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ABSTRACT

A subband acoustic waveform front-end for robust speech recog-
nition using support vector machines (SVMs) is developed. The
primary issues of kernel design for subband components of acoustic
waveforms and combination of the individual subband classifiers
using stacked generalization are addressed. Experiments performed
on the TIMIT phoneme classification task demonstrate the bene-
fits of classification in frequency subbands: the subband classifier
outperforms the cepstral classifiers in the presence of noise for
signal-to-noise ratio (SNR) below 12dB.

Index Terms— Robustness, speech recognition, acoustic wave-
forms, subbands, support vector machines.

1 INTRODUCTION

Front-ends of state-of-the-art ASR systems are usually some vari-
ant of Mel-Frequency Cepstral Coefficients (MFCC) or Perceptual
Linear Prediction (PLP) [1]. These representations are derived from
the short term magnitude spectra followed by non-linear transfor-
mations to model the processing of the human auditory system.
The main objective of these front-ends is to remove variations from
speech signals that are considered unnecessary for recognition while
preserving the relevant information content. However, most of the
operations performed by the current ASR front-ends are not so ac-
curate approximations of this objective. Compression of the highly
redundant speech signals is primarily motivated by the need for ac-
curate modelling of the information relevant for discrimination from
limited data, thereby facilitating the development of commercial
ASR systems. However, due to the nonlinear processing involved in
the feature extraction, even a moderate level of distortion may cause
significant departures from feature distributions learned on clean
data, which makes these distributions inadequate for recognition in
the presence of environmental distortions such as additive noise and
linear filtering. As a result, recognition accuracy of state-of-the-art
ASR systems is still far below the human performance in adverse
conditions.

To make the cepstral representations of speech less sensitive
to environmental distortions, several feature compensation methods
[2-8] have been developed that aim to reduce explicitly the effects
of additive noise and/or linear filtering on cepstral representations
and thus approach the optimal performance which is achieved when
training and testing conditions are matched [9]. These methods
contribute significantly to robustness by alleviating some of the
effects of noise. However, the resulting distortion in the cepstral
features which most of these methods aim to correct is not merely
an additive bias and multiplicative change of scale. Instead, this
distortion is jointly determined by speech, noise type and noise level
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in a complicated fashion which makes the separation of noise from
these features rather difficult [4].

Most of the current ASR methods considered as robust to envi-
ronmental distortions are based on the assumption that the conven-
tional cepstral features form a good enough representation to start
with, so that in combination with a suitable language and context
model, the performance of ASR systems can be brought close to hu-
man speech recognition. While essential for correcting many errors,
context and language modelling are most effective when the under-
lying sequence of elementary phonetic units is predicted sufficiently
accurately. Humans recognize isolated speech units above the level
of chance at —18dB SNR, and significantly above it at —9dB SNR
[10]. Even in quiet conditions, the current machine phone error
rates for nonsense syllables are over an order of magnitude higher
than human error rates [11-14]. This suggests that context and
language modelling alone cannot bridge this performance gap. A
number of studies [15-21] have attributed this marked difference
between human and machine performance to the immense variabil-
ity of speech as well as the fundamental limitations of the feature
extraction process.

In this work we develop a novel front-end for ASR using SVMs
that operates on an ensemble of high-dimensional subband compo-
nents of acoustic waveforms, and investigate its robustness to addi-
tive noise on a phoneme classification task. This approach draws its
motivation primarily from the experiments conducted by Fletcher
[22] (a summary is presented in [23]), which suggests that the human
decoding of linguistic message is based on decisions within narrow
frequency subbands that are processed quite independently of each
other. Furthermore, the high-dimensional subband components of
acoustic waveforms retain more information about speech than the
corresponding cepstral representations and thus facilite the con-
struction of meaningful subband classifiers that may provide better
separation of elementary phonetic units. Moreover, by constructing
separate classifiers for each narrow subband, colored noise can be
approximated as narrow-band white noise. We compare the noise ro-
bustness of high-dimensional subband representations with cepstral
representations on a phoneme classification task; this is a problem
of reasonable complexity frequently used for comparing different
methods and representations [24-30]. At this stage we do not pur-
sue a continuous speech recognition task because it depends both on
the accuracy of labelling and segmentation, as well as how the two
interact, which can blur the interpretation of the results on the com-
parison of different representations in terms of the robustness they
provide. However, the improvements achieved on the classification
task can be expected to extend to continuous speech recognition
tasks [31, 32] given that SVMs can be used with hidden Markov
models for continuous speech recognition as detailed in [32, 33].
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For classification with acoustic waveforms in frequency sub-
bands, custom-designed SVM kernels based on the physical prop-
erties of speech and speech perception, as proposed in our previous
study [34, 35], are used. Decomposing an acoustic waveform into
its subband components produces an ensemble of base-level bi-
nary subband classifiers. For each binary classification problem,
the ensemble of base-level binary subband classifiers is combined
using stacked generalization to form a meta-level binary classi-
fier. The resulting meta-level binary classifiers are then further
combined using error-correcting output code methods [36] for mul-
ticlass classification. For comparison, we also perform classification
using a standard cepstral representation (MFCC) with state-of-the-
art feature compensation such as vector Taylor series [5—8]. The
experiments demonstrate the benefits of the acoustic waveform sub-
band approach in providing robustness to noise. For example, the
acoustic waveform classifier outperforms the cepstral classifier for
signal-to-noise ratio (SNR) below 12dB.

The subband classification approach with acoustic waveforms
using custom-designed kernels is reviewed in Section 2 where we
also briefly discuss stacked generalization for combination of indi-
vidual subband classifiers. The experimental setup is described in
Section 3 and results are reported in Section 4. Finally, Section 5
draws some conclusions.

2 CLASSIFICATION METHOD
2.1 Support Vector Machines

An SVM [37] binary classifier estimates decision surfaces separat-
ing two classes of data. In the simplest case these are linear, but for
most pattern recognition problems one requires nonlinear decision
boundaries. These are constructed using kernels instead of dot prod-
ucts, implicitly mapping data points to high-dimensional feature
vectors. For classification with SVMs, we consider fixed-length
D-samples long acoustic waveform segments which we will denote
by x. Then a kernel-based decision function that classifies a test
phoneme x is expressed as

Fx) = iyiK(x,%:) +b, e))

where K is a kernel function, x;, y; = 41 and «y, respectively,
are the ¢-th training phoneme (clean speech), its class label and its
Lagrange multiplier, and b is the classifier bias determined by the
training algorithm. Two commonly used kernels are the polynomial
and radial basis function (RBF) kernels given by

KP(X7 Xi) = (1 + <X, xi))e ) 2

Kr(x7 xi) = eir‘l)(ix”ﬁ . (3)

In preliminary experiments, comparable performance was achieved
with both kernels; in this work, a polynomial kernel is therefore used
for classification with cepstral features (MFCC) whereas classifica-
tion with acoustic waveforms in frequency subbands is performed
using a custom-designed kernel developed from a baseline polyno-
mial kernel.

2.2 Error Correcting Output Codes

SVMs are binary classifiers trained to distinguish between two
classes. For multiclass tasks, they can be combined via prede-
fined discrete error-correcting output codes [36]. To summarize the
procedure briefly, NV binary classifiers are trained to distinguish two
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Fig. 1. Decomposition of phonemes into its subband components
using an S-channel cosine modulated filter bank.

groups of M classes using the coding matrix Wz v, with elements
Wmn € {07 1, —1}. Classifier n is trained on data of classes m for
which wmn # 0 with sgn(wmn ) as the class label; it has no knowl-
edge about classes m = 1, ..., M for which wy., = 0. The class
m that one predicts for test input x is then the one that minimizes the
loss 227:1 X (Wmn fn(x)). Here x is some loss function and f, (x)
is the output of the n'™ binary classifier. A number of coding strate-
gies were considered. However, the construction of one-vs-one clas-
sifiers was computationally most feasible for a problem with large
datasets as in our case; we therefore use N = M (M — 1)/2 binary
pairwise classifiers. A number of loss functions were compared; the
hinge loss [x(z) = (1 — z)+ = max(1 — z,0)] performed best and
is used throughout this study.

2.3 Kernels for Subband Classification

We propose some modifications to the baseline SVM kernels to
take into account some physical properties of speech perception. To
extract the relevant features for classification in frequency subbands,
each waveform x is first decomposed into S subband components,
x% s = 1,...,5, as shown in Figure 1 using a perfect reconstruc-
tion cosine modulated filter bank (CMFB) [38]. The filter bank
consists of filters,

1 25 —1
gs[k] = ﬁgp[k] COS <T (Zkafl)Tr),
s=1,...,8 k=1,...,28 @)

where the prototype filter g, k] is a raised cosine function,

gplk] = V2sin <”(k27;0'5)),k=1,...,25 5)

a) Sign-invariance: The perception of acoustic waveforms by the
human auditory system is invariant to sign and the same property
extends to the subband components of acoustic waveforms as well.
Hence we use an even kernel defined from a baseline polynomial
kernel K, as proposed in our previous work [34, 35], to account for
sign-invariance of the subband components:
Ke(x°,x7) = K, (x°,x) + K, (x°, —x})
+K]/)(7X87X;?) +K1/>(7X877X1"S) (6)
where K, is a modified polynomial kernel given by
Ky (x*,x7) = Kp(x®/ x|, %/ [IxZ])
s s s s (S}
= (L4 &7/ =i/ i) ™

Kernel K, which acts on normalized input vectors, will be used as
a baseline kernel for the acoustic waveforms. On the other hand,



the standard polynomial kernel K, defined in (2) will be employed
for the cepstral representations where feature standardization by
cepstral mean-and-variance normalization (CMVN) already ensures
that feature vectors typically have unit norm.

b) Subband dynamics: Features that capture the evolution of energy
and the dynamics of speech in frequency subbands are important for
discriminating among phonemes. To obtain the subband dynamic
features, the speech waveform is divided into a sequence of overlap-
ping frames similar to those used to calculate MFCCs (with the same
frame duration and frame rate). Then the 7" frames closest to the
phoneme center are used to construct the dynamic feature vector of
that phoneme. Let x"*.t = 1,...,T,s = 1,...,S denote the s®
subband component of the ¢ frame closest to the center of phoneme
x. Then the s" subband energy vector is formed by concatenating
the energies of the 7" frames in that subband as

1,5“2 T,s

2
w’ = log“x ,...,logHX }7‘9:1,...,5 (8)
and its time derivatives [39, 40] are evaluated to form the dynamic
subband feature vector £2°:

Q= [w Aw® A’W°], s=1,...,8. )

This dynamic subband feature vector €2° is then combined with
the corresponding acoustic waveform subband component x* using
kernel Kq given by

KQ(XS7X7,§7QS7Q?) :KC(X57X'L"S)KP(QS7Q'L"S)7 (]0)

where €2 is the dynamic subband feature vector corresponding to
the s-th suband component x; of the i-th training point x;. An addi-
tional invariance to time alignment can be incorporated by means of
a shift-invariant kernel [35], which would likely improve the classifi-
cation performance further [34, 35], but that approach is not pursued
in the present study due to our modest computational resources.

2.4 Support Vector Machine Ensemble

For each binary classification problem, decomposing an acoustic
waveform into its subband components produces an ensemble of S
classifiers. The decision of the subband classifiers in the ensemble,
given by

F,Q0) =) alyiKo(x®,x},Q°,Q)) +b°, s=1,...,5
1 (1

are then aggregated using ensemble methods to obtain the binary
classification decision for a test waveform x. Here o and b° are
the Lagrange multiplier corresponding to x and the bias of the s™
subband binary classifier. Under the assumption that the errors of the
individual classifiers are independent with error rate p < 1/2, a sim-
ple combinatorial argument shows that even in the case of majority
voting the probability that the result is incorrect can be bounded as

S
2

Pe < %(417(1 -p)z,

for a large value of S. Therefore, the ensemble error decreases with
an increase in the size of the ensemble S [41, 42]. While simple
aggregation schemes like majority voting may yield some improve-
ments in the classification performance, they do not exploit the
importance of certain subbands in discriminating among a specific
pair of phonemes because equal weights are assigned to all subband
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classifiers. Furthermore, the thresholding of scores into class labels
(£1) before voting may lose information that is useful for classifi-
cation. In this light, we use stacked generalization [43] to aggregate
the outputs of base-level SVMs in the ensemble.

Our practical implementation of stacked generalization [43]
consists of a hierarchical two-layer SVM architecture, where the
outputs of several base-level SVMs feed into a meta-level SVM
implemented using a linear kernel. In our experiments, we found
that the choice of a squashing function has little effect on the classi-
fication performance. Therefore, the raw base-level predictions are
used in the construction of meta-level classifier for simplicity. The
decision of the meta-level SVM classifier is of the form

h(x) = (f(x),w) +v =Y w'f*(x*,Q°) +v, (12)

where f(x) = [f'(x",Q"),...,f%(x%,2%)] is the base-level
SVM score vector of the test waveform x, v is the classifier bias,
andw = [wl, e ws] is the weight vector of the meta-level classi-
fier. Note that this weight vector is determined from an independent
development/validation set {X;, 7;}, and can be expressed as, w =
5, Bidif(Rs), where £(%) = [£1(&}, )., 19(x5, )] is
the base-level SVM score vector of the training waveform X, and
[ and g; are the Lagrange multiplier and class label corresponding
to £(x;), respectively. Again, ECOC methods are used to combine
the meta-level binary classifiers for multiclass classification.

While a base-level SVM assigns a weight to each support fea-
ture vector, stacked generalization effectively assigns an additional
weight w® to each subband based on the performance of the corre-
sponding base-level subband classifier. Note that, unlike the results
presented in previous chapter, we do not assume any knowledge of
the noise statistics to perform feature compensation. Instead, we
use stacked generalization to learn weight vectors that are tuned for
classification in adverse conditions. For instance, the meta-level
classifier can be trained using score feature vectors of noisy data or
score feature vectors of a mixture of clean and noisy data. Moreover,
since the dimension of the score feature vectors that form the input
to the stacked subband classifier (S) is very small as compared to
the typical MFCC or waveform feature vectors, only a very limited
amount of data is required to learn the optimal weights of the meta-
level classifier. As such, stacked generalization offers flexibility and
some coarse frequency selectivity for the individual binary classifi-
cation problems, and can be particularly useful in de-emphasizing
information from unreliable subbands. The experiments show that
major gains in the classification performance can be attained with
this approach.

3 EXPERIMENTAL SETUP

Experiments are performed on the ‘si’ (diverse) and ‘sx’ (compact)
sentences of the TIMIT database [44]. The training set consists of
3696 sentences from 168 different speakers. For testing we use the
core test set which consists of 192 sentences from 24 different speak-
ers not included in the training set. The development set consists of
1152 sentences uttered by 96 male and 48 female speakers not in-
cluded in either the training or the core test set, with speakers from 8
different dialect regions. The glottal stops /q/ are removed from the
class labels and certain allophones are grouped into their correspond-
ing phoneme classes using the standard Kai-Fu Lee clustering [45],
resulting in a total of M = 48 phoneme classes and N = M (M —
1)/2 = 1128 classifiers. Among these classes, there are 7 groups for



which the contribution of within-group confusions toward multiclass
error is not counted, again following standard practice [29, 45].

Experiments are performed with white and pink noises. This
work is focused on the robustness of phoneme classification in order
to get some assessment of the separation of phoneme classes in dif-
ferent representation domains and for that purpose, white (isotropic)
noise was most appropriate. Robustness to pink noise was inves-
tigated because 1/ f-like noise patterns occur widely in nature and
are also found in music, fan and cockpit noises [46—48]. To test the
classification performance in noise, each TIMIT sentence is normal-
ized to unit energy per sample and then a noise sequence is added to
the entire sentence to set the sentence-level SNR. Hence for a given
sentence-level SNR, signal-to-noise ratio at the level of individual
phonemes will vary widely.

Initially, we experimented with different values of the hyperpa-
rameters for the binary SVM classifiers but decided to use fixed val-
ues for all classifiers as parameter optimization had a large computa-
tional overhead but only a small impact on the multiclass classifica-
tion error: the degree of K, is set to © = 6 and the penalty param-
eter (for slack variables in the SVM training algorithm) to C' = 1.

For cepstral features two training-test scenarios are considered:
(i) training SVM classifiers using clean data with test features com-
pensated via vector Taylor series (VTS) [5-8], and (ii) training and
testing under identical noise conditions. The VTS algorithm aims
to estimate the distribution of noisy speech given the distribution
of clean speech, a segment of noisy speech, and the Taylor series
expansion that relates the noisy speech features to the clean ones.
After computing the distribution of the noisy speech, minimum
mean-square estimation can be used to predict the unobserved clean
cepstral feature vectors. The matched condition scenario, on the
other hand, is an impractical target; nevertheless, we present the re-
sults as a reference, since this setup is considered to give the optimal
achievable performance with cepstral features [9]. Additionally, the
features of both training and test data are standardized using CMVN
[4] in all scenarios. To obtain the cepstral (MFCC) representation,
each sentence is converted into a sequence of 13 dimensional feature
vectors, their time derivatives and second order derivatives which
are combined into a sequence of 39 dimensional feature vectors.
Then, T' = 10 frames (with frame duration of 25ms and a frame
rate of 100 frames/sec) closest to the center of a phoneme are con-
catenated to give a representation in R3°C. For noise compensation
with VTS, a GMM with 64 mixture components was used to learn
the distribution of Mel log spectra of clean training data.

To obtain the subband representation, phoneme segments x are
extracted from the TIMIT sentences by applying a 100ms rectangu-
lar window at the center of each phoneme. At a 16kHz sampling fre-
quency, this gives fixed length vectors in R” with D = 1600 which
are further decomposed into subband components {x°}1%, using a
16-channel cosine-modulated filter bank. For the dynamic subband
feature vector, €2° (see (9)), the log-energy and time derivatives
subband components of the 7" = 10 frames closest to the center of a
particular phoneme are combined to form a 30-dimensional feature
vector. The dynamic subband feature vectors are further standard-
ized within each sentence of TIMIT for the evaluation of kernel K¢
(see 10).

For classification in subbands of acoustic waveforms, the train-
ing of base-level SVM subband classifiers is always performed with
noiseless (clean) data. A random subset, one-eighth the size of the
development data was selected for training of the meta-level SVMs
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in the stacked classifier as learning the optimal weights requires only
very limited amounts of data. Again, two scenarios are considered
for the training of stacked classifiers: (i) multistyle training - training
with base-level SVM score vectors obtained from a small collection
of clean and noise corrupted data, and (ii) training and testing under
identical noise conditions.

4 RESULTS

Figure 2 shows the results of SVM phoneme classification with
the multistyle-trained stacked subband classifier, VT'S-compensated
MECC classifier and composite acoustic waveform classifier [34]
in the presence of additive white and pink noise. For comparison,
results are presented for the stacked subband classifier and MFCC
classifier in matched train-test conditions as well. The multistyle-
trained meta-level acoustic waveform classifier is trained using
base-level score vectors obtained from clean data and data corrupted
by white noise at 0dB SNR only and then tested in white (matched)
and pink (mismatched) noise. The amount of data used for training
of the meta-level classifier was 5% of the data used for matched
training of the MFCC classifier.

The results show that the stacked subband classifier exhibits
better classification performance than the VTS-compensated MFCC
classifier for SNR below 12dB whereas the performance crossover
between MFCC and composite acoustic waveform classifiers is be-
tween 6dB and 0dB SNR. The stacked subband classifier achieves
average improvements of 8.7% and 4.5% over the MFCC classifier
across considered SNRs in the presence of white and pink noise,
respectively. Moreover, the stacked subband classifier also sig-
nificantly improves over the MFCC classifier trained and tested in
matched conditions for SNRs below a crossover point between 0 and
6dB SNR, although the amount of the data used to learn the optimal
weights of the meta-level classifier is a small fraction of the data set
used for matched training of the MFCC classifier, and the training is
done only using clean data and data corrupted by white noise at 0dB
SNR. In particular, an average improvement of 6.5% in the phone
error is achieved by the stacked subband classifier over the matched
MFCC classifier for SNRs below 6dB in the presence of white noise.

Our previous work showed [34, 49] that the MFCC classifier
suffers severe degradation in classification performance in the case
of a mismatch in the noise type. On the other hand, the stacked
subband classifier degrades gracefully in a mismatched environment
as shown in 2(b). This is due to the decomposition of acoustic
waveforms into a number of frequency subbands where, for each
binary classification problem, colored noise can be approximated by
narrow-band white noise.

It is worth noting that the proposed method achieves consider-
ably better results than the errors reported in the literature on the
same task. Rifkin et al. [27] report an error rate of 77.8% at 0dB
SNR in pink noise whereas the subband classifier achieves an error
of 48% in similar conditions as reported in Figure 2(b). Further
improvements can be achieved by incorporating shift-invariance
into SVM kernels, and with a convex combination of cepstral and
acoustic waveform classifiers as proposed in [34, 35].

Figure 2 also shows a comparison of stacked subband classi-
fier with MFCC classifier trained and tested in matched conditions.
The matched stacked subband classifier significantly outperforms
the matched MFCC classifiers for SNRs below 6dB. Around 13%
average improvement is achieved by the subband classifier over the
MFCC classifier for SNR < 6dB in the presence of both white
and pink noises. This suggests that the high-dimensional subband
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representations [34]. The multistyle stacked subband classifier is trained with a small random subset consisting of clean and white-noise (0dB
SNR) corrupted data which is one-eighth the size of the development set. It is tested on data corrupted with white noise (matched) and pink
noise (mismatched). In the matched training case, noise levels as well as noise types of training and test data are identical for both MFCC

and stacked subband classifiers.

representation obtained from acoustic waveforms provides a better
separation of phoneme classes compared to cepstral representation
in high noise.

5 CONCLUSIONS

A novel subband acoustic waveform front-end for robust speech
recognition using SVMs was proposed. We addressed the issues of
kernel design for subband components of acoustic waveforms and
the aggregation of the individual subband classifiers using stacked
generalization. It is shown that an ensemble of classifiers trained
on the subband components of the high-dimensional acoustic wave-
forms can contribute to the robustness of phoneme classification.
The experiments show that the stacked subband classifier outper-
forms the cepstral classifier in the presence of noise for SNR below
12dB.

While the stacked subband classifier does not perform as well
as the MFCC classifier in low noise conditions, their convex combi-
nation can achieve better performance than either of the individual
classifiers as demonstrated in our previous studies [34, 35]. We
are currently investigating the robustness of the proposed subband
acoustic waveform front-end to linear filtering, with preliminary
experiments showing encouraging results.
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