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ABSTRACT

Robustness of classification of isolated phoneme segments us-
ing discriminative and generative classifiers is investigated for the
acoustic waveform and PLP speech representations. The two ap-
proaches used are support vector machines (SVMs) and mixtures of
probabilistic PCA (MPPCA). While recognition in the PLP domain
attains superb accuracy on clean data, it is significantly affected by
mismatch between training and test noise levels. Classification in the
high-dimensional acoustic waveform domain, on the other hand, is
more robust in the presence of additive white Gaussian noise. We
also show some results on the effects of custom-designed kernel
functions for SVM classification in the acoustic waveform domain.

Index Terms— Speech Recognition, Robustness, Discrimina-
tive Classification, Generative Classification, PLP

1. INTRODUCTION

Language and context modelling have resulted in major breakthroughs
that have made automatic speech recognition (ASR) possible. ASR
systems, however, still lack the level of robustness inherent to hu-
man speech recognition [1, 2]. While language and context mod-
elling are essential for reducing many errors in speech recognition,
human speech recognition attains a major portion of its robustness
early on in the process, before and independently of context infor-
mation [3, 4]. In the extreme case, when phonemes or syllables
are recognized at the level of chance (random guessing), no context
and language modelling can retrieve any information from speech.
In the other extreme, when all phonemes and syllables are recog-
nized accurately, context and/or language modelling are not needed.
Both ASR and human speech recognition operate between these two
extreme conditions, therefore both sophisticated language-context
modelling and accurate recognition of isolated phonetic units are
needed to achieve a robust recognition of continuous speech. In rec-
ognizing syllables or isolated words, the human auditory systems
performs above chance level already at -18dB SNR and significantly
above it at -9dB SNR [4]. No ASR system is able to achieve per-
formance close to that of human auditory systems in recognizing
isolated words or phonemes under severe noisy conditions, as has
been confirmed in an extensive study by Sroka and Braida [2].

The current preferred speech representation is generally some
variant of PLP[5], RASTA[6] or MFCC[7]. These representations
are derived from the short term magnitude spectra followed by non-
linear transformations to model the processing of the human auditory
system. They have the advantage that they remove variations from
speech signals that are considered unnecessary for recognition and
have a much lower dimension than acoustic waveforms. However it

is not certain that in this process of peeling off speech components
that are unnecessary for recognition one is not discarding part of the
information that makes speech such a robust message representation,
consequently ending up with ASR systems which are very sensitive
to noise and other forms of degradation.

The basic hypothesis of our work is that in representation do-
mains which involve compression, different phonetic units although
separated may not be sufficiently apart and may start overlapping
considerably at lower noise levels than they do in the original un-
compressed domain of acoustic waveforms. Moreover, compressed
representations of speech, because of the strong nonlinearities that
link them to the original acoustic waveforms, lead to distributions
of different speech units that may vary significantly in the presence
of noise. Hence, classification of speech units in acoustic waveform
domain should be more robust to additive noise than in the domains
of state-of-the-art representations all of which involve considerable
nonlinear compression. In this study, we test this hypothesis by per-
forming classification of phonemes in presence of noise using gener-
ative classifiers, in particular, MPCCA and discriminative classifiers
i.e SVMs in the acoustic waveform and PLP domains, with particu-
lar emphasis on exploring the mismatch between training and testing
conditions. Classification methods are presented in Section2 and3
and the test methodology is described in Section4. The experiments,
results of which are reported in Section5, show that while classifica-
tion using the PLP and MFCC representations achieve considerably
better results on clean data than the acoustic waveform represen-
tation, it is much more sensitive to noise mismatch between train-
ing and test conditions. A waveform classifier, on the other hand,
provides robust performance across a broad range of signal-to-noise
ratios (SNRs). We also provide some insights into the importance
of custom design of SVM kernels for improving the accuracy of
phoneme classification. Finally, Section6 draws some conclusions.

2. GENERATIVE CLASSIFICATION

Generative classification was performed using density estimates de-
rived from mixtures of Probabilistic PCA (MPPCA) [8]. Probabilis-
tic PCA (PPCA) uses the eigenpairs(vi, λi) of the empirical covari-
ance matrix, with the eigenvalues in descending order. To achieve
some dimensionality reduction while modelling data with a Gaussian
distribution, the empirically estimated covariance matrix is replaced
by a lower rank approximation of the form:

C = r2
I + WW

T (1)

where thes columns ofW are given by
√

λivi for the correspond-
ing indexi andr2 is the mean of the remainingt− s eigenvalues i.e.



r2 = 1
t−s

∑t

s+1 λi. MPPCA represents the class conditional distri-
bution for each class with a mixture of such regularized Gaussians;
the model parameters are optimized using the EM algorithm [8].
Given a data pointx, the log likelihood functionL(x) is defined
in (2) as the log of the density of the mixture evaluated atx.
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whereCi, µi andwi are the covariance matrix, mean and mixture
weight of theith component. Classification is then performed in the
standard way, by predicting the class with the maximum log likeli-
hoodL(k)(x) (which implicitly assumes uniform prior probabilities
over different classes). The classification functionH(x) that maps a
test pointx to a corresponding class label is defined as

H(x) = arg max
k=1,...,K

L(k)(x) (3)

whereL(k) is the log likelihood function of classk. One of the
advantages of the waveform representations is that the fitted density
models can easily be modified to allow for the presence of additive
noise. Assuming that the noise level (or more generally the noise
power spectrum) is known or can be estimated reliably, we simply
need to perform a convolution with the appropriate Gaussian noise
model. When the noise variance isσ2 and λ̂i are the eigenvalues
of C, the resulting density model for waveforms corrupted by white
noise (and renormalized to unit length) is given by

λ̃i(l) =
λ̂i + σ2

t

1 + σ2
(4)

For the MFCC and PLP representations, there is no similarly explicit
method for including noise in the density models. We therefore as-
sume here that noisy data matched to the test conditions are available
for training, and train one separate set of MFCC/PLP density models
for each test noise condition. (Other methods have been proposed to
reduce explicitly the effect of noise on spectral representations [9]
but are not explored here, for fairness of comparison with the wave-
form case. At any rate, the proposed methods perform no better than
the matched condition approach [10].)

It is also beneficial to model the effects of time alignment of
speech data. This is done by including shifted versions of the wave-
forms in the training set. It is expected that classification in the
acoustic waveform domain will benefit more from the inclusion of
the shifted data since PLP, MFCC and other state-of-the-art repre-
sentations are based on short-time magnitude spectra and therefore
shifted data would not carry significantly different information. For
testing, we correspondingly use instead of the “bare” log likelihood
L(x) its mean over shifts, i.e.

Ls(x) = ln
( 1

2n + 1

n
∑

p=−n

exp(L(xp∆))
)

(5)

where∆ is the shift increment,[−n∆, n∆] is the shift range, and
xp∆ denotes a time-shifted versions ofx. In particular,xp∆ is the
segment of the same length and extracted from the same acoustic
waveform asx but starting from a position shifted byp∆ samples in
time.

3. DISCRIMINATIVE CLASSIFICATION

An SVM estimates decision surfaces separating two classes of data.
In the simplest case these are linear but for speech recognition, one

typically requires nonlinear decision boundaries. These are con-
structed using kernels instead of dot products, implicitly mapping
data points to high-dimensional feature vectors [11]. A kernel-based
decision function has the form

h(x) =
∑

i

αiyiK(x, xi) + b (6)

wherexi are all training inputs,yi = ±1 are class labels, the bias
term,b andαi are parameters determined by SVM. Two commonly
used kernels are polynomial and radial basis function (RBF) kernels
given by (7) and (8), respectively,

K(xi, xj) = (1 + 〈xi, xj〉)Θ , (7)

K(xi, xj) = e−Γ‖xi−xj‖2

. (8)

As is commonly done, we choose the kernel parameters (Θ orΓ) and
penalty parameter of SVM (C) by cross-validation.

SVMs are binary classifiers to distinguish two groups of classes,
and these binary classifiers are then combined via error-correcting
code methods to obtain multiclass classifiers [12]. To summarize
the procedure briefly,L binary classifiers are trained to distinguish
betweenK classes using the coding matrixMK×L, with elements
Mkl ∈ {0, 1,−1}. Classifierl is trained on data of classesk for
which Mkl 6= 0 with sgn(Mkl) as the class label; it has no knowl-
edge about classesk for which Mkl = 0. For example, in the case
of one-vs-all classifiers (L = K), Mkl = 1, if k = l, otherwise
Mkl = −1. For the one-vs-one classification strategy, on the other
hand,L = K(K − 1)/2, each classifier is trained on data from
only two phoneme classes. Here all the elements of a column of the
coding matrixM are set to 0 except for one+1 and one−1.

To combine the binary classifiers into a multiclass classifier, for
a given test pointx, the decision values of theL binary classifiers
h̄(x) = [h1(x), · · · , hL(x)] are obtained. Then, classk is chosen
to be the predicted classH(x) if the kth row of the coding matrix,
M̄k = [Mk1, · · · , MkL], k = 1, · · · , K has the minimum distance
from h̄(x), i.e. H(x) = arg mink d(M̄k, h̄(x)). The distance mea-
sure is given asd(M̄k, h̄(x)) =

∑L

l=1 ξ(zkl) whereξ is some loss
function andzkl = Mklhl(x). Commonly used loss functions in-
clude hinge –ξ(z) = (1 − z)+ = max(1 − z, 0), Hamming –
ξ(z) = [1 − sgn(z)]/2, exponential –ξ(z) = e−z and linear –
ξ(z) = −z loss functions.

The issues of primary interest in any multiclass classification
task with SVMs are:(a) the use/design of appropriate kernel and(b)
the choice of the coding matrix. A kernel function with prior knowl-
edge about the physical properties of the data sets can significantly
improve the performance of the individual binary classifiers. To this
end, we useeven kernelsfor classification using acoustic waveforms
to take into account the fact that a speech waveform and its inverted
version are perceived as being the same. An even version of a kernel
K can be obtained

Ke(xi, xj) = K(xi, xj)+K(xi,−xj) = K(xi, xj)+K(−xi, xj) ,
(9)

which is the approach used in this work. Furthermore, invariance of
acoustic waveforms to time alignment can be incorporated intoeven
kernelby defining ashift-invariant even kernelof the form

Ks(xi, xj) =
1

(2n + 1)2

n
∑

p=−n

n
∑

q=−n

Ke(x
p∆
i , xq∆

j ) . (10)

As discussed previously, since PLP and MFCC are extracted from
the short-time magnitude spectra, usingeven kernelorshift-invariant



kernelfor PLP and MFCC classification will not have any significant
advantage over the standard (polynomial or RBF) kernels.

Regarding the choice of the matrixM, since the error-correcting
capability of a code is commensurate to the minimum Hamming dis-
tance,β, between pairs of code words, the classification task bene-
fits from using matricesM with larger Hamming distances between
their rows. However, depending on the data sets, one must balance
the use of a matrixM having larger Hamming distance between its
code words with a choice of accurate binary classifiers. For instance,
our experiments showed that in the case ofK = 6 classes, the multi-
class classifier obtained from 3-vs-3 binary classifiers (β = 6 for the
corresponding matrix) performed worse than the classifiers obtained
from either one-vs-all (β = 2) or one-vs-one (β = 1) classifiers, be-
cause the individual binary 3-vs-3 classifiers were on average much
less accurate than one-vs-one or one-vs-all classifiers. One possible
choice for a coding matrix can be a complete dense code i.e. forK
classes,L = 2K−1 − 1 andβ = 2K−2. However, this code suffers
from the problem of scalability of the number of classifiers,L with
the number of classes,K. Since the goal is to extend this work to
a complete set of phonemes, the complete dense code may not be
an appropriate choice as our coding matrix. In this study, we report
results using matrixM that combines both one-vs-all and one-vs-
one classifiers as this combination performed better than either set
of binary classifiers separately on its own.

4. TEST METHODOLOGY

Experiments were performed on the realizations of six phonemes
(/b/, /f/, /m/, /r/, /t/, /z/) extracted from the TIMIT database. This set
includes examples from fricatives, nasals, semivowels and voiced
and unvoiced stops. In addition, this set of phonemes provides pair-
wise discrimination tasks of a varying level of difficulty. Each class
consists of approximately 1000 representative acoustic waveforms,
of which 80% were used for training and 20% for testing; error
bars were derived by considering five different such splits. Pho-
netic segments used in this work were obtained by applying to each
waveform 64ms rectangular windows, which at 16kHz sampling fre-
quency gives vectors inR1024, followed by normalization to unit
norm. The natural space in which to perform classification of the
waveforms is, therefore, the unit hypersphereS

1023.
For comparison, 12th order MFCC and PLP representations of

the data were taken, leading to 4 frames of 13 coefficients in both
cases [13]. These frames were concatenated to give a representa-
tion in R

52. Classification was performed using the two approaches
described in Section 2 and Section 3. As noise statistics can be es-
timated during pause intervals (non-speech activity) between speech
signals, we assume for all classification approaches that the noise
statistics (i.e. the noise varianceσ2, for white noise) are known.

As pointed out before, PLP uses frames of magnitude spectra, it
is less sensitive to time alignment. In the case of waveforms, how-
ever, it would clearly be beneficial to align the data in a consistent
manner. This is especially true in the case of stops such as /b/ and
/t/. Rather than attempting to explicitly align the data, a sliding win-
dow with ∆ = 10 sample shift (≈ 0.6 ms) over a range of±100
samples (≈ ±6 ms) was used. This gives 21 shifted instances for
each representativex. The shift range was selected so that it would
cover at least one fundamental period of a periodic waveform at the
lower end of the typical pitch range of speech. We experimented
with other sample shifts∆ but in the generative models found that
smaller values do not give noticeable performance improvements.
For the discriminative (SVM) classifiers, we mainly used∆ = 25
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Fig. 1. Multiclass error rate for generative classification using MP-
PCA. The three curves are for waveform, PLP and MFCC repre-
sentations. Dashed-dotted line represents the error rate for random
guessing. In the case of PLP and MFCC, the classification is per-
formed using density models estimated under matched noise con-
ditions. The density model used for classification in the acoustic
waveform domain is trained on clean data only and then adjusted
according to (4) for noise modelling.

(≈ 1.5 ms) to reduce computational effort, in particular, in the eval-
uation of the shift-invariant kernel defined previously.

5. RESULTS

5.1. Results of Generative Methods

For MPPCA we tested systematically a variety of combinations of
number of mixture componentsc and dimensions retained in each
PPCA component,s. The best classification rate in high noise, for
the waveform representation, is obtained for a mixture ofc = 4 com-
ponents with a PPCA dimension ofq = 500 is used for waveforms.
No improvement is observed when more components are used. This
is likely because of the limited amount of data: the number of pa-
rameters in MPPCA scales asO(cst), which for (c, s) = (4, 500)
andt = 1024 is of order2 × 106. This is already rather more than
the number of data points (of order 40,000 per phoneme if for each
example we include 21 shifts and all inverted images [x → −x]),
and increasing the number of components further is then likely to
lead to significant overfitting. Reducing dimensionality by taking
s < t is beneficial here; without this, i.e. fors = t, the number of
parameters is so large that essentially only a single Gaussian can be
fitted reliably. The same trend was also observed with the PLP clas-
sifiers, with no consistent improvement seen when multiple compo-
nent mixtures were used in place of a single Gaussian.

Figure 1 shows a comparison of the multiclass error rates for
MPPCA applied to waveforms, PLP and MFCC representations. As
expected PLP and MFCC outperform waveforms at high SNR with
PLP being superior to MFCC. When the SNR is lower than0dB,
the waveform classification has higher accuracy and remains signif-
icantly above chance level even at−18dB.

The sensitivity of PLP to mismatch between training and testing
conditions is illustrated in Figure 2. The curves show the perfor-
mance of PLP trained at a fixed noise level and then tested on the
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Fig. 2. Multiclass error rate for generative classifiers using the PLP
representation. Density models are trained on data corrupted by
fixed levels of noise as given in the legend. Each curve shows one
classifiers tested across all levels of test noise. The dotted curve
compares with the result of using the waveform classifier adjusted
for data at−12dB SNR.

range of noise levels. From the results it can be seen that PLP is
very sensitive to mismatch between training and test conditions. For
example PLP trained at6dB has an error of 5% at matched test con-
ditions but if the noise level differs by6dB the error rate increases
to 35%. For comparison a plot of the waveform classifier trained
on quiet data and adjusted to−12dB is shown. The performance
of the that classifier is less sensitive to mismatch and would make it
favourable if there was an error in estimatingσ2.

5.2. Results of Discriminative Methods

Phoneme classification with MFCC using SVMs gives similar but
slightly inferior performance to the PLP representation. Therefore,
results of the classification accuracy for PLP and acoustic waveform
representations of speech and their robustness to additive noise are
reported here. For data corrupted by noise, the acoustic waveforms
are normalized to

√
1 + σ2 whereσ2 is the noise variance. This

is done to keep the norm of the signal component roughly indepen-
dent of noise. In the case of PLP, we experimented with both this
normalization and normalization to unity (as used throughout in the
generative approach) independently of SNR, choosing the latter as it
gave better performance. PLP features are standardized, i.e. scaled
and shifted to have zero mean and unit variance on the training set.

Regarding the binary SVM classifiers, comparable performance
is obtained with polynomial and RBF kernels for PLP representation
so we show results for the former. For the waveform representation,
the polynomial kernel performed better than the RBF kernel and the
even polynomial kernel outperformed both. The shift-invariant even-
polynomial kernel, finally, performed significantly better than all of
the other kernels as discussed below. Here we use the shift range
of ±100 samples with∆ = 25 samples. We also investigated the
performance of the classifiers by adding time shifts to the test sets
for the same range and∆. In this particular case, the output of a
binary classifierhl(x) for a test pointx is given by the mean of
the outputs of that binary classifier for time shifted versions ofx,
hl(x) = 1

2n+1

∑n

p=−n
hl(x

p∆) .
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Fig. 3. Multiclass error rate for discriminative (SVM) classifiers in
the PLP and acoustic waveform domains. SVMs for acoustic wave-
forms are trained on clean data while, for PLP, training is done on
noisy data sets with SNR as indicated in the legend. Polynomial and
shift-invariant even-polynomial kernels are used for PLP and acous-
tic waveform representations respectively.

Classification results using SVMs in the PLP and acoustic wave-
form domains are shown in Figure 3. The best results for both do-
mains are compared here, i.e. shift-invariant even-polynomial kernel
for waveforms and polynomial kernel for PLP. For both representa-
tions, a coding matrix that combines the one-vs-all and one-vs-one
classifiers was used. Hinge loss function, which performed compa-
rably or better than the Hamming, linear and exponential loss func-
tions, is used to calculate the distance measure,d. One can observe
that a PLP classifier trained on clean data gives excellent perfor-
mance (less than2% error) when tested on clean data, however at
noise level as low as6dB SNR, we get an error of45%, while clas-
sification is at the level of chance for SNR smaller than0dB. This
observation is quite general: the PLP classifiers are highly sensitive
to mismatch between the training and test conditions. For exam-
ple, the PLP classifier trained at6dB SNR does well when tested at
the same SNR (3% error) but performs rather badly if the test noise
level deviates in either direction (13% error for clean test data,33%
for 0dB SNR). The classifiers trained on very low SNRs (−12 and
−18dB) give the best results for similarly noisy test conditions but
perform very poorly in testing at low noise levels.

This can now be contrasted with the results for a classifier based
on acoustic waveform data. One observes that although the perfor-
mance of this classifier on clean data (7.5% error) is worse than that
obtained by PLP classifer trained on clean data, it is significantly
more robust to larger test noise levels as compared to the PLP clas-
sifier. For instance, there is no significant change in classification
error (8%) up to a test noise level as high as 0dB SNR, whereas at
the same SNR the corresponding PLP classifier trained on clean data
has an error rate of 78%.

It should be emphasized that best performance using acoustic
waveform classifiers is obtained when training is performed on clean
data; training on noisy data (results not shown) leads to poorer per-
formance. This is a significant advantage: the acoustic waveform
classifier can be trained once and for all on clean data and used with
a broad range of test noise conditions; for the PLP classifiers, on
the other hand, separate classifiers need to be constructed for dif-
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Fig. 4. Multiclass error rate for SVM classifiers with polyno-
mial, even-polynomial and shift-invariant even-polynomial kernels
in acoustic waveform domain. The inset figure compares the
performance of waveform classifiers using polynomial and even-
polynomial kernels. The main figure compares the performance
of classifiers using even-polynomial kernel and shift-invariant even-
polynomial kernel.

ferent noise levels to give good performance. Even then, optimal
performance of the PLP classifiers which is achieved under matched
conditions [10], is heavily dependent upon a fairly accurate estimate
of the SNR (σ2) and even a small error in this estimate can have a
dramatic effect on classification performance.

In Section3, the shift-invariant even-polynomial kernel was pro-
posed. Figure 4 provides a quantitative assessment of the merits of
designing a kernel to incorporate this shift and sign invariance. The
inset figure in Figure 4 shows the classification results for polyno-
mial and even polynomial kernels in the acoustic waveform domain
with no shifted versions of acoustic waveforms included in train-
ing or testing. It is clear that the even kernel leads to a reduction
of around5% in the error rates across all levels of SNR. This is
a significant improvement given the fact that the even-polynomial
kernel takes into account just one physical property of speech per-
ception,i.e. sign invariance, and suggests that further improvements
could be obtained by incorporating additional prior knowledge into
the kernel design. To this end, comparison of results of(a) even-
polynomial kernel with no shifts in either training or test sets(b)
even-polynomial kernel with shifts in only test set and(c) shift-
invariant even-polynomial kernel is provided in the main plot of
Figure 4. Almost no improvement is achieved by adding shifts of
acoustic waveforms to the test set for SNRs above0dB, however,
there is approximately1 − 3% improvemener for SNRs of around
0dB and below. The figure further shows that the improvements ob-
tained using the shift-invariant kernel are much more significant: ap-
proximately2.5% for SNRs around0dB and above, and5−11% for
lower SNRs.

6. CONCLUSIONS

The robustness of phoneme classification to additive white Gaus-
sian noise was investigated in experiments using generative and dis-
criminative classifiers. Our results show that while PLP representa-

tion facilitates very accurate recognition of phonemes under matched
conditions (especially for clean data), its performance suffers se-
vere degradation with noise mismatch between training and testing
conditions. On the other hand, the high-dimensional acoustic wave-
form representation, even though not as accurate as PLP classifica-
tion on clean data, is more robust to additive noise and can tolerate
significant mismatch between training and testing conditions. This
observation holds for both generative and discriminative classifiers,
and suggests that high-dimensional speech representations, such as
acoustic waveforms, may be a more suitable front end for robust
ASR than representations which involve non-linear dimension re-
duction. Optimal classification algorithms in the space of acoustic
waveforms are still an open question. It is worth noting that den-
sity models in the domain of acoustic waveforms, lend themselves
for very simple noise compensation. Furthermore, in the case of
discriminative classifiers, major gains can be made by even straight-
forward custom kernel designs. There is still a considerable space
for improvements in that direction, and kernel functions which are
finely tuned to the physical properties of speech data will play a cru-
cial role in further error reduction.
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