides with the well known
algorithm of bootstrap percolation and the results in [43, 44] establish that
qc = 0 on hypercubic lattices in any dimension d and for any facilitating
parameter 1 ≤ m ≤ d (while trivially qc = 1 for m > d since finite blocked
structures can occur). This work disproved a long-standing conjecture from
the original FA paper [4], namely that an ergodicity breaking transition would
occur at some qc > 0. Such a transition does take place, however, when one
considers FA models on a Bethe lattice as will be explained in Section 1.3.1. An
example of a finite-dimensional model displaying such a transition is provided
by the Spiral model (see Section 1.3.2).

For cooperative conservative KCMs, the proof of ergodicity is more in-
volved. For example, for the KA-2 model on a square lattice (d = 2), we have
shown that the irreducible set of configurations that has unit probability in
the thermodynamic limit is the one containing all configurations which can
be connected by an allowed path to a configuration which has a frame of
empty sites on the last shell before the boundary [45]. Establishing that this
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set has unit probability in the thermodynamic limit is more complicated than
in the corresponding non-conservative KCMs, i.e. FA models. This is because
there is no deterministic bootstrap-like procedure which allows one to estab-
lish whether or not a configuration does or does not belong to the irreducible
set. Nevertheless, a formal proof can be constructed [42,45], and demonstrates
that the ergodicity breaking transition originally conjectured by Kob and An-
dersen [27] does not exist. Analogous arguments can be constructed for the
other choices of m and d [45] to rule out the occurrence of a transition.

1.3.1 FA models on Bethe lattices

As a simple example of a model that does have an ergodicity breaking tran-
sition we consider next the FA-m model on a Bethe lattice, i.e. a random
regular graph of connectivity k+ 1. Exploiting the local tree-like structure of
such a graph, it is easy to write a self-consistent equation for the probability
P that a given site is occupied and blocked, conditional on the fact that its
ancestor is occupied and blocked:

P = (1− q)
m−1∑
i=0

(
k

i

)
P k−i(1− P )i. (1.1)

The factor 1− q is the probability for the given site to be occupied; the sum
gives the probability that at most m − 1 of the descendants of the site are
empty so that it is in fact blocked. The leading term on the r.h.s. for small
P is O(P k−m+1). For m = k, the largest value that does not produce finite
blocked structures, this is linear and so one gets a continuous transition at
(1− qc)m = 1. For all smaller m, the small P -increase is with a higher power
of P and so a discontinuous transition results, with P = 0 for q > qc and
P = Pc + O(

√
qc − q) for q < qc, where Pc > 0. The mechanism behind

this combination of a discontinuous onset and a critical singularity has been
analysed in detail [46, 47]. In particular, the singular square root behavior
is due to the extreme fragility of the infinite spanning frozen or “jammed”
cluster at the transition, and to the existence of a related length scale which
diverges as a power law.

1.3.2 Spiral model

In this section we will explain the mechanism behind the ergodicity breaking
transition of the Spiral model [20,36,37]. Consider the directed lattice that is
obtained from the square lattice by putting two arrows from each site towards
the neighbours in the NE pair, i.e. pointing North and North-East. The re-
sulting lattice is a tilted and squeezed version of a two-dimensional oriented
square lattice (see Figure 1.2). Therefore, if the density is larger than the crit-
ical density of oriented site percolation (directed percolation, DP), ρDP

c , there
exists a cluster of occupied sites which spans the lattice following the direction
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of the arrows. Consider now a site in the interior of this directed cluster (see
Figure 1.2): by definition there is at least one occupied site in both its NE
and SW neighbouring pairs, therefore the site is blocked with respect to the
constraints of the Spiral model. Thus for ρ > ρDP

c the system contains one
or more blocked clusters and is therefore non-ergodic. This suggests that the
ergodicity breaking transition occurs at qc = 1−ρDP

c , but the argument so far
does not exclude a transition earlier, i.e. at a larger density q of empty sites.
Indeed, since blocking can occur along either the NE-SW or the NW-SE direc-
tion (or both), the presence of a blocked cluster does not imply that there is
a directed path through the lattice as in the DP argument. To establish that,
nevertheless, blocked clusters do not occur for q > 1 − ρDP

c , one shows that
empty regions of linear size much larger than the parallel length of DP, ξ‖, act
as “critical defects”: starting from any such empty region we can very likely
empty the whole lattice. Because ξ‖ is finite, so is the size of these defects. In
the thermodynamic limit at least one such defect will occur in the system, and
so for q > 1 − ρDP

c any configuration can be completely emptied: the system
is ergodic. This confirms that indeed qc = 1− ρDP

c .

Fig. 1.2. The tilted and squeezed two dimensional oriented lattice obtained by
drawing arrows from each site to its neighbours to the North and East. The site
marked by the cross belongs to an oriented occupied cluster and is therefore blocked.

An important feature of the ergodicity breaking transition in the Spiral
model is that it is discontinuous, in the sense that the fraction of blocked
sites jumps to a nonzero value at q = qc. This is relevant for the connection
to real glasses, because it implies that two-point correlation and persistence
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functions must display a plateau in their time-dependence when the transition
is approached (q > qc), as is observed experimentally. Earlier models with
a transition at a finite qc, e.g. a two-dimensional generalization of the East
model [48], develop only a fractal cluster of blocked particles at the transition,
which occupies a vanishing fraction of the system. The fact that in the Spiral
model blocked clusters are compact at qc follows by a direct construction of
blocked structures [20,36,37] and is a consequence of the presence of the two
transverse blocking directions in the constraints, and of the anisotropy of DP.

1.3.3 Summary: Presence/absence of ergodicity breaking
transition

For the sake of clarity let us summarize the results of this section by listing
the KCMs we have discussed according to whether or not they display an
ergodicity braking transition at a non-trivial (different from 0 or 1) critical
defect density qc.

The models that do display such a transition are the FA and KA models
on Bethe lattices, the Spiral model and the North-East model. The latter
was not mentioned above because it is not of direct interest for modelling
the glass transition, due to the continuous character of its ergodicity breaking
transition. It is a spin facilitated model on a square lattice with the constraint
requiring both the North and East neighbour to be empty. It is easy to verify
along the lines of the argument in the previous subsection that the North-East
model as defined by this constraint displays a transition at the critical density
of oriented percolation.

The models that do not display a transition are: the FA-m and KA-m
models for any choice of m and on hypercubic lattices in any finite dimension
d; the East model; and the (1)-TLG and (2)-TLG models.

1.4 Bulk dynamics of KCMs

1.4.1 Glassy time scale divergences and static length scales

For KCMs to be useful as models of physical glasses they need to satisfy
the basic requirement of dynamical slowing down as the glassy regime ap-
proached. In our case this corresponds to increasing density ρ, or decreasing
density of empty sites q. We will therefore now give an overview of numeri-
cal and analytical results on how relaxation time scales τ diverge in KCMs
when q approaches qc. In concrete terms, we will take τ as the typical time
in the relaxation of density-density correlation and persistence functions. In
cooperative KCMs, τ turns out to be connected to statically defined blocking
lengths, as we also discuss.

Starting with FA-1 models, relaxation occurs via the effective diffusion
of empty sites: an empty site facilitates the emptying of a neighbour site,
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with rate q = 1 − ρ, and the original site can then fill and does so with
probability 1/2 before the new empty site does. Empty sites can thus diffuse
freely, with an effective diffusion constant q/2. This suggests that τ should
grow as an inverse power of q. Because q ' exp(−β) at low temperatures
1/β, this corresponds to Arrhenius scaling. Indeed, by an exact mapping to a
diffusion-limited aggregation model one can derive [49] that τ ∼ 1/qz with z =
3 in d = 1 and z = 2 in d ≥ 2. The d = 1 result is simple to understand: empty
sites are typically a distance 1/q apart, and relaxation requires diffusion across
this distance with the effective diffusion constant q/2, so τ ∼ (1/q)2/(q/2) ∼
1/q3.

For FA-m with m > 1, an isolated empty site is unable to move on its own
and has to wait for a mobile defect, i.e. an appropriate region of empty sites,
to move cooperatively into its neighbourhood and so facilitate its motion. As
we will detail below, the typical number of moves involved in this cooperative
process increases as q → 0, thus a super-Arrhenius scaling of the relaxation
time has to result. This has been confirmed by several numerical investigations
which have proposed different forms for the density dependence of τ [50–52].
In order to better understand the cooperative mechanism let us consider for
example the case m = d = 2. An `× ` square of empty sites can be expanded
by one lattice spacing in both directions, provided that at least one empty site
is present on two adjacent sides of the square. This is very likely to be the case
when `� 1/q. On the other hand, the probability of being able to empty all
sites in a region of size 1/q without using external empty sites can be shown
to be proportional to exp(−c/q) with c a constant of order one [43, 53]. This
result is obtained by iterating the process outlined above, multiplying the
relevant probabilities at each step: one can iteratively remove all the particles
in any region starting from its interior provided there is a central 2×2 square
of empty sites and one additional empty site somewhere on each of the four
sides of each subsequent shell. In [54] it was conjectured that relaxation occurs
via the diffusion of these critical defects leading to a relaxation time diverging
as τD/ρD, with ρD ' exp(−c/q) the defect density and τD their diffusion time.
The latter, as detailed in [45, Section 6], should be a sub-leading correction,
giving τ ∼ 1/ρD to leading order. In principle one might think that this is not
the optimal relaxation mechanism and that other relaxation processes could
be much faster, avoiding the super-Arrhenius scaling. However, the results
in [43, 53] also give the typical size of the incipient blocked cluster to which
any fixed site belongs and that has to be eroded via successive moves from its
boundary before the site in qustion can be unblocked. This size, Lc, diverges
as exp(c/2q) thus providing (due to finite speed of propagation) a lower bound
on time scales of the form τ ≥ exp(c/2q) which confirms the super-Arrhenius
scaling. Note that L2

c scales as the inverse of ρD, which (as the probability
that a region of site 1/q × 1/q is a critical defect) is essentially the number
density of critical defects. Indeed, clusters of linear size larger than Lc are
typically unblocked because they contain at least one critical defect from
which relaxation can occur. In [44] the typical size of such incipient blocked
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clusters was derived for generic m and d leading to τ growing at least as fast
as exp◦(m−1)(c/q1/(d−m+1)). Here exp◦s is the exponential iterated s times,
so that the divergence of the time scale is extremely rapid for any m ≥ 3.

For KA models the basic relaxation mechanism is very similar [45], the
main difference being that the critical defects are now regions in which empty
sites and particles are arranged in such a way that one can find an allowed path
– a sequence of allowed moves – to perform any nearest neighbour exchange.
As shown in [45,55], the properties as a function of q of these regions coincide
with those for the FA models, leading to the same estimates for the scaling of
the relaxation time.

Relaxation processes in the Spiral model proceed in a broadly analogous
manner. But the size of the critical defects that can expand further diverges
already at qc, proportionally to the parallel length ξ‖ of DP clusters. The
typical size of incipient blocked clusters grows much more quickly, as Lc '
exp[c/(q − qc)µ] with µ = ν‖(1 − z), where ν ' 1.73 is the critical exponent
of ξ‖ and z ' 0.64 the exponent relating the parallel and transverse lengths
of DP. As for FA models, since these clusters can be unblocked only from the
boundary, τ should diverge at least as Lc.

Interestingly, in the other model we have considered that has an ergod-
icity breaking transition at nonzero qc, the FA model on a Bethe lattice,
simulation measurements of persistence and correlation functions [56] show
that relaxation times grow only as power laws on approaching the transition,
τ ∝ (q− qc)−γ with γ ' 2.9. Qualitatively, thus, the transition for FA models
on Bethe lattices has the characteristics of a mode-coupling theory (MCT) [16]
arrest transition.

Finally we discuss the East model, where the origin of the super-Arrhenius
time scale is possibly easiest to see. The basic relaxation mechanism can be
understood in terms of the dynamics of domains of occupied sites separated
by empty sites. In the limit of small q one can then argue [29] that the typical
relaxation time should scale as the minimal time required for an empty site to
facilitate the motion of the first empty site to its right, which is typically at
distance 1/q. The optimal path to create an empty site at a distance d involves
an energy barrier of order log2(d) (the minimum over all paths of the maximal
number of empty sites which we encounter along the path). Setting d = 1/q
thus leads to the relaxation time estimate τ ∼ q− log2(1/q) ∼ exp[β2/ ln 2] [29].
The above argument does not take into account the behavior on scales smaller
than the typical distance between empty sites. Incorporating this turns out
to halve the coefficient in the exponent, to τ ∼ exp[β2/(2 ln 2)] [21, 57].

We have discussed so far only the overall timescale for the decay of corre-
lation or persistence functions in KCMs, but not the time dependence of this
decay. For the cooperative models one generically finds stretched exponen-
tial forms, as seen experimentally, while non-cooperative models can exhibit
power law tails reflecting the diffusive motion of the mobile defects. We refer
to [23] for an overview and quote only the example of the East model, where
one can show that the stretching becomes extremely strong at low tempera-
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tures, with correlations and persistence both decaying as scaling functions of
(t/τ)1/[β ln 2] [29, 30,58].

1.4.2 Some rigorous results

In the recent years KCMs have been also analysed in the mathematical com-
munity. We summarize here those rigorous results which help to further un-
derstand the slow relaxation of KCMs, and have in some cases corrected con-
jectures resulting from numerical simulations or intuitive arguments.

The analysis of the large time behavior in the ergodic regime was started by
[59] where for the East model it was established that [1/ ln 2−o(1)] ln2(1/q) ≤
ln(1/gap(q)) ≤ [1/(2 ln 2) + o(1)] ln2(1/q) with 1/gap(q) the inverse of the
spectral gap of the Liouvillian operator generating the dynamics. The latter,
which in a finite system is just the inverse of the smallest nonzero eigenvalue
of the transition matrix, represents the longest relaxation time for all one-time
quantities and so can be identified with the relaxation time scale τ discussed
above. The bounds of [59] quoted above then say that ln τ scales for small q
as ln2(1/q) = β2, with a prefactor between 1/(2 ln 2) and 1/ ln 2, the upper
bound being the naive estimate of [29]. These bounds were sharpened in [21],
establishing that it is in fact the lower bound that gives the correct asymp-
totics: written in terms of the gap, limq→0 ln(1/gap)/ ln2(1/q) = 1/(2 ln 2).

Positivity of the spectral gap guarantees in particular exponential con-
vergence in the large time limit: for any g(n) one has 〈g(n(t))g(n(0))〉 −
〈g(n(0))〉2 ≤ const × exp(−2 gap t), where 〈. . .〉 is the mean over the initial
Boltzmann equilibrium at empty site density q and over the stochastic pro-
cess governing the evolution in time. In [21] it was shown that positivity of
the spectral gap also guarantees exponential convergence of the persistence
function P (t), which is the probability that a site does not change its state
during a time interval of length t: P (t) ≤ exp(−q gap t) + exp(−(1− q)gap t).
In the same paper, a multi-scale approach was developed which allows one to
prove positivity of the spectral gap in the whole ergodic region q > qc for all
the choices of constraints described in Section 1.2. With this technique one
can also derive [21] the following (sometimes optimal) bounds when q ↓ qc.
For FA-1 in d = 1, τ ∝ 1/q3; in d = 2, 1/q2 < τ ≤ ln(1/q)/q2; and in
d ≥ 3, 1/q1+2/d < τ ≤ 1/q2. These bounds are in agreement with the an-
alytical results in [49], and confirm that the initial findings [60] in d = 2
and d = 3, based on a mapping to DP, were incorrect. For the cooperative
KCMs FA-2 and FA-3, results in [21] show that exp(q−1) ≤ τ ≤ exp(q−2) and
exp[exp(q−1)] ≤ τ ≤ exp[exp(q−2)], respectively, thus establishing a super-
Arrhenius scaling compatible with [50,54].

For conservative KCMs with non-cooperative behaviour, the diffusive scal-
ing 1/gap = O(L2) in a volume of linear size L and the positivity of the
self-diffusion coefficient at any density was established in [61]. Moreover the
hydrodynamic limit was studied there for a special class of models leading
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to a porous medium equation, namely a degenerate partial differential equa-
tion ∂tρ = ∇(D(ρ)∇ρ) with a diffusion coefficient D(ρ) vanishing as a power
law of 1 − ρ when ρ → 1. The methods used to establish these results use
as a key ingredient the existence of a path between configurations which al-
lows any two particles to be exchanged, by exploiting the presence of mobile
macrovancancies. This approach, then, cannot be extended to cooperative
models. However, more recently a different technique has been devised [42]
that proves also for cooperative models the diffusive scaling 1/gap = O(L2)
and establishes in d = 2 the diffusive decay in time ∼ 1/t of the density-
density autocorrelation function. The self-diffusion coefficient for a specific
cooperative model, namely the KA-m, was analysed in [62] where its positiv-
ity at any q was proved, modulo a conjecture on the behavior of a random
walk in a random environment.

1.4.3 Non-equilibrium behaviour

Due to space constraints we focus in this paper almost exclusively on the
equilibrium dynamics of KCMs. Non-equilibrium behaviour results if, for ex-
ample, a non-conservative KCM is prepared in a configuration with a high
density q of empty sites, and then q is reduced quickly. This corresponds to a
sudden lowering of the temperature 1/β and so mimicks quench experiments
in real glasses. If the final q is low enough, i.e. sufficiently close to qc, the
time scale τ for relaxation to the new equilibrium will be very long, and aging
will occur: the properties of the system depend on the time elapsed since the
quench. Aging can be monitored via two-time response and correlation func-
tions, and one ask for example whether these are linked by a non-equilibrium
fluctuation-dissipation theorem with some effective temperature [63]. Surpris-
ingly, in some simple KCMs such as the East and FA-1 models, aging at low
q is in fact easier to analyse than the dynamics at equilibrium [29, 64]. Work
in this area up to late 2001 is summarized in [23], with more recent studies
revealing a very rich phenomenology in the aging of KCMs [65–67]. There has
also been progress in rigorous approaches, with e.g. Refs. [22,68] establishing
the non-equilibrium behavior of the East model derived in [29].

1.5 Dynamical heterogeneity and its consequences

The main success of KCMs has been the ability to account, at least qual-
itatively and sometimes also quantitatively, for many aspects of dynamical
heterogeneity (DH) [12–14] observed in glass forming systems. DH emerges
naturally in KCMs at high density or low temperature [5, 69], and this is the
topic of this section. We focus on the simpler KCMs, such as the FA-1, East
and TLG constrained lattice gases. For these models results are easier to ob-
tain both analytically and computationally than for, say, the Spiral model
or the FA-m model with m > 1; nevertheless they display all the important
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physics. In particular, the dynamical scaling properties of the East model are
close to those observed in realistic glass formers (see e.g. [15]).

The simplicity of KCMs allows one to make detailed predictions about the
growth of dynamical correlation lengths and their scaling relations to growing
relaxation times [10,11,33,49,69–71]. These dynamical lengthscales are an in-
dication of spatial correlations that build up over time, so they are most easily
extracted from multi-point correlation functions, which we discuss in Subsec-
tion 1.5.1. DH also tells us that the dynamics of glass formers is fluctuation
dominated. A central consequence is transport decoupling, the breakdown in
standard transport relations of liquid state theory that are obtained under
the assumption of homogeneous dynamics, such as that of Stokes-Einstein re-
lating self-diffusion rate to viscosity [72]. KCMs provide a direct explanation
for decoupling based on the response of a moving molecule to the distribu-
tion of local relaxation timescales in the host fluid [31]. Such motion can be
approximately quantified within a continuous-time random walk (CTRW) for-
malism [71]. Decoupling and CTRW are discussed in Subsection 1.5.2. Finally,
the observed DH is only a mesoscopic phenomenon: dynamical lengthscales are
always finite (and transient) at non-zero temperature or at less than maximal
density, that is, for q > qc (note that all models discussed in this section have
qc = 0). Nevertheless, it is a precursor to a fully-fledged non-equilibrium, or
“space-time”, phase transition [73–75], which we discuss briefly in Subsection
1.5.3.

1.5.1 Multipoint-correlations and susceptibilities

Figure 1.3 illustrates DH in KCMs. A convenient observable to quantify local
relaxation is the persistence field, pi(t) = 0, 1, where 0 indicates that site i
has changed its state at least once up to time t, and 1 otherwise. The en-
semble average, P (t) ≡ 〈pi(t)〉 = limN→∞N−1

∑
i pi(t), is the persistence

function discussed above. Fig. 1.3(a) shows the persistence field pi(t1/2) in a
three-dimensional version of the East model, or NEF (for North-East-Front
model) [71], where t1/2 is the time at which P (t1/2) = 1/2, i.e., half the sys-
tem has relaxed and half has not. We see from Fig. 1.3(a) that relaxation is
heterogeneous: there is a clear spatial segregation of sites which have relaxed,
pi = 0 (colored black), from those that have not, pi = 0 (colored white). Relax-
ation dynamics is spatially correlated. Fig. 1.3(a) shows the persistence field
at two different values of q (two different temperatures). The spatial extension
of dynamic correlations increases with decreasing temperature, and therefore
with increasing relaxation time. Note that these dynamical correlations are
unrelated to thermodynamic correlations since the equilibrium measure of the
NEF is trivial at all temperatures. Fig. 1.3(a) shows similar persistence field
plots for a density conserving model, the two-vacancy assisted (2)-TLG, but
at a fixed high density ρ and for different observation times t. This figure
shows that DH is a transient effect, with dynamical correlations becoming
maximal at some intermediate time t∗ (see below).
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resemble the ones observed experimentally in mildly super-

cooled liquids and are usually explained in terms of mode-

coupling theory.34 This will be demonstrated in section V, where

data recently fitted via mode-coupling theory35 are also fitted

using the NEF model.

IV. Length Scales

A. Dynamic Heterogeneity. The growth of time scales in

the NEF model is accompanied by growing spatial correlations

as the system approaches its critical point at T ) 0. These

correlations are purely dynamical in origin and give rise to

dynamic heterogeneity.6,19 Figures 5 and 6 serve to illustrate

this phenomenon, as we now explain.

We quantify the local dynamics via the local persistence

function Pi(t). For a given temperature, we run the dynamics

for a time t*, such that P(t*) ) 1/2, meaning that half of the

sites have flipped at least once. Persistent (immobile) spins are

colored white, for which Pi(t*) ) 1, and transient (currently or

previously mobile) spins are colored black, for which Pi(t*) )
0. Figure 5 shows the local persistence function for the NEF

model at two different temperatures, T0 ) 1.0 and T ) 0.15 ,
T0. Clearly, the low-temperature dynamics is spatially hetero-

geneous, and the spatial correlations of the local dynamics grow

as T is decreased. The “critical” nature of dynamic clusters is

apparent: the pictures are reminiscent of the spatial fluctuations

of an order parameter close to a continuous phase transition,

such as the magnetization of an Ising model near criticality. In

our case, the order parameter is a dynamic object, and the

persistence function and the critical fluctuations are purely

dynamical in origin.18

It is interesting to note that these figures are qualitatively

different from the ones obtained in the strong case where

dynamic facilitation is isotropic. One can clearly distinguish in

Figure 5 the north, east, and front directions of facilitation,

implying that wandering of excitations in the other three

directions is forbidden. Domains of Figure 5 appear much less

rough than the ones obtained in the isotropic case.14 In that sense,

increasing the fragility is similar to increasing the “surface

tension” of the dynamic domains observed in Figure 5. The

same observation applies to an even more fragile system, the

two-spin facilitated FA model in two dimensions, where the

corresponding domains resemble a polydisperse assembly of

squares.5

The qualitative observations of dynamic heterogeneity per-

formed in numerical or experimental works can also be made

in the present coarse-grained model. We show in Figure 6 the

analogue of spatial clustering of subsets of fast and slow sites.

To build these snapshots, we represent a given percentage, 5%,

of the sites that relax faster or slower; that is, we show those

sites for which the persistence time is among the 5% smaller

or larger in a randomly chosen run at temperature T ) 0.18.

One observes that the fastest sites are not randomly located

in space, but clustered in “noncompact” or “stringy” objects,

similar to those observed in simulations and experiments.36-38

The shape of these objects is a consequence of the existence of

point defects of mobility. When a defect moves, it induces those

sites along its trajectory to relax, so leaving in its wake a string

of fast sites.

In Figure 6, we also show 5% of the sites which are slowest,

using the same simulation temperature as before. A more

compact structure is seen. This is again the consequence of the

relaxation via point defects of mobility. The slowest sites belong

to regions of space devoid of defects which take then a very

long time to be visited by defects. These large domains are thus

slowly relaxed. It is the bulk of these slow domains that is

observed in Figure 6. Note finally that, at large times, the

distribution of slow cluster sizes seems very wide, since some

isolated sites which have been not been visited by defects coexist

with the very large domains discussed above.

Since our comments on Figure 6 are mainly qualitative, it

should come as no surprise that snapshots built in this fashion

in the isotropic case are very similar.14

Finally, it is interesting to compare these figures to those in

previous publications,6,21 in which space-time diagrams of one-

dimensional kinetically constrained models were presented.

There, spatio-temporal “bubbles” of immobile regions, bounded

Figure 4. Imaginary part of the dynamic susceptibility defined in eq
11, for temperatures as in Figure 1, decreasing from right to left. For
T ) 0.18, we also show as a dashed line the Fourier transform of the
stretched exponential fit to the long time tail of the persistence function,
revealing “additional processes” on the “high-frequency flank” of the
R relaxation.

Figure 5. Spatial distribution of the local persistence at time t* such
that P(t*) ) 1/2 (i.e., 50 of sites, shown in black, have flipped by time
t*) at temperatures T ) 1.0 (top) and T ) 0.15 (bottom) for a system
size L ) 40 in both cases. The appearance of dynamic critical
fluctuations when T f 0 is evident.
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in the TLG models. We see from Fig. 6 that the SE relation is
indeed violated for both the !2"-TLG and the !1"-TLG, the
effect being more pronounced in the fragile case. Moreover,
we see that the densities at which the product Ds!" begins
deviating from constancy coincide with the onset densities,
#o’s, extracted from the distribution of persistence times.
This observation reinforces the idea that it is the fluctuation
dominated nature of the dynamics that leads to the SE break-
down #17$.

SE violation implies that the self-diffusion constant does
not scale with the structural relaxation time as !"

−1. One pos-
sibility is that it obeys a fractional SE law, Ds%!"

−$ where
$%1. This is observed in experiments #28$, and is obtained
theoretically for probe diffusion in the FA and East models
#17$ !see also #30$". Figure 7 shows that the diffusion con-
stant also obeys a fractional SE law in the TLG models. The
SE exponent is $&0.88 for the !1"-TLG, which is the value
expected for the FA model in d=2, $&2/2.3 #17$. In the
case of the !2"-TLG, despite the fact that Ds and !" are both

super-Arrhenius, we find that the scaling exponent is tem-
perature independent at large densities, $&0.58. The devia-
tion of this exponent from 1 is larger than that for both the
FA and East models in two dimensions #17$. It indicates a
larger violation of the SE law, consistent with the fact that
the !2"-TLG is more fragile than either of those models #10$.

VI. DYNAMICAL LENGTH SCALES

A. Indication of a dynamical length scale from a two-point
function

Since the growth in time scales and the violation of the
Stokes-Einstein relation in the TLG models are clearly not
tied to a growth in static length scales, we turn now to the
discussion of dynamical length scales. Such a length scale
can be inferred from examining the relaxation behavior of
the self-intermediate scattering function over more than one
wave vector at different densities. One can appreciate this
fact qualitatively by looking at the decay of Fs!q , t" for the
!2"-TLG over several values of q at low and high density,
Fig. 8 !top" #19$. At low density, the decay of the various
curves looks similar at all wave vectors !except for the larg-
est wave vector" whereas at high density, even the curves at
intermediate wave vector differ greatly from the simple ex-
ponential form seen at smaller wave vectors. The high den-
sity curves bunch up at intermediate to large q indicating that
the relaxation behavior at these length scales is different !i.e.,
slower" than one would expect from the behavior at larger
length scales #5$. Similar behavior has also been observed in
the Kob-Andersen kinetic lattice gas model and kinetically
constrained spin models #4,19$.

To quantify the above behavior, we proceed as in #31,32$.
In the hydrodynamic regime, we have limq→0 Fs!q , t"
%exp!−Dsq2t", and one expects the product Ds!!q"q2 to be
independent of q, where !!q" is the time when the interme-
diate scattering function at wave vector q decays to 1/e. In
Fig. 8 !bottom", we plot the quantity Ds!q"'1/!!q"q2 as a
function of q at various densities. A flat line independent of q
indicates normal diffusive behavior whereas a downward
bend signifies a change to subdiffusive behavior. As density

FIG. 9. !Color online" Data from Fig. 8 collapsed onto a master
curve. The closed symbols correspond to the !2"-TLG and the open
symbols correspond to the !1"-TLG. The straight line is q2.

FIG. 10. Growth of mobile particle regions as a function of
observation time &t at #=0.77 in the !2"-TLG. Black and gray
regions indicate the location of particles and white regions indicate
empty lattice sites. Particles colored in black have moved at least
one lattice spacing in a time &t whereas particles colored in gray
have not. !Top, from left to right: &t=103 and 104; bottom, from left
to right: &t=105 and 106; !"%105 at this density".

FIG. 11. Same as Fig. 10 for the !1"-TLG. Here, #=0.95. !Top,
from left to right: &t=10 and 102; bottom, from left to right: &t
=103 and 104; !"%103 at this density."
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(a) (b)

Fig. 1.3. Dynamical Heterogeneity in KCMs. (a) Spatial distribution of the local
persistence in the NEF model, at time t1/2 such that P (t1/2) = 1/2 (i.e., 50 of
sites, shown in black, have flipped by time t1/2) at temperatures T = 1.0 (top)
and T = 0.15 (bottom) for a system of size N = 403. Adapted from Ref. [71], with
permission. (b) Same, but for (2)-TLG model, at fixed density ρ = 0.77, and varying
observation times, t = 103, 104, 105, 106. From Ref. [69], with permission.

The extent of the dynamical correlations evident from Figure 1.3 can be
quantified by means of multipoint functions [11, 33, 34, 76]. Consider for ex-
ample the “four-point” structure factor,

S4(k, t) ≡ N−1N (t)
∑
i,j

[〈pi(t)pj(t)〉 − P 2(t)
]
eik·(ri−rj) (1.2)

This is the Fourier transform of the spatial correlation function of the persis-
tence field. The factor N (t) is a convenient normalization factor. We adopt
the choice N (t) =

[
P (t)− P 2(t)

]−1, which make S4 equal to unity if all the
nonzero contributions come from “self” terms i = j. Fig. 1.4(a) shows S4

for the NEF. This is the structure factor of the DH pictures of Fig. 1.3. It
has the characteristic shape of that of a system correlated over finite dis-
tances. The zero wave vector limit of S4 gives the “four-point” susceptibility,
χ4(t) = S4(k → 0, t), which provides an estimate of the correlation volume
of DH. Fig. 1.4(b) shows χ4(t) for the NEF model as a function of obser-
vation time t, at different temperatures. Several things are apparent. χ4 is
non-monotonic in time, indicating that DH is a transient phenomenon. It
peaks at around the relaxation time of the persistence function. The peak
value increases with decreasing temperature: dynamical correlations increase
with increasing relaxation time.

Multipoint functions reveal the scaling properties of DH. The dynamic
susceptibilities defined above have their peak, χ∗4 = χ4(t∗), at times t∗ close
to the relaxation times τ of the corresponding persistence functions. Scaling is
controlled by the distance to the dynamical critical point at zero concentration



1 Kinetically Constrained Models 19
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Dynamical four-point susceptibilities measure the extent of spatial correlations in the dynamics of glass
forming systems. We show how these susceptibilities depend on the lengthscales that necessarily form part of
their definition. The behavior of these susceptibilities is estimated by means of an analysis in terms of renewal
processes within the context of dynamic facilitation. The analytic results are confirmed by numerical simula-
tions of an atomistic model glass former, and of two kinetically constrained models. Hence we argue that the
scenario predicted by the dynamic facilitation approach is generic.
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I. INTRODUCTION

The lengthscales governing dynamical heterogeneity in
glass-forming liquids #1–5$ are often described in terms of
the susceptibility associated with fluctuations in the self-
intermediate scattering function #4,6–9$

!4!k,t" %
1
N&

jl
'"F̂j!k,t""F̂l!− k,t"( . !1"

Here the indices j and l run over the N particles in the sys-
tem, the position of the jth particle at time t is r̂ j!t";

"F̂j!k,t" % eik·#r̂j!t"−r̂j!0"$ − 'eik·#r̂j!t"−r̂j!0"$( , !2"

and k= )k). Under supercooled conditions, this four-point cor-
relation function typically grows in time towards a peak,
before decreasing at large times. This nonmonotonic behav-
ior is a consequence of the transient nature of dynamic het-
erogeneity.

It was suggested by Toninelli et al. #8$ that the time de-
pendence of !4!k , t" can be used to distinguish between dif-
ferent theoretical scenarios for the glass transition. The de-
pendence of !4!k , t" on the wave vector k was considered for
a glass-forming system in Ref. #10$, and for a sheared granu-
lar material in Ref. #11$. In both cases, significant depen-
dence on wave vector was found. In this article, we investi-
gate this wave vector dependence, in particular the way that
!4!k , t" grows towards its peak. We present data for an ato-
mistic system, and for two kinetically constrained models
#12$. We find nontrivial wave vector dependence in all three
cases. We explain this generic behavior analytically using a
treatment that we used earlier to describe dynamic decou-
pling in glass formers #13–15$.

Our analysis shows that the nontrivial behavior of four-
point correlators comes from two sources. The first contribu-
tion arises because particles that have not moved are clus-
tered in space; the second comes from correlations between
particle displacements. The relative sizes of these contribu-
tions depend on the wave vector k. The first dominates when
k is large, and the second dominates when k is small. The
crossover between these two regimes corresponds to the
crossover between non-Fickian and Fickian regimes ob-
served in two-point functions #15$.

Figure 1 illustrates the behavior that we consider for three
different model systems. These systems, described in detail
in Secs. III and IV, represent three levels of coarse-graining
in the glassy system. The most detailed is a fluid mixture of
classical particles in continuous three dimensional space, in-
teracting with Weeks-Chandler-Andersen !WCA" potentials
#16,17$. The second is the so-called !2"-TLG !triangular
lattice gas", due to Jäckle and Krönig #18$. It is a kinetically

FIG. 1. !Color online" The distinct part of !4!k , t" as a function
of t for two wave vectors in three model systems: the supercooled
three-dimensional WCA mixture !a"; a kinetically constrained trian-
gular lattice gas !b"; and probes in the one-dimensional
Fredrickson-Andersen model !c". The symbol !4

self!k , t" denotes
')"F̂i!k , t")2(. Full details are presented in the relevant sections be-
low. Dashed and dotted lines show that in all cases the exponents of
power law fits increase with decreasing wave vector. The largest
wave vectors considered are the principal wave vectors for each
system !for the WCA case this is the peak location in the equilib-
rium structure factor q0".
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with the asymptotic behavior C(x f 0) ∼ x-0.58, as a result of

a generalized Porod’s law. The scaling behavior (18) is presented

in Figure 9, which also confirms the temperature dependence

of the correlation length, ! ∼ c-1/3.12 It is interesting to note

that the relation between susceptibility and length is very

different in the strong and fragile cases, since we find that " ∼
!3 in the NEF model, whereas the scaling is closer to " ∼ !2 in
the FA case.14

V. Comparison to Experimental Data

In this section, we use the numerical results obtained in

previous sections to fit experimental data with the NEF model.

In doing so, there are several points that need to be considered.

First, the model we use is meant to be a description of

supercooled liquids which is coarse-grained both in time and

space and lives on a lattice. We are thus dealing with discrete,

rather than continuous, spatial degrees of freedom, and the very

short-time dynamics of the liquid is removed. By construction,

this produces discrepancies between real data on liquids and

numerical NEF model data, especially for short times and small

lengths. This is a small price to pay in such an approach given

the large number of features that can still be satisfactorily

accounted for with the NEF model.

Second, we have some freedom on how to relate real

experimental time scales and Monte Carlo steps in the simula-

tion. This will be done empirically, and we find that the expected

equivalence, 1 MC step ≈ few ps,12 works well, independently

of the temperature. Explicitly, we found that 1 MC ∈[1,10] ps
for the whole range of experimental data we have consid-

ered.31,41

Third, one must adjust the temperature given in Kelvin in

experiments to the adimensional T of the simulations. This

amounts to fitting the value of an energy scale, J, which should

appear on dimensional grounds in front of the Hamiltonian (1).

In principle, J could be fixed independently by fitting, say,

viscosity data of a given liquid before using the corresponding

temperatures to fit more detailed dynamic data in what would

be a zero-parameter fitting procedure. We have done the

correspondence in a less constrained manner, adjusting T in the

simulation to give a good fit to the data. Very satisfactorily,

though, we end up with a correspondence between numerical

and experimental temperatures which is well described by linear

relations, as it should be at low temperatures.12

In Figure 10, we show the result of this fitting procedure

as applied to recent data measured using the so-called optical

Kerr effect.40,41 This technique has several advantages. It extends

for over 5 orders of magnitude in time. The quantity measured

is the derivative of a time correlation function and, therefore,

the analogue of the distribution of time scales, π(t), discussed
above. Also vibrations, which are neglected in our approach,

affect very little the measured decay in the time scales of

interest.

Figure 7. Dynamic ‘four-point’ susceptibility, eq 13, at temperatures
T ) 1.0, 0.6, 0.4, 0.3, 0.23, 0.2, 0.18, and 0.16 (from left to right).

Figure 8. (Top) Spatial correlator of dynamic heterogeneity at the
relaxation time τ(T). Temperatures as in Figure 7 decrease from left to
right. (Bottom) Corresponding structure factor. Temperatures as in
Figure 7 decrease from bottom to top.

Figure 9. (Top) Spatial correlator rescaled with the form C(r) ∼ C(r/
!), ! ∼ c-1/3. (Bottom) Rescaled structure factor with " ) S(q ) 0) ∼
c-1 and ! ∼ c-1/3. Full line interpolates between S(qf 0) ∼ const and
S(q f !) ∼ k-3.58.
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(b)

(c)

In ref 41, the experimental results were fitted using the

empirical form

with the values b ≈ 0.8-0.85 and C ≈ 0. -0.2 consistently
found in different liquids. The 1/t behavior of π(t) obtained at
short times when C ) 0 implies a log t behavior of the time

correlator. This was taken as a challenging result to mode-

coupling theory which does not naturally predict such patterns,

as can be seen when asymptotic analytic results are considered.34

These data were however recently virtually perfectly fitted using

a standard schematic version of the mode-coupling theory,

therefore nullifying the criticisms raised in the experimental

work.35 Note that several fitting parameters are allowed by the

mode-coupling fits, which are performed using a two-correlator

schematic model: coupling constant, distance to the dynamic

singularity, and various numerical factors adapting theoretical

time scales to the experimental ones. By contrast, we make use

of just one free parameter in Figure 10.

The “nearly logarithmic decay” of correlations has a simple

explanation in our approach. At modest temperatures, T j T0,

there is a coexistence of isolated excitations, responsible for

“slow processes”, and rapidly relaxing clusters of excitations;

see ref 21 for a detailed discussion of the related temperature

crossovers. This coexistence manifests as a nearly flat distribu-

tion π(log t) over a wide range of time scales. This translates
into a 1/t behavior of π(t) and logarithmic decay of P(t), as
observed in Figure 10. This explanation, moreover, predicts that

the effective exponent C appearing in eq 19 should acquire a

slight temperature dependence and change from C < 0, when

fast processes dominate closer to T0, to C > 0 at lower

temperature when slow processes become dominant. This is

precisely what is found in experiments.41 This subtlety is also

accounted for by mode-coupling theory.35

The only real discrepancy between fits and data is visible at

very short time, as was anticipated, but the overall quantitative

agreement is very good. As already suggested by the qualitative

analysis of ref 21, our theoretical approach can be used even

far above the experimental glass transition. Mode-coupling

theory is thought to be applicable in this regime, under the

assumption that the dynamics at modest supercooling is different

from that near Tg. As in ref 21, our results here suggest that

this may not be the case.

One of the advantages of the present approach on mode-

coupling theory is that it does not produce an unphysical

singularity at a temperature above Tg, and it can therefore be

used down to very low temperatures and large relaxation times.

In Figure 11, we use the NEF model to fit dielectric data taken

on Salol.31 As before, the fits are done using a single free

parameter. Figure 11 shows that the overall agreement is again

very good. Note in particular that the high-frequency wing is

correctly accounted for by the (discrete) hierarchy of dynamic

lengthscales discussed in the previous sections.

Again, discrepancies due to coarse-graining are evident:

absence of short-time processes and discreteness of the hierarchy

of time scales. Discrete scales are particularly evident in the

Nagel wing, where numerical data only produce the “skeleton”

of the wing instead of a smooth curve. Note that the same

experimental data were fitted in ref 42 using a frustration limited

domain scaling picture of the glass transition: seven fitting

parameters were used there to obtain a satisfactory fit. Such

data are usually fitted in experimental papers by empirical forms

involving again several free parameters.30

Consider, finally, the scaling of lengths and times. Figure 12

shows dynamic scaling in three different model systems: the

three-dimensional FA model (indicated as “strong”; data from

ref 14), the present NEF model data (indicated as “fragile”),

and the Kob-Andersen Lennard-Jones binary mixture43 (“LJ”
in the figure; data from ref 13). The figure shows that in the

fragile case the growth of dynamic lengthscales is much less

pronounced than in the strong one. This is one of the central

predictions of the dynamic facilitation approach.12 It is a

consequence of the temperature dependent dynamic exponent

of east-like models such as the NEF model, in contrast to strong

systems where dynamic lengths go as a fixed power of the

Figure 10. Optical Kerr effect experimental for supercooled liquid
2-biphenylmethanol (full lines from ref 41) at temperatures T ) 359,
327, 319, 311, 303, and 291 K (from left to right). Dashed lines are
corresponding data for the NEF model at temperatures T ) 0.4, 0.34,
0.32, 0.3, 0.28, and 0.25 (from left to right). Time is counted in
picoseconds in the experiments, in Monte Carlo steps in simulations.

π(t) ) [pt
-1+C + dt

b-1
] exp(-t/τ) (19)

Figure 11. Dielectric susceptibility data for Salol obtained from the
authors of ref 42 at temperatures T ) 255, 243, 233, 225, and 219 K
(from right to left). Full lines are corresponding data for the NEF model
at temperatures T ) 0.385, 0.26, 0.198, 0.168, and 0.15 (from left to
right). Time is counted in units of 10 ps in the experiments, and in
Monte Carlo units in the simulations.

Figure 12. Dynamic scaling of time scales versus lengthscales in the
strong three-dimensional FA model,13 the fragile three-dimensional NEF
model, and three-dimensional binary Lennard-Jones mixture.13

3584 J. Phys. Chem. B, Vol. 109, No. 8, 2005 Berthier and Garrahan

NEF
FA-1 (d=3)

(d) 

q
S

4
(k

,t
1

/2
)

χ
4
(t

1
/2
)

ξ

k q−1/3 t

τα

Fig. 1.4. Dynamical correlations and scaling. (a) DH structure factor, S4(k, t1/2)
in the NEF model at various temperatures. The data collapses under the scaling
S4 → qS4 and k → kξ with ξ ∼ q−1/3, suggesting the values γ = 1 and ν = 1/3 for
the scaling exponents (see text). (b) Time dependence of four point susceptibility
χ4(t) in the NEF. Dynamical fluctuations probed by this function are maximal at
time t∗. The peak susceptibility χ∗4 = χ4(t∗) grows with decreasing temperature. The
peak time is approximately the relaxation time of the system, t∗ ≈ τ , as extracted
from the persistence function. (c) Scaling of DH correlation lengths to relaxation
times: FA-1 models follow a simple scaling law [49] (τ ∼ ξ4 for the three-dimensional
FA-1 shown in the figure), while for East-like models τ ∼ ξz(q), where the dynamical
exponent z(q) increases with decreasing q (i.e. decreasing temperature) [9]. Adapted
from Ref. [71], with permission. (d) The behaviour of four-point susceptibilities
depend on the wavelength k of the observable which is used to define them. χ4(k, t)
is plotted with its self-part, i.e. the terms with i = j in its definition, subtracted.
From Ref. [34], with permission.

of excitations or vacancies, so we expect χ∗4 ∼ q−γ [33, 34]. Furthermore, we
expect the four-point structure factor to behave as S4 ≈ χ∗4f(kξ), where f is
a scaling function, and ξ ∼ q−ν a correlation length for DH at times t = t∗.
These exponents – and indeed scaling forms – may vary from model to model.
For the simpler KCMs they can be calculated analytically. Figure 1.4(a) shows
the numerical collapse of S4 in the NEF for γ = 1 and ν = 1/3 [71]. For other
models, such as the FA-1 these exponents can be calculated analytically [33].
For example, in d = 3 one finds τ ∼ ξ4. This is most easily understood from
the fact that the upper critical dimension of the model is dc = 2, so exponents
are d-independent above this [49]. But in d = 2, the characteristic lengthscale
is the distance between vacancies of density q, ξ ∼ q−1/2, and the timescale
is related to this by the vacancy diffusion constant q/2 (see Section 1.4.1),
giving τ ∼ ξ2/(q/2) ∼ ξ4.
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Four-point and similar dynamical susceptibilities measure the dynamical
fluctuations of global observables. These observables probe relaxation over
a certain lengthscale, so it is important to note that the scaling properties
of the corresponding susceptibilities depend on such lengthscales [34]. In the
examples above the observable was the persistence function, which probes re-
laxation on a lengthscale of one lattice spacing. Let us now consider instead
the following susceptibility for the case of conservative (conserved density)
KCMs, χ4(k, t) ≡ limk′→0N

−1
∑
ij〈δFi(k, t)δFj(−k, t)〉eik′·(ri−rj), where i, j

label the N particles in the system, the position of the ith particle at time
t is ri(t), and δFi(k, t) ≡ eik·[ri(t)−ri(0)] − 〈eik·[ri(t)−ri(0)]〉 The wave vector
k′ appearing here is the analogue of k in S4(k, t) above. A normalization
factor N (t) could be included as before but this turns out to make no qual-
itative difference. This χ4 measures the system to system fluctuations of the
self-intermediate scattering function of wave vector F (k, t). It thus probes
structural relaxation at lengthscales comparable to 2π/k. Figure 1.4(d) shows
how χ4(k, t) changes in behavior as we go from large to small k in the (2)-
TLG: as we probe larger lengthscales (smaller k) χ4 peaks at later times, and
the initial power law growth changes exponent [34]. This change in behavior
is related to the non-Fickian to Fickian crossover of particle diffusion [32],
which we discuss in the next subsection.

1.5.2 Transport decoupling

A central consequence of DH is transport decoupling. A prominent example is
Stokes-Einstein breakdown [72]: in deeply supercooled liquids the rate for self-
diffusion is orders of magnitude larger than what would be predicted from the
Stokes-Einstein relation between self-diffusion constant and viscosity, Ds ∝
η−1. Similar transport relations of liquid state theory also break down near
the glass transition [12,78]. This is a consequence of the dynamical fluctuations
associated with DH.

A major success of KCMs is the ability to rationalize this phenomenon.
It does so in terms of the decoupling between the different fundamental
timescales for local relaxation [31, 77]. How this comes about is illustrated
in Fig. 1.5. Panels (a) and (b) show trajectories of a probe particle embedded
in a KCM. This can be thought of as a molecule in a liquid that has been
labelled for tracking while coarse-graininig over the rest of the system, thus
describing its effective dynamics via a KCM. The motion of the probe particle
is determined by the underlying fluctuations of the host KCM to which it is
coupled. A natural dynamical rule is that the probe can make a diffusive jump
from site i to site j only if both sites i and j are excited, ni = nj = 0 [31]. Figs.
1.5(a) and (b) show the difference in the probe motion between high and low
temperatures. At high T , Fig. 1.5(a), excitations in the KCM are plentiful and
probe motion appears Brownian. At low T , Fig. 1.5(b), excitations are scarce,
the dynamics of the KCM is heterogeneous, and probe motion is intermittent:
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(a)

(b)

pp!t;1" =
#t

!dt!px!t!;1"
$tx!1"%

, !13"

where $tx!1"%=#0
!dt tpx!t ;1" is the mean exchange time for

an excitation.
One can also proceed the same route for persistence and

exchange of no excitation by replacing ni with 1−ni in Eqs.
!9" and !10" to find

pp!t;0" =
#t

!dt!px!t!;0"
$tx!0"%

. !14"

The overall exchange and persistence-time probability
densities, px!t" and pp!t", are given by

px!t" = 1
2 &px!t;0" + px!t;1"' , !15"

pp!t" = !1 − c"pp!t;0" + cpp!t;1" . !16"

Using Eqs. !13" and !14" with the condition of detailed bal-
ance,

$tx!1"%
$tx!0"%

=
c

1 − c
!17"

we find

pp!t" =
#t

!dt!px!t!"
$tx%

, !18"

where $tx%= 1
2 !$tx!0"%+ $tx!1"%". For a Poisson process, which

is valid for unconstrained dynamics, px!t ;n"="!n"−1

#exp!−t /"!n"". In that case, the exchange and persistence-
time distributions become identical to each other.26

Moments of the two distributions are related to each
other from Eq. !18" through integration by parts. In particu-
lar,

$!tp"m% =
$!tx"m+1%

!m + 1"!$tx%
. !19"

The moments of the persistence-time distributions are always
greater than those of the exchange-time distributions when
the distributions are broader than Poissonian. Correlations
between exchange events are described by correlation func-
tions of the type

Cij!t,t!(n,",n!,"!" = $$Xi!t;n,""$Xj!t!;n!,"!"% , !20"

where $Xi!t ;n ,"")Xi!t ;n ,""−X!t ;n".

IV. ANALYSIS OF EXCHANGE-TIME DISTRIBUTIONS

We have calculated exchange- and persistence-time dis-
tributions for the FA and East models by performing Monte
Carlo simulations. For the purpose of numerical efficiency,
we have used the continuous time Monte Carlo
algorithm.27,28 To sample long exchange times !i.e., log10 tx
%1", we have used N=100c−1. To sample short exchange
times !i.e., log10 tx&1", we have used N=105c−1. The two
distributions obtained were matched at log10 tx=1. Simula-
tions were performed for total times T'=500"', with " being
the relaxation time of the model. Averages were performed
on about 100 independent trajectories in each case.

As an illustration, we show in Fig. 2 the exchange- and
persistence-time distributions obtained from numerical simu-
lations, and compare those results with the prediction of Eq.
!18". The comparison verifies Eq. !18". The peak and princi-
pal statistical weight in the persistence-time distribution oc-
curs at a longer time than that for the exchange-time distri-
bution.

A. Moments of exchange and persistence times

In many experiments, measurements of moments of fluc-
tuating quantities are more easily made than measurements
of the whole distributions. Studies of moments will yield
information on underlying dynamics.29,30 We have studied
temperature dependence of the moments of exchange and
persistence-time distributions, $!tx"m% and $!tp"m% !m=1, 2,
and 3", respectively, of the FA and East models. Figure 3
shows these moments for dimensionality d=1, 2, and 3.

Moments of the exchange and persistence times reveal
different temperature dependence for the FA and the East
models. In the FA models, all the moments of exchange and
persistence times increase in an Arrhenius fashion, $tm%
*c−'m, as the temperature !or the excitation concentration"
decreases. In the East models only the mean exchange times
are Arrhenius. Higher moments of exchange-time distribu-
tion and all the moments of persistence-time distribution in
the East models are super-Arrhenius. Further, the mean per-
sistence time is larger than the mean exchange time in all
cases. Table I lists scaling exponents of the moments for the
exchange and persistence times for Arrhenius cases.

We find that the mean exchange time increases approxi-
mately as

FIG. 2. Exchange and persistence time distributions for d=1 FA and East
models. Here, Px!log10 t"= tpx!t"ln!10", and Pp!log10 t" is similarly related to
pp!t". Exchange-time distribution from simulation !filled circles",
persistence-time distribution from simulation !open circles", and
persistence-time distribution predicted from Eq. !18" !solid lines". !a" d=1
FA model at T=1, !b" d=1 FA model at T=0.5, !c" d=1 East model at
T=1, and !d" d=1 East model at T=0.5.
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Fig. 1.5. Persistence/exchange decoupling. (a,b) Trajectory of a probe particle
diffusing in a KCM. We show the case of the one-dimensional FA-1 for ease of illus-
tration; similar behaviour is observed in other KCMs. The probe particle can make a
diffusive step only if allowed by the local excitations in the KCM. (Sites with ni = 0
are shown as grey in the background.) At high temperatures/low densities (T = 3)
diffusion becomes Fickian after short times and distances. Plot (b) is on the same
scale as (a), showing that at lower temperatures (T = 0.8) diffusion is intermittent
and non-Fickian over much longer timescales and lengthscales. (c) Timeline of dis-
placement events. The waiting time between events is termed local exchange time;
it is the time measured to the next event with the knowledge of when the previous
one took place. The waiting time until the next event from an arbitrarily chosen
starting observation time is termed persistence time. When the time series of events
in non-Poissonian, as a consequence of dynamical correlation in the KCMs, typical
persistence and exchange times are different: exchange times are dominated by the
clustering of events, while persistence times are determined by the long quiescent
periods. (d,e) The decoupling between the distributions of exchange (earlier curves)
and persistence (later curves) times becomes more pronounced the lower the tem-
perature. Results are shown for the East model, with T = 1 in (d) and T = 0.5 in
(e). Adapted from Refs. [31, 77], with permission.

the probe is immobile if immersed in an inactive space-time “bubble”; in order
to move it has to wait for an excitation to come along.

There are two fundamental timescales that control this intermittent mo-
tion [31, 77]. The first one is the “persistence time”, tp, that is, the time the
probe needs to wait to start moving for the first time, given an arbitrary start
time for observation. The second timescale is the (local) “exchange time”,
tx, the time between moves. Due to DH jump events are not Poissonian, but
display “bunching”, and typical persistence times can become much larger
than typical exchange times, see Fig. 1.5(c). This decoupling between persis-
tence and exchange becomes more pronounced as temperatures is decreased,
as illustrated in Figs. 1.5(d) and (e).
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We can approximately quantify the motion of the probe particle [32] by
means of a continuous-time random walk (CTRW) approach [79]. The probe
makes random walk steps of unit size at random times determined by the fluc-
tuations of the host KCM. Lets assume that this random clock ticks at times
drawn from the exchange time distribution, φ(tx), but which other than that
are independently distributed. The probability for the probe to be at position
r at time t, or van Hove function, is Gs(r, t) =

∑∞
m=0 πm(t)Γ (m)(r) (we as-

sume d = 1 for simplicity, extension to higher dimensions is straightforward).
Here πm(t) is the probability that the probe made m steps after time t, and
Γ (m)(r) is the probability that a random walker is at a distance r after m
steps. After Laplace transforming in time and Fourier transforming in space
we obtain,

F̂s(k, σ) = P̂ (σ) + cos (k)
p̂(σ)
σ

1− φ̂(σ)

1− cos (k)φ̂(σ)
, (1.3)

where F̂s(k, σ) is the Laplace transform of the self-intermediate scattering
function Fs(k, t), which in turn is the Fourier transform of Gs(r, t). Equa-
tion (1.3) is the Montroll-Weiss equation for the motion of the probe in the
CTRW approximation. φ̂(σ), p̂(σ) and P̂ (σ) are the Laplace transforms of the
exchange time distribution, the persistence time distribution, and the persis-
tence function P (t), respectively. The last two functions appear in Eq. (1.3) be-
cause the first step is determined by the persistence time: its distribution p(tp)
is related to the persistence function P (t) = π0(t) by P (t) =

∫∞
t
p(tp)dtp. If

the dynamics is stationary, then there is nothing special about time zero and
p(tp) = 〈tx〉−1

∫∞
tp
φ(t′)dt′, corresponding to a uniform average over all earlier

jump times; the normalization factor is the inverse of the average exchange
time 〈tx〉 =

∫∞
0
dtφ(t)t. From (1.3) we can define the wavelength dependent

relaxation time: τ(k, T ) = limσ→0 F̂s(k, σ). We obtain [32]

τ(k) = τp +
cos (k)

1− cos (k)
τx, (1.4)

where τx and τp are the average exchange and persistence times, respectively.
At low temperatures we have persistence/exchange decoupling, τp � τx [77].
The structural or alpha relaxation time is often defined as τα = τ(k = π/a),
where a is the lattice spacing which we set to unity. For these large wave
vectors the first term of (1.4) dominates, and the structural relaxation time
is set by the persistence time, τα ≈ τp. For small enough wave vectors the
second term in (1.4) dominates, τ(k) ≈ τx/k

2, and since the limit of k → 0
defines the diffusion rate we find that D ≈ τ−1

x . This explains Stokes-Einstein
breakdown at low temperatures: Dτα ≈ τp/τx 6= const [31].

The decoupling between persistence and exchange times is an effect of
dynamical fluctuations. At low temperatures the self-diffusion constant seems
to scale as a fractional power of the relaxation time D ∼ τ−δp , with δ < 1 (the
Stokes-Einstein relation is δ = 1). This is the case for all KCMs with strong
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Fig. 4 – Left: relaxation times in the 1D FA model, as a function of wave vector for different tem-
peratures, T = 1.5, 0.8, 0.6, 0.3, 0.2, and 0.15 (from bottom to top). The straight lines correspond to
τ ∼ k−2 and τ ∼ const, the limiting behaviours predicted by eq. (3). Right: time scales rescaled by
the diffusive limit k−2D−1 are collapsed using the scaled variable k"! for both 1D FA (filled symbols)
and East (open symbols) models. Data for the East model cover about 10 decades in time scales,
with T ∈ [0.31, 0.8] and the scaling curve has been shifted by a factor 5, for clarity.

model [14] is used in place of the 1D FA model. The East model is the fragile counterpart of
the 1D FA model. We see that the scaling behaviour predicted by eqs. (3), (6) works well also
in this case, despite the fact that in the East model successive exchange events are not uncor-
related [1], which was one of the assumptions in the derivation of eqs. (2)-(5). A behaviour
similar to that of figs. 3 and 4 was recently reported in molecular-dynamics simulations of a
binary Lennard-Jones mixture [23], and in experiments on supercooled TNB [24].

For both the FA and East models the diffusion constant obeys a fractional Stokes-Einstein
law, D ∼ τ−ξ

α , with ξ ≤ 1 [1]. In the case of the FA model, ξFA = 2/∆ ≈ 2/3, 2/2.3, 2/2.1
for dimensions d = 1, 2, 3, respectively, ∆ being the time exponent τα ∼ c−∆ [21, 25]. The
Stokes-Einstein law, ξ = 1, is recovered for d ≥ 4, the upper critical dimension of the FA
model [21,25]. For the East model, numerical results indicate ξEast ≈ 0.7–0.8, independent of
d up to the highest dimensionality studied, d ≤ 6. Equation (6) can be rewritten

## ∼ τ (1−ξ)/2
α . (7)

Therefore, ## will diverge when T → 0 (or c → 0) if there is Stokes-Einstein breakdown, i.e.,
when ξ < 1. The Fickian crossover length, ##, measures something related to but distinct from
the largest dynamic heterogeneity length, #(T ), which can be measured, for example, through
multi-point dynamic structure factors [6]. For both strong (FA) and fragile (East) systems, this
length goes as # ∼ c−ν with a spatial exponent ν [3,25], and therefore always diverges as T → 0
in an Arrhenius manner. In general, we have that # &= ##, and in particular for fragile systems,
eq. (7) shows that ## will grow faster than #, in a super-Arrhenius way. The reverse is true in
strong systems where # should grow faster than ##. In ref. [23], the typical length scale # of
dynamic heterogeneity was used to rescale wave vectors in the analog of fig. 4. Present results
show instead that # and ## are different quantities, although they might be hard to distinguish
on a restricted temperature window. Finally, ## was identified in ref. [26] by dimensional analy-
sis which confuses # and ##. This particular confusion is avoided in ref. [27], where the crossover
length is also obtained, by assuming a memory function is analytic for small wave vectors and
its Taylor series can be truncated at second order even for wave vectors that are not small.

The physical basis for the Fickian crossover is that persistence time dominates over ex-
change time. The former is the time for the first dynamical step, while the latter is the typical

Fig. 1.6. Transport decoupling in KCMs. (a) Scaling of probe or self-diffusion con-
stant with structural relaxation time in the one-dimensional FA-1 and East models
(left scale) and two- and three- dimensional lattice gases (right scale). Solid lines
indicate power law fits D ∼ τ−δ; the dashed line is the Stokes-Einstein relation
D ∼ τ−1. In all cases δ < 1 at low enough q, indicating a breakdown of the Stokes-
Einstein relation, as a consequence of dynamical fluctuations. (For the FA-1 model
δ = 1 for dimensions larger than its critical dimension dc = 2 [49].) Adapted from
Refs. [31, 69, 80], with permission. (b) Lengthscale dependent relaxation time τ(k)
in the FA-1 and East models. At short lengthscales the relaxation time is k indepen-
dent and determined by the persistence time, τ(k) ≈ τp. At larger lengthscales it
becomes diffusive, τ(k) ≈ τx/k2. This crossover is controlled by the Fickian length-
scale l∗ ∼

p
τp/τx. The figure shows that τ(k) at different q collapse under k → kl∗.

From Ref. [32], with permission.

enough constraints, as shown in Fig. 1.6(a) for the FA-1 in d = 1, the East
model and various constrained lattice gases [31,69,80]. The fractional exponent
δ ≈ 0.6− 0.8 is not distinct from that observed in experiments [72,81].

Equation (1.4) indicates that there is a spectrum of timescales that inter-
polate between a k independent value τp at shorter lengthscales, to a diffusive
timescale τx/k2 at large lengthscales [32]. This crossover is shown in Fig. 1.6(b)
for the FA-1 and East models. It is the crossover from non-Fickian diffusion
at short lengthscales to eventual Fickian diffusion at long enough ones. The
length l∗ at which this crossover takes place, or “Fickian lengthscale”, is given
by l∗ ∝ √τp/τx, and grows with decreasing temperature/increasing density.
It is the distance a particle has to move before it forgets how long it took to
make the first step. Fig. 1.6(b) shows how τ(k) at different temperatures col-
lapse under k → l∗k. The non-Fickian to Fickian crossover is also responsible
for the wavelength dependence of four-point functions [34], Fig. 1.4(d).

The CTRW analysis can be extended to describe the effect of driving, for
example by externally forcing the probes. The competition between timescales
in this case leads to interesting non-linear response behaviour, such as non-
monotonic differential mobility and giant diffusivity [82]. Furthermore, a study
of (1.3) in the crossover regime between non-Fickian and Fickian explains [83]
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the exponential tails observed [84] in van Hove functions at intermediate times.
The waiting time distributions used in the CTRW analysis above are the ones
that are obtained from the study of KCMs. The CTRW approach can also be
used by assuming a different origin for the waiting time distributions, as for
example in the analysis of metabasin transitions [85] in atomistic liquids.
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Minimizing over ρ, we find limN→∞ N−1ψ(s) ! ψvar(s) with

ψvar(s) = 2d

3
ρvar(s)[ρvar(s) − c] (58)

and

ρvar(s) =
{

0, s > 0
(c/8)(9 e−2s − 4 + 3 e−s

√
9 e−2s − 8), s " 0.

(59)

(Within this approach, we obtain ρvar(0) = c by minimizing F(ρ, s) at fixed system size N,
and then taking N → ∞.) The bound on ψK(s) and the corresponding estimate of K(s) are
shown in figure 2. The variational estimate for ρK(s) and the variational free energy FK(ρ, s)

are shown in figure 3.
So far, we have used equation (27) to obtain variational estimates for ψK(s) and ρK(s)

for the FA model in finite dimension. For the mean-field variant of the FA model, it can be
shown that these variational estimates are exact, in the limit of large system size N. (The factor
2d that appears in F(ρ, s) is simply an arbitrary rescaling of time in the mean-field model.
Our definition of the mean-field model requires that we set 2d = 1.) That is, the difference
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Figure 2. (Left) Generic ‘dynamic phase diagram’ for spin-facilitated KCMs such as the FA and
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line shows the lower bound obtained from (53), while the solid line is the variational estimate
Kvar(s) = − 1

N (d/ds)ψvar(s), obtained from (58). As discussed in the text, the solid line gives the
exact result for the mean-field variant of the FA model. (Right) Again, we show the exact result
ψK(s) = 0 for s > 0, together with the variational lower bounds (58) (solid line, exact for the
mean-field variant) and (48) (dashed line).

4.2. Variational free energy for the excitation density ρK(s)

The analysis given above establishes some minimal conditions that are sufficient for the
existence of a first-order transition. For a more quantitative analysis, it is useful to use a
specific variational distribution in (27). We consider a general bosonic KCM with single spin-
flip dynamics, and we define a distribution of the excitation numbers ni that is independent of
the site i, and parameterized by a mean density ρ:

Vρ({ni}) =
∏

i

√
ρni e−ρ

ni!
. (54)

From (27), we therefore have ψ(s) ! −N minρ FK(ρ, s) with

FK(ρ, s) ≡ N−1 〈Vρ |W̃K |Vρ〉
〈Vρ |Vρ〉

. (55)

The value of ρ which minimizes FK(ρ, s) is denoted by ρvar(s). It represents a variational
estimate for the order parameter ρK(s): if the variational bound (27) is saturated then
|V 〉 is an eigenvector of the symmetrized operator W̃K , and it follows from (A.14) that
ρK(s) = ρvar(s)/(1 − e−ρN).

For the bosonic FA model, it is straightforward to calculate FK(ρ, s). The only subtlety
is that we must explicitly exclude the state with no excitations from the inner products, as
discussed in section 3.2. In the Doi–Peliti formalism, our choice for V ({ni}) renders this
calculation very simple: in terms of the symmetrized operator W̃(FA)

K , we have

FK(ρ, s) = N−1 〈0| e−√
ρ

∑
i ai W̃(FA)

K e−√
ρ

∑
i a

†
i |0〉 e−ρN

1 − e−ρN
. (56)

Hence,

FK(ρ, s) = 2d
c + ρ − 2 e−s√cρ

1 − e−ρN
ρ . (57)
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line shows the lower bound obtained from (53), while the solid line is the variational estimate
Kvar(s) = − 1

N (d/ds)ψvar(s), obtained from (58). As discussed in the text, the solid line gives the
exact result for the mean-field variant of the FA model. (Right) Again, we show the exact result
ψK(s) = 0 for s > 0, together with the variational lower bounds (58) (solid line, exact for the
mean-field variant) and (48) (dashed line).

4.2. Variational free energy for the excitation density ρK(s)

The analysis given above establishes some minimal conditions that are sufficient for the
existence of a first-order transition. For a more quantitative analysis, it is useful to use a
specific variational distribution in (27). We consider a general bosonic KCM with single spin-
flip dynamics, and we define a distribution of the excitation numbers ni that is independent of
the site i, and parameterized by a mean density ρ:

Vρ({ni}) =
∏

i

√
ρni e−ρ

ni!
. (54)

From (27), we therefore have ψ(s) ! −N minρ FK(ρ, s) with

FK(ρ, s) ≡ N−1 〈Vρ |W̃K |Vρ〉
〈Vρ |Vρ〉

. (55)

The value of ρ which minimizes FK(ρ, s) is denoted by ρvar(s). It represents a variational
estimate for the order parameter ρK(s): if the variational bound (27) is saturated then
|V 〉 is an eigenvector of the symmetrized operator W̃K , and it follows from (A.14) that
ρK(s) = ρvar(s)/(1 − e−ρN).

For the bosonic FA model, it is straightforward to calculate FK(ρ, s). The only subtlety
is that we must explicitly exclude the state with no excitations from the inner products, as
discussed in section 3.2. In the Doi–Peliti formalism, our choice for V ({ni}) renders this
calculation very simple: in terms of the symmetrized operator W̃(FA)

K , we have

FK(ρ, s) = N−1 〈0| e−√
ρ

∑
i ai W̃(FA)

K e−√
ρ

∑
i a

†
i |0〉 e−ρN

1 − e−ρN
. (56)

Hence,

FK(ρ, s) = 2d
c + ρ − 2 e−s√cρ

1 − e−ρN
ρ . (57)
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for solution (ii), W!FA"
K !!; !!" # 0. Our estimate for the

large-deviation function is given by the larger value of
W!FA"
K !!; !!", so that

  !mf"
K !s" #

!
Nd!c !!$"2!e%s !!$ % 1" !s < 0"
0 !s > 0"; (9)

where d is the spatial dimension, and !!$ is defined above.
Figure 1 (top) shows  !mf"

K !s" and K!s". The active phase is
stable for s < 0; the inactive one is stable for s > 0. The
large-deviation function  !mf"

K !s" is continuous at s # 0,
but its derivative K!s" displays a first-order jump.

The mean-field approximation is clearly very crude. It
can be improved systematically with loop corrections, but
the coexistence scenario does not change qualitatively: it is
a consequence of the kinetic constraints and the existence
of states with subextensive escape rates. We now confirm
this by means of numerical simulations.

The time evolution associated with the operator WK can
be obtained dynamically. This operator does not conserve
probability [see Eq. (5)] but there are methods to simulate
the evolution that it represents [19]. We apply this scheme,
analogous to the quantum diffusion Monte Carlo proce-
dure, to continuous-time Monte Carlo dynamics [20]. In
Fig. 1 we show a plot of "K!s" for the FA model in one
dimension. In Fig. 2 we present a finite size scaling analy-
sis of both  K and a dynamical order parameter for the FA
model in one dimension, the TLG model in two dimen-
sions, and the East model in three dimensions (see, e.g.,
[21]). As N ! 1, the crossover between active and inac-
tive phases becomes sharper. Figure 2 shows results for
three different models, in different dimensions and with
different dynamical constraints; the TLG has a conserved
density while the FA and East models do not. Our similar
results for these different models demonstrate that space-
time phase coexistence occurs quite generally in KCMs.

We have demonstrated that, for any temperature T, the
dynamics of KCMs such as the FA or East models take
place at dynamical phase coexistence between active and
inactive phases. We can construct a phase diagram in terms
of T and s; see Fig. 3(a). The s # 0 axis is a first-order
transition line. It ends in a critical point at T # 0. For
constrained lattice gases such as the Kob-Andersen model
and the (2)-TLG, the phase diagram is similar, with T
replaced by density of particles c. In that case the critical
point is at the maximum density c # 1.

We emphasize that while a zero temperature dynamical
critical point is common to many KCMs, this is not a
sufficient condition for space-time phase coexistence. For
example, consider the pair appearance and annihilation AA
model of [18], which has the same critical properties as the
FA model. Its dynamical rules are ;A& A;, AA! ;,
;; ! AA, with rates D, #, and $, respectively.. All states
in this model have extensive escape rates, so we do not
expect any transition at s # 0. Deriving the Euler-
Lagrange equations analogous to (7) and (8) leads to a
large-deviation function that is analytic at s # 0. We have
also calculated  K!s" exactly [22] for the AAmodel in d #
1, at the free fermion point #' $ # 2D [23]: the large-
deviation function  K!s" is indeed analytic at s # 0 [22].

Finally, in models that obey detailed balance with re-
spect to a probability distribution pC, such as the ones
considered here,  K!s" can be calculated through a
variational method. The master operator Eq. (5) is made
symmetric by a similarity transformation, HK!C; C0" (
p%1=2
C WK!C; C0"p1=2

C0 # e%s
"""""""""""""""""""""""""""""""""""""""""""""""""""
W!C0 ! C"W!C ! C0"

p
%

r!C"%C;C0 . Since HK is symmetric and has the same eigen-
values as WK, we can apply a variational principle:

  K!s" # max
VC

P
C VCHK!C; C0"VC0P

C VCVC
: (10)

Using a trial distribution in which only one of the VC is
finite shows that the largest diagonal element of H is a
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historiesProb!history"e%sK̂!history""!history", where "!history" # !Nt"%1
Rt
0 dt

0P
ini!t0". For the TLG, we replace "!history"

by r!history" # !Nt"%1
Rt
0 dt

0r!C!t0"", to obtain the averaged escape rate rK!s". We use representative conditions: T # 0:91 for the FA
and East models, and density 0.5 in the TLG. Results were obtained by the dynamical method of [20].
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lower bound on  K!s", so that  K!s" # $minCr!C". Hence,
if there exists a state for which the escape rate r!C" is
subextensive, then  K!s"=N # 0 at large N. Further,
 K!s" is nonincreasing (since K̂ is non-negative) and
 K!0" % 0, so the existence of a subextensive escape rate
establishes immediately that  K!s"=N % K!s"=N % 0 for
all s > 0 in the large N limit, as we asserted above.

As an example of how to obtain  K!s" from Eq. (10)
consider the FA model in a mean-field geometry, such as
the complete graph. The transition rates in this case are
W!n! n& 1" % cn, W!n&1!n"%n!n&1"=N, where
n % P

ini is the total number of excitations. For the varia-
tional state we assume Vn % eNf!n=N", for some function
f!!" of the excitation density ! ' n=N. In the limit of
largeN, the leading contribution to (10) comes from values
of ! that maximize f!!", and Eq. (10) reduces to  K!s" %
$min!F K!!; s", where

 F K!!; s" % N!!!$ 2e$s
!!!!!!
c!

p & c": (11)

F K is a Landau free-energy function for the order parame-
ter !. The minimum of F K occurs at !( % c! !"("2, and
from Eq. (10) the result of Eq. (9) is recovered. As shown
in Fig. 3(b) the function F K!!; s" behaves in the character-
istic way associated with a first-order phase transition.

We have shown that the dynamics of KCMs is charac-
terized by the coexistence in space-time of active and
inactive dynamical phases. In our view, this dynamical
phase coexistence underlies the heterogeneous particle
dynamics observed in glass formers. Thus, experimentally
observable phenomena such as transport decoupling [6]
arise from the fluctuations associated with this dynamic
phase equilibrium. The extension [3] of our results to
atomistic models will clarify the degree to which the
theoretical framework described here captures the generic
features of glassy dynamics.
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[19] C. Giardinà, J. Kurchan, and L. Peliti, Phys. Rev. Lett. 96,

120603 (2006).
[20] V. Lecomte and J. Tailleur, J. Stat. Mech. (2007) P03004.
[21] L. Berthier and J. P. Garrahan, J. Phys. Chem. B 109, 3578

(2005).
[22] F. van Wijland et al. (to be published).
[23] M. Henkel, E. Orlandini, and J. Santos, Ann. Phys. (N.Y.)

259, 163 (1997).

 

FIG. 3 (color online). (a) Space-time phase diagram for facili-
tated models. s % 0 is a first-order transition line between the
active phase (s < 0) and the inactive phase (s > 0). It terminates
in a critical point at T % 0. (b) Mean-field variational free energy
F K!!; s", Eq. (11), for the FA model at T % 0:5, for several
values of s. For s < 0 the active phase is dominant and the
absolute minimum of F K is at ! ! 0. At s % 0 there is dynamic
phase coexistence. For s > 0 the inactive phase dominates and
! % 0 minimizes the free energy. The active minimum no longer
exists beyond the spinodal ssp.
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Fig. 1.7. Space-time phase transitions in KCMs. (a) Variational dynamical free-
energy F(n) in terms of mean excitation density. Kinetic constraints give rise to a
bistable F(n) (full line). In the absence of kinetic constraints the corresponding
variational function is unistable (dashed line). (b) Mean-field estimate of large-
deviation function ψ(s). There is a singularity at s = 0, indicating a dynamical
phase-transition. (c) Mean activity K(s) ≡ −ψ′(s) as a function of s. This dy-
namical order parameter shows a discontinuous jump at s = 0: the transition is a
first-order one between an active dynamical phase and an inactive dynamical phase.
(d) The dynamical first-order scenario is also present in finite dimensions, as shown
from numerical computation of ψ(s) and K(s) for various KCMs. (e) Dynamical
phase diagram. The line s = 0 is one of first-order coexistence between the active
dynamical phase (s < 0) and the inactive one (s > 0). It extends all the way along
the q axis. The critical point at q = 0 controls the scaling behaviour discussed in
Subsection 1.4. Adapted from Refs. [75,86], with permission.

1.5.3 Space-time phase transitions

Thermodynamically KCMs are trivial, so all interesting behaviour is dynam-
ical. Nevertheless, DH pictures such as those of Fig. 1.3 are suggestive of
phase separation between two distinct phases. The phases of Fig. 1.3 are
distinguished by their dynamics: dark regions are dynamically active while
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light ones are dynamically inactive. Furthermore, the phase separation in the
spatial projection of low temperature/high density equilibrium trajectories,
such as those of Fig. 1.3, is only mesoscopic: when coarse-grained over large
enough lengthscales, irrespective of time, the space projected trajectories are
homogeneous. Here we show how these observations are directly related to
a true non-equilibrium phase transition [75], which in contrast to thermody-
namic transitions, occurs in ensembles of trajectories and is driven by non-
equilibrium driving fields. This phase transitions can be studied by recourse
to the large-deviation method [87,88].

A convenient order parameter to discern active and inactive dynamics is
the “dynamical activity” K [75], defined as the total number of configuration
changes in a trajectory. In a non-conservative KCM it would amount to the
total number of local changes from empty to occupied or vice versa, and in a
lattice gas (conservative KCM) to the total number of particle displacements.
The activity is extensive in space-time volume, i.e., typically K = O(Nt),
where N is the number of lattice sites and t the time extension of the tra-
jectory. Each trajectory x(t) in the ensemble of (equilibrium) trajectories
of length t has a total activity, K̂[x(t)]. The activity is thus distributed,
Pt(K) =

〈
δ
(
K − K̂[x(t)]

)〉
, where the average is over the set of equilib-

rium trajectories, {x(t)}. At long enough times this probability acquires a
large-deviation form [87,88]. Pt(K) ≈ e−tϕ(K/t). The function ϕ(k) is called a
large-deviation function, and it plays in this dynamical context the same role
as, for example, the entropy density in the micro canonical ensemble of equi-
librium statistical mechanics. Alternatively we can consider the generating
function of K,

Zt(s) ≡
∑
K

e−sKPt(K) ≈ etψ(s), (1.5)

which also displays a large-deviation form. The large-deviation function ψ(s)
is akin to a free-energy density, and is related to ϕ(K/t) by a Legendre trans-
form, ψ(s) = −mink [ϕ(k) + sk]. Just like a free-energy in a thermodynamic
problem, the function ψ(s) carries the information of dynamical phase be-
haviour. Specifically, its singularities indicate dynamical phase transitions [75].

The calculation of the large-deviation function ψ(s) is simplified greatly by
the following observation [89]: if W is the master operator that generates the
stochastic dynamics, then ψ(s) is the largest eigenvalue of a modified operator
Ws, where W0 = W. This reduces the calculation from that of computing a
“partition sum”, Eq. (1.5), to an eigenvalue problem. For example, for a spin
facilitated model, Ws =

∑
i fi(n)

{
e−s

[
(1− ρ)σ+

i + ρσ−i
]− ρni − (1− ρ)

}
,

where fi(n) is the kinetic constraint on site i, and σ±i are the raising/lowering
operators on site i. While it is not always possible to diagonalise such an
operator analytically, bounds for its largest eigenvalue can be estimated vari-
ationally. For the FA-m this amounts to minimising a Landau free energy
F(n) = −nm (2e−s√qn− q − n). The factor nm comes from the kinetic con-
straint, and makes F(n) non-linear enough to allow for multiple minima, Fig.
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1.7(a). The corresponding ψ(s) has a singular structure, the first derivative
being discontinuous at s = 0, Figs. 1.7(b) and (c). The meaning of this is
the following. Trajectories are organized into two dynamical phases, an active
one with K > 0 and an inactive one with K = 0. The field s determines the
bias for or against activity. For s < 0 the active phase is the dominant one,
while for s > 0 the inactive phase dominates. At s = 0 the probability of
trajectories in either phase is equal in the t→∞ limit and we have dynami-
cal first-order phase coexistence [75]. This situation occurs in all KCMs, Fig.
1.7(d). Interestingly, similar dynamical phase structure is observed in spin
glass models [90,91] and in atomistic liquids [92].

Actual dynamics takes place at s = 0. The results above show that this
is the condition for dynamical coexistence in the bulk, i.e., infinitely far from
boundaries active (ergodic) or inactive (non-ergodic) trajectories are equally
likely. However, just like in the case of ordinary phase transitions, boundary
fields can bias the bulk into one of the coexisting phases. In the case of dy-
namics, initial conditions play the role of a (time) boundary. In particular,
almost all possible initial configurations chosen from the equilibrium static
distribution at non-zero temperature or less than maximal density will select
the active dynamical phase. In this case the inactive phase manifests via rare
region effects, giving rise to DH only at the mesoscopic scale. An important
open question is whether there are physical controllable fields that play the
role of s in the analysis above.

1.6 Summary and outlook

In this chapter we have attempted to summarise recent developments in the
study of KCMs as models of glass formers. In the long tradition of statisti-
cal mechanics KCMs provide simplified models that capture important ideas
about the fundamental physics behind the phenomenology of glassy systems.
Their simplicity allows for detailed study, which in turn gives rise to further
physical insights into the glass transition problem. The central message from
KCMs is that the complex and cooperative dynamics of glass forming sys-
tems can be achieved without recourse to complex thermodynamic behaviour:
in KCMs thermodynamics plays essentially no role, and complex dynamics
emerge from rather simple local kinetic rules. These rules are local and free
of disorder, but nevertheless give rise to dynamical frustration.

The irrelevance of thermodynamics for glassy dynamics that the study
of KCMs suggest contrasts sharply with approaches such as that of the ran-
dom first-other transition theory [6, 93] where thermodynamics is essential.
Whether thermodynamic aspects are relevant or not to glass transition phe-
nomena is still a matter of debate, but to the extent that they are KCMs
can say very little about them. This can either be seen as a flaw of the KCM
based approach [94] or as an indication that these aspects are described by
degrees of freedom that do not contribute too much to the long time dynam-
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ics and have therefore been coarse-grained out [95]. Furthermore, by their
coarse-grained and lattice based nature KCMs can in principle say very little
about short distance/short time dynamics, such as beta-relaxation or anoma-
lous vibrations. There is however evidence that these short scale phenomena
are coupled to longer scale dynamic heterogeneity (see for example [96, 97])
so it may be possible to capture some of these effects with generalisations of
KCMs [98, 99]. In any case, KCMs provide an explicitly real-space picture of
glassy dynamics. Their main success has been the rationalization of dynamic
heterogeneity. While DH can be analysed with other approaches, such as gen-
eralisations of mode-coupling theory [100], the immediacy of the results and
explanations for DH related phenomena obtained from KCMs is remarkable.

While we know a lot about KCMs we still do not have a satisfactory
understanding of how they emerge as an effective description from realistic
systems. (This is also the case in alternative approaches, be it the random
first-order transition [6], or frustrated limited domains [18], where the idealised
models that display the proposed behaviour cannot be readily obtained from
realistic liquid systems.) It is usually argued [5] that KCMs ought to emerge
from some form of local coarse-graining of a microscopic system, but this
procedure has not been shown to work just yet (except in highly simplified
situations [101, 102]). Proving a direct connection between atomistic liquids
and KCMs is arguably the central open problem in this field.
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