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Abstract

Layered Sigmoid Belief Networks are directed graphical models
in which the local conditional probabilities are parameterised by
weighted sums of parental states. Learning and inference in such
networks are generally intractable, and approximations need to be
considered. Progress in learning these networks has been made by
using variational procedures. We demonstrate, however, that vari-
ational procedures can be inappropriate for the equally important
issue of inference - that is, calculating marginals of the network.
We introduce an alternative procedure, based on assuming that the
weighted input to a node is approximately Gaussian distributed.
Our approach goes beyond previous Gaussian field assumptions in
that we take into account correlations between parents of nodes.
This procedure is specialized for calculating marginals and is sig-
nificantly faster and simpler than the variational procedure.

1 Introduction

Layered Sigmoid Belief Networks [1] are directed graphical models [2] in which
the local conditional probabilities are parameterised by weighted sums of parental
states, see fig(1). This is a graphical representation of a distribution over a set of
binary variables s; € {0,1}. Typically, one supposes that the states of the nodes
at the bottom of the network are generated by states in previous layers. Whilst, in
principle, there is no restriction on the number of nodes in any layer, typically, one
considers structures similar to the “fan out” in fig(1) in which higher level layers
provide an “explanation” for patterns generated in lower layers. Such graphical
models are attractive since they correspond to layers of information processors, of
potentially increasing complexity. Unfortunately, learning and inference in such net-
works is generally intractable, and approximations need to be considered. Progress
in learning has been made by using variational procedures [3, 4, 5]. However, an-
other crucial aspect remains inference [2]. That is, given some evidence (or none),
calculate the marginal of a variable, conditional on this evidence. This assumes
that we have found a suitable network from some learning procedure, and now wish
to query this network. Whilst the variational procedure is attractive for learning,



since it generally provides a bound on the likelihood of the visible units, we demon-
strate that it may not always be equally appropriate for the inference problem.

A directed graphical model defines a distribution over
a set of variables s = (s1...s,) that factorises into
the local conditional distributions,

n
p(si...sn) = [[ p(silmi) (1)

i=1
where 7; denotes the parent nodes of node i. In a
layered network, these are the nodes in the proceed-

ing layer that feed into node i. In a sigmoid belief
network the local probabilities are defined as

Figure 1: A Layered Sig-
moid Belief Network

p(si=1m) =0 Zwijsj +6; | =0 (hi) (2)
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where the “field” at node i is defined as h; = 3~ w;;s; +6; and o(h) = 1/(1 +e7h).
w;; is the strength of the connection between node ¢ and its parent node j; if j is
not a parent of ¢ we set w;; = 0. 6; is a bias term that gives a parent-independent
bias to the state of node 1.

We are interested in inference - in particular, calculating marginals of the network
for cases with and without evidential nodes. In section (2) we describe how to
approximate the quantities p(s; = 1) and discuss in section (2.1) why our method
can improve on the standard variational mean field theory. Conditional marginals,
such as p(s; = 1|s; = 1, s, = 0) are considered in section (3).

2 Gaussian Field Distributions

Under the 0/1 coding for the variables s;, the mean of a variable, m; is given by the
probability that it is in state 1. Using the fact from (2) that the local conditional
distribution of node 7 is dependent on its parents only through its field h;, we have

mi = p (s = 1) = [ p(si = 10 p () dhs = (o (i), )

where we use the notation ((-)), to denote an average with respect to the distri-
bution p. If there are many parents of node i, a reasonable assumption is that the
distribution of the field h; will be Gaussian, p(h;) ~ N (,uz-,af). Under this Gaus-
sian Field (GF) assumption, we need to work out the mean and variance, which are
given by

pi = (hi) = sz’j (sj) +0; = sz’jmj +6; 4)
i= <(Ahi)2> = ZwijwikRjk (5)
jok

where R, = (As;jAs). We use the notation A (-) = () — ((+)).

The diagonal terms of the node covariance matrix are R;; = m;(1—m;). In contrast
to previous studies, we include off diagonal terms in the calculation of R [4]. From



(5) we only need to find correlations between parents ¢ and j of a node. These are
easy to calculate in the layered networks that we are considering, because neither ¢
nor j is a descendant of the other:

Rij =p(s; = 1,85 =1) —m;ym; (6)
- /p(si — 1ha)p(s; = 1/h;)p(hi, h;)dh — mim; (7)
= (o (hi) o (hj)) p(n; ny) — TG (8)

Assuming that the joint distribution p(h;, h;) is Gaussian, we again need its mean
and covariance, given by

ph = ((hi), (hy)) = <Z wikmy + 60, Y wimy + 9;) 9)
k l
Eij = <Ah,AhJ) = Zwikwﬂ <A8kA81) = ZwikwﬂRkl (10)
kl kl

Under this scheme, we have a closed set of equations, (4,5,8,10) for the means
m; and covariance matrix R;; which can be solved by forward propagation of the
equations. That is, we start from nodes without parents, and then consider the
next layer of nodes, repeating the procedure until a full sweep through the network
has been completed. The one and two dimensional field averages, equations (3)
and (8), are computed using Gaussian Quadrature. This results in an extremely
fast procedure for approximating the marginals m;, requiring only a single sweep
through the network.

Our approach is related to that of [6] by the common motivating assumption that
each node has a large number of parents. This is used in [6] to obtain actual
bounds on quantities of interest such as joint marginals. Our approach does not
give bounds. Its advantage, however, is that it allows fluctuations in the fields h;,
which are effectively excluded in [6] by the assumed scaling of the weights w;; with
the number of parents per node.

2.1 Relation to Variational Mean Field Theory

In the variational approach, one fits a tractable approximating distribution ) to
the SBN. Taking @ factorised, Q(s) = [[, m;*(1 — m;)! ~* we have the bound

Inp(sy...s,) > Z{—milnmi —(1=m;)In(1 —my)}

+ Z Zmiwijmj + 0;m; — <ln (1 + ehi)>Q (11)

4 J

The final term in (11) causes some difficulty even in the case in which @ is a fac-
torised model. Formally, this is because this term does not have the same graphical
structure as the tractable model ). One way around around this difficulty is to em-
ploy a further bound, with associated variational parameters [7]. Another approach
is to make the Gaussian assumption for the field h; as in section (2). Because @ is
factorised, corresponding to a diagonal correlation matrix R, this gives [4]

(In (1+eh")>Q ~ (In (14 €")) (12)

N(pi,o3?)



where p; = 37 wijm; +6; and of = 37, wim;(1 —m;). Note that this is a one
dimensional integral of a smooth function. In contrast to [4] we therefore evaluate
this quantity using Gaussian Quadrature. This has the advantage that no extra
variational parameters need to be introduced. Technically, the assumption of a
Gaussian field distribution means that (11) is no longer a bound. Nevertheless, in
practice it is found that this has little effect on the quality of the resulting solution.
In our implementation of the variational approach, we find the optimal parameters
m; by maximising the above equation for each component m; separately, cycling
through the nodes until the parameters m; do not change by more than 10719,
This is repeated 5 times, and the solution with the highest bound score is chosen.
Note that these equations cannot be solved by forward propagation alone since the
final term contains contributions from all the nodes in the network. This is in
contrast to the GF approach of section (2). Finding appropriate parameters m; by
the variational approach is therefore rather slower than using the GF method.

In arriving at the above equations, we have made two assumptions. The first is
that the intractable distribution is well approximated by a factorised model. The
second is that the field distribution is Gaussian. The first step is necessary in
order to obtain a bound on the likelihood of the model (although this is slightly
compromised by the Gaussian field assumption). In the GF approach we dispense
with this assumption of an effectively factorised network (partially because if we
are only interested in inference, a bound on the model likelihood is less relevant).
The GF method may therefore prove useful for a broader class of networks than the
variational approach.

2.2 Results for unconditional marginals

We compared three procedures for estimating the conditional values p(s; = 1) for
all the nodes in the network, namely the variational theory, as described in section
(2.1), the diagonal Gaussian field theory, and the non-diagonal Gaussian field theory
which includes correlation effects between parents. Results for small weight values
w;; are shown in fig(2). In this case, all three methods perform reasonably well,
although there is a significant improvement in using the GF methods over the
variational procedure; parental correlations are not important (compare figs(2b)
and (2¢)). In fig(3) the weights and biases are chosen such that the exact mean
variables m; are roughly 0.5 with non-trivial correlation effects between parents.
Note that the variational mean field theory now provides a poor solution, whereas
the GF methods are relatively accurate. The effect of using the non-diagonal R
terms is beneficial, although not dramatically so.

3 Calculating Conditional Marginals

We consider now how to calculate conditional marginals, given some evidential
nodes. (In contrast to [6], any set of nodes in the network, not just output nodes,
can be considered evidential.) We write the evidence in the following manner

E={sc, =5¢,---Sc, =8¢, } ={Ec, ... Ec.}
The quantities that we are interested in are conditional marginals which, from Bayes
rule are related to the joint distribution by
p(si=1,E)
p(si = OaE) +p(sz = ]‘JE)
That is, provided that we have a procedure for estimating joint marginals, we can
obtain conditional marginals too. Without loss of generality, we therefore consider

p(si=1|E) = (13)
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Figure 2: Error in approximating p(s; = 1) for the network in fig(1), averaged over
all the nodes in the network. In each of 100 trials, weights were drawn from a
zero mean, unit variance Gaussian; biases were set to 0. Note the different scale
in (b) and (c). In (a) we use the variational procedure with a factorised @, as
in section (2.1). In (b) we use the Gaussian field equations, assuming a diagonal
covariance matrix R. This procedure was repeated in (c) including correlations
between parents.

Et = EU{s; = 1}, which then contains n + 1 “evidential” variables. That is, the
desired marginal variable is absorbed into the evidence set. For convenience, we
then split the nodes into two sets, those containing the evidential or “clamped”
nodes, C, and the remaining “free” nodes F'. The joint evidence is then given by

p(E"‘):Zp(Ecl,...Ecn+1,sf1,...sfm) (14)
SF

= Zp (Bey|mt)--.p (En+1|7r:n+1) p(ss |7r;‘c1) P (sfm |7T3'Zm)

sF (15)
where 7} are the parents of node 4, with any evidential parental nodes set to their
values as specified in E*. In the sigmoid belief network

" " " S;, if 7 is an evidential node
p(Eylry) =0 ((2Sk -1 (Z Wi S +0k>> , 8 = {

s;, otherwise (16)

p(Ey|m) is therefore determined by the distribution of the field h = )", wkis; +6k.
Examining (15), we see that the product over the “free” nodes defines a SBN in
which the local probability distributions are given by those of the original network,
but with any evidential parental nodes clamped to their evidence values. Therefore,

n+1
&) = (Tl (@5, - 02) an
=1 p(h:1 "'hzn+1)
Consistent with our previous assumptions, we assume that the distribution of the
fields h* = (h’c‘1 . +1) is jointly Gaussian. We can then find the mean and
covariance matrix for the distribution of h* by repeating the calculation of section
(2) in which evidential nodes have been clamped to their evidence values. Once this
Gaussian has been determined, it can be used in (17) to determine p(ET). Gaussian

averages of products of sigmoids are calculated by drawing 1000 samples from the
Gaussian over which we wish to integrate'. Note that if there are evidential nodes

'In one and two dimensions (n = 0,1), or n = 1, we use Gaussian Quadrature.
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Figure 3: All weights are set to uniformly from 0 to 50. Biases are set to -0.5 of
the summed parental weights plus a uniform random number from -2.5 to 2.5. The
root node is set to be 1 with probability 0.5. This has the effect of making all the
nodes in the exact network roughly 0.5 in mean, with non-negligible correlations
between parental nodes. 160 simulations were made.

in different layers, we require the correlations between their fields h to evaluate (17).
Such ‘inter-layer’ correlations were not required in section (2), and to be able to use
the same calculational scheme we simply neglect them. (We leave a study of the
effects of this assumption for future work.) The average in (17) then factors into
groups, where each group contains evidential terms in a particular layer.

The conditional marginal for node ¢ is obtained from repeating the above procedure
in which the desired marginal node is clamped to its opposite value, and then using
these results in (13). The above procedure is repeated for each conditional marginal
that we are interested in. Although this may seem computationally expensive, the
marginal for each node is computed quickly, since the equations are solved by one
forward propagation sweep only.
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Figure 4: Estimating the conditional marginal of the top node being in state 1,
given that the four bottom nodes are in state 1. Weights were drawn from a zero
mean Gaussian with variance 5, with biases set to -0.5 the summed parental weights
plus a uniform random number from -2.5 to 2.5. Results of 160 simulations.

3.1 Results for conditional marginals

We used the same structure as in the previous experiments, as shown in fig(1). We
are interested here in calculating the probability that the top node is in state 1,



given that the four bottom nodes are in state 1. Weights were chosen from a zero
mean Gaussian with variance 5. Biases were set to negative half of the summed
parent weights, plus a uniform random value from -2.5 to 2.5. Correlation effects
in these networks are not as strong as in the experiments in section (2.2), although
the improvement of the GF theory over the variational theory seen in fig(4) remains
clear. The improvement from the off diagonal terms in R is minimal.

4 Conclusion

Despite their appropriateness for learning, variational methods may not be equally
suited to inference, making more tailored methods attractive. We have considered
an approximation procedure that is based on assuming that the distribution of the
weighted input to a node is approximately Gaussian. Correlation effects between
parents of a node were taken into account to improve the Gaussian theory, although
in our examples this gave only relatively modest improvements.

The variational mean field theory performs poorly in networks with strong cor-
relation effects between nodes. On the other hand, one may conjecture that the
Gaussian Field approach will not generally perform catastrophically worse than the
factorised variational mean field theory. One advantage of the variational theory
is the presence of an objective function against which competing solutions can be
compared. However, finding an optimum solution for the mean parameters m; from
this function is numerically complex. Since the Gaussian Field theory is extremely
fast to solve, an interesting compromise might be to prime the variational solution
with the results from the Gaussian Field theory.
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