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ABSTRACT components. These means and covariances are easily found

We consider approximate inference in the important class d?y forward propagation of the recursions equation (1). léenc
Gaussian distributions corresponding to multiply-coriegc  €xact inference is bounded i8y(|v|*) since this is the com-
directed acylic networks (DAGs). We show how Directed Be-Plexity of matrix inversion. However, in many applications
lief Propagation can be implemented in a numerically stabléhis is unacceptably large and one seeks to exploit the-struc
manner by associating backwart) (nessages with an aux- fure to reduce this computation. Our interest is approxémat
iliary variable, enabling intermediate computations tache inference when exact inference even using the Junction Tree
ried out in moment form. We apply our method to the Fas@lgorithm is deemed impractical. Belief Propagation (BP) i
Fourier Transform network with missing data, and show thatn attractive approximation since, if it converges (in eitits

the results are more accurate than those obtained using Undiirected or undirected manifestation) then the inferredmse

rected Belief Propagation on the equivalent Markov network/x|» Will be exact, although the covariangg, will typically
be overconfident [4]. Exactness of the means is an important

Index Terms— State space methods, Discrete Fouriertra%vantage of BP over other techniques such as approximate
forms, Bayes procedures, Graph theory block factorisations (see e.g. [5]). Conjugate gradienthme

ods are also interesting for computing the means, although

1. GAUSSIAN DIRECTED ACYCLIC GRAPHS they are less straightforward to apply to covariances.
_ _ - One approach is to first convert the GaussDAG to an undi-
A Gaussian DAG is a distribution over a set of vectors, rected networkp(z) o [1,; ¥ij (i, 7;), whereyy; (z;, z;)
are suitably defined exponentiated quadratic forms[4] eim
P, an) = [[ pilep) y P d [4lelng

; eral one obtains additional links; between common parents
in which each local conditional distributign(z; |z,,,(;)) isa  ©of any nodeUndirectedBP (UBP) can then be run on the re-
Gaussian. Herga (i) denotes the variables in the parentalsulting network by using the message recursipns; (z;) o

set ofi. Each conditional Gaussian may be defined by thef,,, ¥ij(%i, #;) [Txe (i) Te—i(2:), whereN (i) are the neigh-

stochastic linear relation bours of node on the Markov network; the posterior means
are given byp(z;) o ¢, (z; o Ye—i(x;). However, if
vi= Y, Wicim +n m~ N (i, %) (@) gheen Dyptes) o vili) Lieny il -
! e v t i i covariance<] are small (or even zero), then the conversion
tepa(i) will introduce accumulating numerical errors [1, 3].

wherep?, %9 are the mean and covariance of the Gaussian | _ _
noise. Perhaps the most celebrated instancesirigly con-  Directed Belief Propagation
gzcsgggzézsﬁ ;A\‘/(Z Ep?:aézlrgzr:nfgtigt[i% nh:I(;)c;ZISrei(r:]eQ;ZtiBireCted Belief Propagation (DBP) sends messages from node
. . to its childrenj € ch (i) and parent$ i) [6
temporal filtering [2] and the Fast Fourier Transform [3].rOu ! j € ch (i) P € pa (i) [6]
interest in this paper is a stable version of approximatrinf :/ , ' , e (s
ence inmultiply-connectedetworks where exact inference pisi (i) ' P(#ilpa(i)) H )Pl—n(ﬂ?l) H k—i(T;)
is impractical. In a typical application, the variablesare

splitinto a set of hidden and visible variables= (h,v) and A :/ , , (o e (2
inference corresponds to computing the conditign@lv). i-t(@1) p(%'wpa(')l),egi)\l pr il )kel;l(i) ki)

Formally, the posterior means and covariances are given by . .
where the integrals are over all variables except the one on

Hhjo = Hh+ YhoZon (U — o), Yhiv = Zhn — YhoXorX,n  Which the message depends. We choose to parameterige the
(2) messages using the moment representation

HereX;, represents the, v block of the joint covariance of 1 S

p(h,v). Similarly, u; andp, are the corresponding mean  pi—j(2i) o exp ~3 (xi = fing) Fiyy (mi — fisj)

lepa(i kech(z)\j



and the\ messages using the canonical representation wherez;_,; is clamped to the valug_,; andz, is clamped to
1 valuew,. The usefulness of the auxiliary variable is that we
i1 (1) o< exp -3 (2] Gisim — 2] gii) (3) canidentify the r.h.s. of the above equation as

Whilst there is a choice about whether to parameterige Pi—j (i) ¢ P(@is ATk} AT Dy imgus i} fea=0.)
either moment or canonical form, no such choice exists fofynere the joint distribution is found using equation (4) and
the A messages sindg is generally not invertible. DBP then

corresponds to updating the paramet€érg, G, g. Ifonecar- z; = ZWiHml—km, Te = Weeijzi+ Z Wee iy +ne
ries out the integrals naively, then inverse noise covagan lepa(i) i epa(e)\i

appear explicitly. This is numerically problematic in these (5)
of very small (or even zero) noise covariances. Fortunately-rom these equationsy; = ¥, .y Wictfii + pfpupi =
there is a simple trick which automatically produces recurGr—iti: Zii = Xiepaci) WictZi-i Wi +359, tte = n+Weeipi+

sions in the correct form. Pirepate)ni Weeit fir e Zki = GrsiZiin Bk = GeoiZii Gri +
GrosisZek = We i %iiGroi, Tei = Weei T, (S€€[7]) @nd
2. THE AUXILIARY VARIABLE TRICK See = pe + Weers Wi+ Y WedFu Wi (6)
i' €pa(e)\s

A naive integration implementation of the DBP recursions
above effectively converts messages to a canonical repre-
sentation, and performs the integral in this representatimw-
ever, we would prefer to carry out the integrals in a momen
representation fop since this is appropriate for small covari-
ances. To do this we express thenessages in a form where
the canonical variableS, g appear in a moment form, by in-
troducing arauxiliary variablex;,_,; for each message;_,;.
This is defined by

Now that we have the joint distributian(z;, {zr—;}, {zc}),

we need to clamp the,_,; andz. into their appropriate states.

The structure of this is that we have defined the jpif, 2)
herey = z; andz = {zy;}, {z.}, and wish to fincb(y|z)

with z clamped to specific values. In both the mean and co-

variance, a slight difficulty is that .. may not be invertible;

but®,.¥ ' remains well defined. In general, the fornof,

andX... is (here shown a non-evidential childother thanj

and one evidential child):

Thi = Ghosii + i (4) Sy = ( BiGrsi ZaW!l, )
wheren;_,; ~ N(0, G- ;). Then equation (3) can be written \ne can write the covariance,. as
it (i) o p(wi|xy) Ti s 1=Gi1 GrosiDii + 1 G ZuWXh, Grsi 0
We<—i2ii Eee 0 I

Note that this representation of themessage as a clamped

distribution is not unique so thaty}, . ¥ ;! becomes
Normally in DBP, each node sends\amessage to each

parent. However, in the case of an evidential nedsth only T
. . : (% WX,

a single parent and in the absence of noisg,_,;(z;)

p(z.|z;) has an infiniteG._,;,. To deal with this, we do not

parameterise messages from evidential children, but rathe

simply include the relevant factoggz. |x;) directly in the Fisj . v ’ g

recursions, as we will now describe. For a fuller explamgtio =%~ (9k—i>ve ) @ndiz = (g, e )-

please refer to [7].

1
) GroiZii+ 1 GroiSuWl
WeeiXii Yee

rThis givesfi; = py + £,.X..1 (2 — p.) and covariance
Yy — Sy 20 2., where explicitlyp, = u;, £,y =

The A messages

The p messages Using the same auxiliary variable trick as before, thmes-
sages may be written as

Aissi(zy) :/p($i|$pa(i)) H pr—i(zr)

Using the auxiliary variable method, and separating out evi
dential variableg € E, we have

Pi—j(Ti) o /P($i|ﬂ?pa(i)) I pi—itz) repaiy
lepa(i) H P(Thosi|Ts) H p(ze|wi)
H D(@hsi|zi) H p(ze|z:) kech(i)\j,k¢E eech(i)\j,e€cE
kech(i)\j,k¢FE e€ch(i)\j,e€E subject to clamping the auxiliary and evidential varialites

TE 9. lete, o, — Bay + 151 be clamped ta, with 7, ~ A’(0, A). their appropriate states. Themessage is then given by the

We then requirteBT A='B = G,;_,; and BT A~ 'a = g;_,;. We choose conditional
simplyA = B = B" = G,_,,. p({zr=i}, {ze 1) @)



This is a little different from thep case since we are now
interested in the functional dependence on the conditgnin
variablez;. We therefore directly isolate the dependent
terms in the conditional distribution; from the quadraticrh

in z; in the exponent we can then read off themessages.
The joint distribution of{zj_,;}, {z.} (conditional onz;) is
obtained from the relations (4) and (5), except that jrwe

now need to separate off the part dependent;on Fig. 1. The FFT network for computing the Fourier Trans-
form of an 8 component data vector. The data vectds
T = Z Wiy zy + Wiz + n; clamped in reverse bit order in the bottom layer of the net-
Il work. The Fourier components (in standard order) are, after

inference in this network, given by the bits in the top layer.
Explicit expressions for the means and covariances involvall nodes below the top layer have zero covariance so that

the mean of;, which isg + W;;x; with with no missing data the top layer produces the exact FFT. In
the case of missing data, the prior in the top layer is used to
= Z Wi forsi +pd make the inference well-posed.
1'#£1
as well as the covariance of, 3. EXPERIMENTS ON AN FFT NETWORK
Y= Z Wy iFp Wk, + 59 An example of a GaussDAG which contains zero covariances
I+l was discussed in [3], and provides an interesting and practi

cal example for comparison of directed versus undirected BP
For a non-evidential child:, and evidential chilce, equa- methods. The Fast Fourier Transform RETnormally deals
tion (7) is then proportional texp —im” (M D) ~'m, where  with only the case of complete observatiansAn elegant and
potentially extremely useful method for dealing with migsi
m = ( Gr—i — Groi (o + Wieym) ) data was proposed in [3], in which the one dimensional FFT
o — 1 = Wi (t + Wiyay) was considered as a generative GaussDAG with the structure
of a butterfly network, fig. 1. This is based on the well-known
GioiZii + I GroiSuW; Gisi 0 recursion for computing the FFT of an= 2¢ dimensional
MZ( WeeiSii See > D= < 0 I > vectorz in O(nlogn) time. FOrW = exp(—2wi/n), thek!®
Fourier coefficientr}, is given by
where¥,. is obtained by replacing;; — X in (6). To

isolate ther; dependence we define n/2—1 4 n/2—1 '
Fp= Y W+ Y weitke,, = Fp+WhEp
Ck = Gk—i — Gkaiﬂ, Ce = € — e — Weeiﬂ, j=0 j=0

U = Wiy, U.=W.r Wiy wher_eF,;‘:’ andFy¢ denote thé*" componentof the lengthy2

Fourier transform of the even and odd components;pfe-
Then the abova message is proportional to spectively. This means that we can generate, from the Rourie
coefficients at the top layer, the data points themselves (in
exp _% (c— DUz)" (MD)™" (c— DUx) reverse bit order) in the bottom layer. Using a prior on the

Fourier coefficients in the top layer, computing the Fourier
coefficients in the case of missing data is an inference prob-
lem in a GaussDAG in which some of the bottom layer nodes
are clamped to their evidential states, and we wish to ifer t
top layer Fourier coefficients (as well as possibly the migsi
data in the bottom layer). In our implementation, we repnese
complex arithmetic using an equivalent two component vec-
tor arithmetic. We use a zero mean prior on the Fourier coef-
ficients, and independent isotropic covariances. All nose

wherec” = (¢],cl'y andU" = (U, UT). This gives the
message update

gisi =UTM e, Gioy=UTM DU

The posterior marginals, finally, are obtained in the stashda
way by just a slight modification of the message:

variances below the top layer are set to zero. In [3] infeeenc
p(ziv) = / (@ilwpai) [] prsite) T[] M—i(@i)  in this network was performed using undirected BP (UBP)
| lepa(i) kech (i) by first transforming the network into a pairwise Markov net-

work. To deal with the problem of zero covariances, a small



“jitter” was substituted instead. The jitter can have adeefr
fect on the numerical accuracy of UBP, and we used!!
which was based on experiments with small networks.

Naive UBP doesn’t work well since convergence is ham-
pered by many loops of length four. In our DBP we also
found that the tight loops in the network caused difficulties
with convergence and, as in [3], we used a clustering scheme
to ameliorate this. We merged the two children of any par- 5
ent node into a cluster variable; each node except for those i
the top layer is then contained in one such cluster. In the top

layer, we clustered nodes with common children, givingagai Fig. 2. Comparison of the accuracy of the UBP and DBP
non-overlapping clusters containing two nodes each. In thgethods after 20 iterations of each algorithm. Plotted faee t
UBP implementation of [3], nodes that form a loop of lengthmean of the log of the absolute error, together wittone
four were merged into four-node clusters (which can overlagiandard deviation over the 20 random experiments (sek text

each other). The two algorithms, UBP and DBP, then havgor each network size. The upper results are for UBP and the
roughly the same computational complexity per iteratioor. F |gwer ones for DBP.

a network ofn = 16 nodes in each layer, we ran 100 exper-
iments with half of then data points missing at random and .

the prior FFT variances selected from a uniform distributio inference is impractical, BP is a useful approximation einc
when it converges, the posterior means are correct. Whilst

on (0,1). First we ran both UBP and DBP to convergence, wo f fBP — directed and undirected b d
defined as the point where the posterior means change by le wotorms o —directed and undirected —may beé made

than10~'% from one iteration to the next. The number of iter- Mathematically equivalent, their numerical stability iet-

ations used by both methods to reach this convergence tolf"t and may be dramatically so in many practical scenarios

ance differed only by a small number of iterations. However}’vhere noise covariances are ;mall or even z€ero. Our approach
as to derive a directed BP implementation without the ex-

in about a third of runs UBP struggled to converge to this higﬁNl_ " fi . . f Hieh t
tolerance and we then stopped it after a maximum of 50 ite//CIt appearance ot INVerse NoISe covariances, for w

ations, which gave similar accuracy to otherwise convergeBumerical performance iS. su.perior to undirected approxima
runs. The resulting mean absolute error of the inferred FEfons on the_ equivalent pairwise Mark,ov Network. MATLAB
components from the true target values Whs + 1) x 10— code is available from the first author’s homepage.

for UBP and(3.2 & 1.4) x 10~ ** for DBP. Similar experi-

ments give forn = 32: (2.8 + 1.1) x 108 for UBP and 5. REFERENCES
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4. DISCUSSION



